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What are biological flows?

Example 1: The human body, where fluids play a
critical role, i.e.

* Respiratory system

* Circulatory system

A variety of flow phenomena at multiple scales:
 Organ level (Re<8000)
* Cellular level
* Molecular level

Flow patterns in the human aorta

Blood elements

-9 & J‘n .
Molecules on the cell surface
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Is turbulence important in biological
flows?

Example 1: Turbulence is the exception in the
circulation. It appears in pathologic situations:
* Atherosclerosis
» Medical implants can trigger turbulence
» Medical devices

Turbulence is not desirable in blood circulation:
DNS/LES can help understand and control (avoid) it
* Disease research
* Surgical Planning
* Devise Design

® Introduction




® Introduction
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Core of modeling tools: FSI NS-solver for incompressible flow

Critical elements:

» Treatment of moving boundaries
» AMR solver
» Non-boundary conforming

» Modeling turbulence/transition
» DNS/LES
» Fidelity and conservation properties

» Coupling/modularity
» Different structural solvers (i.e non-linear 3D
beam, plate/shell etc.
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Boundary conforming

Grid deformation is required to satisfy the
conformation constrain

Equations need to be modified to account for
relative motion to the grid

Flexible in clustering grid points

For large deformations grid quality is an issue for
stability and efficiency

@- Treatment of moving boundaries

e ——

Non-Boundary conforming

A fixed Eulerian grid is used at all times
Equations of motion remain unchanged
Boundary conditions not trivial

Quiality of the solution does not depend on how
large deformations are

Inflexible in clustering grid points




&:.  Treatment of moving boundaries
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Non-boundary conforming methods: variety of different schemes

» Immersed boundary
» cut-cell
» direct forcing pam
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Direct forcing based on moving-least-squares (MLS)’

» Forcing is computed on Lagrangian markers

» MLS used to build transfer functions

» Does not depend on spatial discretization

» Does not compromise accuracy of the splitting scheme

*Vanella & Balaras, J. Comput. Physics, 2009




- MLS forcing scheme

Forcing can be computed on the Lagrangian markers:

d n
F;L—l—l/Q _ Ufr A_tU?, - RHSIL—H/Q

Define the ‘predicted’ velocity on the markers:

U=U"+ At RHS"T'/?

Then the forcing function on the the Lagrangian markers is:

F:n—f—l/? _ Uf - (7?,
' At
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& MLS forcing scheme
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Build transfer functions for Largrangian/Eulerian grids

» ldentify the closest Eulerian point to each marker
» Define support domain around each marker

> Associate a volume AV to each marker

We can approximate any variable on the Lagrangian points:
m ]

Ui(x) = 3" p; (x)a;(x) = p” (x)a(x)

where p? (x) is the basis functions vector of length m,
a(x) is a vector of coefficients

To find the coefficients we can define the following weighted L, norm:
ne

J = Z W (x — xk) [pT(xk)a(x) — ﬁff
k=1

x" is the position vector of the Eulerian point k,
ii¥ is the corresponding variable for grid point k

W (X — Xk) is a given weight function




6 MLS forcing scheme

We minimize J with respect to a(x):

A(x)a(x) = B(x)uf with,
A(x) = iw(x—x*ﬁ)p(xk)pT(X*)g
k=1
B(x) = [W(x—-x"p(x') -+ W(x—x")p(x")], and
T N

For linear basis functions A(x) is a 4x4 matrix. Cubic splines are used for the weight functions:

2/3 — 472 + 47 for 7 <0.5
Wix—x) =< 4/3 — a7 + 472 — 4/375>  for 0.5 <7, < 1.0
0 for 7L >1.0




% MLS forcing scheme

We can now find the predicted velocity on the Lagrangian markers:

e

Us(x) =Y oh(x)if = @7 (x)a;
k=1

®(x) = p(x) A(x)! B(x) is a column vector