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Advection diffusion equation

ob/ot + u.Vo = kV240

0(X;t), the tracer;
u(x;t),

K, Its diffusivity (usually small);
the advection velocity

Quite often u(x;t) does not depend on the additive:
this is the case of the “passive scalar’.

u(x;t) then obeys the same field equations as those
without the additive: e.g., NS = 0.

Equation is t
As a ru

(

Linearity holds for

nen linear with respect to 6.
e, BCs are also linear

perhaps mixed)

each realization but the equation is

statistically nonlinear because of <u.V6>, etc.



L angevin equation
dx = u(x(t);t) dt + (2«)¥2 dy((t)

v (t) = vectorial Brownian motion,
statistically independent in its three components
For smooth velocity fields, single-particle diffusion as well as

two-particle dispersion are well understood.

The turbulent velocity field is analytic
only in the range r < n, and Holder
continuous, or “rough,” in the scaling
range (Au ~ r", h <1), which introduces

a quantity such as a
structure function (log)

various subtleties. I'

Scallng range
h = 1/3 for Kolmogorov turbulence. r=n Uy
In practice, it has a distribution: _
umultlscallngu analytIC range

C. Meneveau & KRS, J. Fluid Mech. 224, 429 (1991)
KRS, Annu. Rev. Fluid Mech. 23, 539 (1991) log r



If Au~rh h<1
AU (t) ~ tY-M and ™,
memory is lost rapidly. [EEEEEESEENECEr

Lagrangian trajectories are “not unique”



For short times, diffusion effects are additive. The finite time behavior is different.
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Model studies

Assume some artificial velocity field satisfying divu =0
see A.J. Majda & P.R. Kramer, Phys. Rep. 314, 239 (1999)

Broad-brush summary of results

1.

For smooth velocity fields (e.g., periodic and deterministic),
homogenization is possible. That is,

<u(x;t) V(0)> = —(k1 - V(B(x;1))
where k- is an effective diffusivity (Varadhan, Papanicolaou, Majda,
and others)

Velocity is a homogeneous random field, but a scale separation
exists: L /L, <<1. Homogenization is possible here as well.

Velocity is a homogeneous random field but delta correlated in time,
L /Ly = O(1); eddy diffusivity can be computed.

For the special case of shearing velocity (with and without
transverse drift), the problem can be solved essentially completely:
eddy diffusivity, anomalous diffusion, etc., can be calculated without
any scale separation. See, e.g., G. Glimm, B. Lundquist, F. Pereira,
R. Peierls, Math. Appl. Comp. 11, 187 (1992); Avellaneda & Majda,
Phil. Trans. Roy. Soc. Lond. A 346, 205 (1994); G. Ben Arous & H.
Owhadi, Comp. Math. Phys. 237, 281 (2002)



ll. Kraichnan model STANDING CHA!
Turbulence nears a final answer

R'H' KraIChnanl PhyS- FIUIdS 11, 945 Fom BB Vi ( ra “»\V., ] i
(1968); Phys. Rev. Lett. 72, 1016 § o [
(1994)

Review: G. Falkovich, K. Gawedzki & M. gs
Vergassola, Rev. Mod. Phys. 73,
913 (2001)

Surrogate Gaussian velocity field
<vi(X;t)vi(y;t)> = Dy(x-y)o(t-t)

D; ~ [x-y[>7, y =2/3 recovers For a number of outstanding and

Richardson’s law of diffusion unanswered issues, see:

KRS & J. Schurnacher, Phil. Trans. Roy.
Soc. Lond. A 368, 1561 (2010)

Forcing for stationarity:
<fo(x;Dfa(y:t')> = CIL)3(t-t)
C(r/L) is non-zero only on the large

scale, decays rapidly to zero for
smaller scale.




Decaying fields of turbulence and scalar

E
e
e —— =

m

* L, is set by the mesh size

* L, can be set independently and
L /L, can be varied

» Diffusivity of the scalar can be
varied: i.e., Pr or Sc is variable

<0?> ~t M (variable m)

m — m, = f(Re; Sc; L,/Ly)?
m,: asymptotic m for large
values of the arguments




3.0
B Data: Warhaft & Lumley; KRS et al.
(both from wind tunnels, heated grid)

Initial L /L,

Durbin, Phys. Fluids 25, 1328 (1982)

A proper theory is needed!



Effect of length-scale ratio (stationary turbulence)

Both PDFs are for stationary velocity
and scalar fields, under comparable
Reynolds and Schmidt numbers.

Passive scalars in homogeneous flows
most often have Gaussian tails, but long
tails are observed also for column-
Integrated tracer distributions in
horizontally homogeneous atmospheres.

Models of Bourlioux & Majda, Phys. Fluids
14, 881 (2002), closely connected with
models studied by Avellaneda & Majda

Probability density function of the passive scalar
Top: Ferchichi & Tavoularis (2002)
Bottom: Warhaft (2000)




Isotherms

Large-scale features depend on details of forcing, initial conditions and
perhaps geometry. Only a few of these features are understood precisely,
and our qualitative understanding rests on the models of the sort mentioned.



<Ar92> ~ %
<Ar94> ~ IS4
Dimensional analysis: , = 2,

Flatness, <A04>/<A62>% ~ Y, a constant

Measurements show that the flathess —«
asr—0

(because C, = 2C, (or generally ,, < né,)

"Anomalous exponents”



A measure of anomalous scaling,
2¢, — C,, versus the index vy, for the
Kraichnan model. The circles are
obtained from Lagrangian Monte
Carlo simulations. The results are
compared with analytic perturbation
theories (blue, green) and an ansatz
due to Kraichnan (red).

Mixing process itself imprints large-scale features independent of the velocity field!



The case of large Schmidt number

Schmidt number, Sc = v/k ~ O(1000) L

as for the velocity

Batchelor regime

Pg(K) ~ gk
q=0(1)

N = Re3Sc?

Ns



Reynolds number: Re >>1
Schmidt number, Sc = v/k >>1

The Batchelor regime

— —
o O
I =] -

In support of the -1 power law
Gibson & Schwarz, JFM 16, 365 (1963)
KRS & Prasad, Physica D 38, 322 (1989)

o

|
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Expressing doubts
Miller & Dimotakis, JFM 308, 129 (1996)
Williams et al. Phys. Fluids, 9, 2061 (1997)
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Simulations in support

Holzer & Siggia, Phys. Fluids 6, 1820 (1994)

Batchelor (1956)

Eq(K) = ax(v/e)*k*exp[-q(kng)?]
Kraichnan (1968)

Eq(K) = ai(v/e)?k* [1+(60)*kng X
exp(-(60)*?kng)]
















Effective diffusivity

Best fit: —0.144%log(Sc) + 1.36
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Intermittency effects



Some consequences of fluctuations

0. Traditional definitions
<n> = (V3<e>)V4, <np> = <n>/Sct?, <t >= <np>?x

1. Local scales
n = (v3/e), or define n through ns u/v =1
N ~ ﬂ/SC”Z’ T TIBZ/K

2. Distribution of length scales

Schumacher, Yakhot
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3. The velocity field is analytic only in the range r < n
(and the scalar field only for r < ng)

4. Minimum length scale n,,, = <n> Re~1/4
(Schumacher, KRS and Yakhot 2007)

5. Average diffusion time scale
<1, >= <np?>/K, NOt <t >= <np>2/k

6. From the distribution of length scales, we have
<1, >= <np®>lk = 10 <ng>4/k

/. Eddy diffusive time/molecular diffusive time ~
Rel’2/100;exceeds unity only for Re ~ 104

( mixing transition advocated by Dimotakis, short-
circuit in cascades of Villermaux, etc)



Classes of mixing problems

1 Passive mixing

1 Mixing of fluids of different densities,
where the mixing has a large influence on
the velocity field (e.g., thermal convection,
Rayleigh-Taylor instability)

1 Those accompanied by changes In

composition, density, enthalpy, pressure, etc.
(e.g., combustion, detonation, supernova)




Active scalars
oa =Vv.Va + kAa +F,
Vix:t) = | dy G(x,y) a(y.1

Simple case: Boussinesq
approximation

NS = —[3ga
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Helium gas convection (with and without rotation)
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Latest theoretical bound for the exponent (X. Wang, 2007): 1/3 for Pr/Ra = O(1)



Upperbound results in the limit of Ra — o

1. Arbitrary Prandtl number
Nu < Ral”2 for all Pr (Constantin).
Rules out, for example, Pr2 and Pr-1/4,
2. Large but finite Prandtl numbers
~or Pr > ¢ Ra, Nu < Ra'3(In Ra)%3 (Wang)

~or higher Rayleigh numbers, the Y2 power
nolds.

3. Infinite Prandtl number
Nu < CRal3(In Ra)’? (Doering et al., exact)
Nu < aRal’ (lerley et al., “almost exact”)

(Early work by Howard and Malkus gave 1/3 for all Pr.)

2 auestions: Pr 1/3 (? views)



The mean wind
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How are the reversals distributed?

7, = time between subsequent switches in the velocity signal 7 ETn+1 —Tn

power-law scaling of the probability

{OAET I P(7,) - exp[—(z,/ 7, )]

density function for small T4 400
Tm = S

500 1000 1500 2000 2506 3000

100 300

Tl [sec]

Ty [sec]

Sreenivasan, Bershadskii & Niemela, Phys. Rev. E 65, 056306 (2002)

-1 power law scaling characteristic of SOC systems
(see papers in Europhys. Lett., Physica A and PRE)



Dvnamical model

Balance between buoyancy
and friction, forced by
stochastic noise

For certain combinations of
parameters, one obtains
power-law for small times
and exponential distribution
for large times.

double-well potential

p(zy) - exp[(z,/7,)]

Sreenivasan, Bershadskii & Niemela, Phys. Rev. E 65, 056306 (2002)






Summary of major points

» Despite the enormous importance of the problem of mixing,
there are numerous problems (which can be posed sharply)

for which there are no sharp answers. There Iis an enormous
opportunity here.

* The large scale features of the scalar depend on initial and
boundary conditions, and each of them has to be understood
on its own merits. In the absence of full-fledged theory,
models are very helpful to understand the essentials.

« The Kraichnan model explains the appearance of
anomalous scaling.

* The best-understood part corresponds to large Sc, for
which classical predictions of the past have been confirmed
(e.qg., those relating to the -1 power). There is, however, no
theory for the numerical value of the spectral constant and its
behavior for Sc < 1 remains unexplained.



thanks



DISSIPATIVE ANOMALY
Non-dimensional parameters and scales

Reynolds number: Re = uL/v >>1
n = (v3/e)¥*: Re based onn =1

energy

Schmidt number, Sc = v/x

inertial range
d(k) = Cyk53

Ck= 0.5

[PoF, 7, 2778 (1995)]

For Sc = O(1),

dp(K) = Cock™"
Coc=0.35

[PoF, 8, 189 (1996)]

normalized dissipation rate




Brownian motion

Robert Brown, a botanist, discovered In
1827, that pollen particles suspended
In a liquid execute irregular and jagged
motion, as shown.

Einstein 1905 and Smoluchovski 1906
provided the theory.

1 The Brownian motion of pollen grain is
caused by the exceedingly frequent
Impacts of the incessantly moving
molecules of the liquid.

1 The motion of the molecules is quite
complex but the effect on the pollen
occurs via exceedingly frequent and
statistically independent impacts.

simulation in
three dimensions



Langevin’s derivation

Consider a small spherical particle of diameter ‘a’ and mass ‘m’
executing Brownian motion.

Equipartition: <Y2mv?> = 12kT; v = dx/dt

Two forces: viscous (Stokes) drag = 6ntnav and the fluctuating force X
due to bombardment of molecules; X is negative and positive with
equal probability.

Newton’s law: m d?x/dt? = —6rna(dx/dt) + X

Multiply by x

(m/2) d?(x?)/dt?>= —6rna(dx?/dt) + Xx

Average over a large number of different particles

(m/2) d?<x?>/dt? + 6nna(d<x?>/dt) = KT

We have put <Xx> = 0 because x fluctuates too rapidly on the scale
of the motion of the Brownian particle.

Solution: d<x?>/dt= kT/3nna + C exp(—6mnat/m)

The last term approaches zero on a time scale of the order 108 s.
We then have: d<x?>/dt= kT/3nna

Or, <x?> — <xy?> = (KT/3mna)t

Comparing with the result:

Mean square displacement <x?>12 = (2«t )12, we have k = kT/6nna



=squantum fluid
uperfluidity
Helium II

Helfum I
classical liquid Critical

Point

P=pPs T+ P,
Vapor
classical gas

Helium I: v =2 x 108 m?/s (water: 106 m?/s, air: 1.5 x 107> m?/s)
obvious interest in model testing.

a

Razg-(

j-AT-H3
VK

Superfluids flow without friction and transport heat without temperature gradients.



Knoxn = 1.5-33.6
R, =10 -690
Sc=1-1024
kmaan =1.5-6
box-size: 512-2048
(some preliminary
results for 4096)

normalized moments

moment orders 2, 4, 6, 8,10, 12; k,,,n =11




Viscous
]',)! JU”L!:“".
l;\_\’('r

Jet

Thermal
w— houndary

layer

’ \ Plume

(for flow visualization and quantitative work,
see K.-Q. Xia et al. from Hong Kong)



4. Schmidt number effects on anisotropy




The case of large Schmidt number

Schmidt number, Sc = v/k ~ O(1000) L

as before

Batchelor regime

Pg(K) ~ gk
q=0(1)

N = Re3Sc?

Ns



Resolution matters!

Scalar dissipation field N=128 Scalar dissipation field N=512

Low scalar
dissipation

Scalar field N=128 Scalar field N=512

Not much
difference




Sensitivity of low dissipation regions

(Schumacher, KRS & Yeung, JFM 2005)

Regular resolution High resolution







2. The effect of Schmidt number on dissipative anomaly

normalized dissipation rate

Peclet number




3. Anisotropy of small scales e 15 £ e

Sc=1/8
Sc=1

]
200 400

Ry

microscale Reynolds number




5. Effective diffusivity

Best fit: —0.144%logi5c) + 1.36
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Turbulence nears a final answer
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6. Frisch’s excitement

a. Normal scaling

S, ~ (r/L)>, where (=
n/3

b. Anomalous scaling
(;n;é n/3.’ ZCn > Z;2n

c. Importance
Contrast to critical scaling

d. M, = M,"




The iron core becomes nuclear matter and cannot shrink anymore. The
matter from outside continues to be attracted and rebounds off the
nuclear matter. The acoustic waves created coalesce to an outward
moving shock wave which stirs up and, eventually blasts out, the matter.

This Is the supernova.

acouitic
wave

shock wave,
around 0.7My

All calculations show that the shock
wave stalls. We read from G.E.
Brown, Physics Today 58, 62 (2005):
“To this day, calculated explosions
have yet t

assumptic
the exploga



(i) dissipative anomaly for both low and high Sc
(i1) clear inertial-convective scaling for low and moderate Sc

(i) viscous-convective k™-1} for scalars of high Sc, which has
received mixed support from the experiments and simulations

(iv) clear tendency to isotropy with Sc to a lesser degree with Re
which may be a big issue now that we found that with high resolution
the latter appears to be true

(v) saturation of moments of scalar gradients with Sc; | also used a
very simple model for large gradient formation to explain saturation
of intermittency. This analysis, leads to (R_\lambda”2*Sc) as the
Important parameter and the data show a high degree of universality
when normalized by this parameter (see the paper | submitted to
Physica D)

(vi) systematic study of resolution effects for scalars and derivation
of analytic expressions to estimate errors.
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Schumacher & KRS:
numerical simulations

Corrsin (1959): schematic




<u(x;t) V(0)> = —(xk1 - V(B(X;1))

or><EX0x =YAV

oa =v.vVa+ kAa +F,

Vi(x;t) = [dy G(x,y) a(y,t)



Other cases

1. Velocity field stationary, scalar
field decaying
Main result known: initially non-G
PDFs tend to a Gaussian (Yeung
& Pope)

2. Velocity field decaying, scalar field
stationary: unlikely to be practical,
nothing known

3. Both velocity and scalar fields are
stationary: some results are the
same for the scalar whether
sustained by random forcing or
through mean gradients, but
there are differences as well.

Large-scale features depend on
details of forcing, initial conditions
and perhaps geometry. Only some of
these features are understood well.

Are small-scales universal?
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Length-scale ratio?
(autocorrelation times?)



Other cases

1. Velocity field stationary, scalar field decaying

Numerical result: initially non-G PDFs tend to
a Gaussian (Yeung & Pope)

2. Velocity field decaying, scalar field stationary:
unlikely to be practical, nothing known

3. Both velocity and scalar fields are stationary:
some results are the same whether the
scalar is sustained by random forcing or
through mean gradients (dissipation).

Length-scale ratio?
(autocorrelation times?)

Shear flow ref



DISSIPATIVE ANOMALY

normalized dissipation rate

microscale Reynolds number

Sc>1




The problem is simple if the velocity field is simple (e.g., u
= constant, or periodic in 2d)

Not many results are known if u is turbulent in 3d, but
this is what we consider here: the equation is linear for
each realization but statistically nonlinear because of
<u.Vo>.



The turbulent velocity field is analytic
only in the range r < n, and only Holder
continuous, or “rough,” (A,u ~ ", h <1), in
the scaling range, which introduces
various subtleties

h = 1/3 for Kolmogorov turbulence,

In practice, h has a distribution:
multiscaling
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KRS, Annu. Rev. Fluid Mech. 23, 539 (1991)

a quantity such as a
structure function

scaling range
r=n

analytic range

Laufer(pipe) 1954
DNS(R;=460, G & F 2000) —+—




DISSIPATIVE ANOMALY

energy
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No theory exists!






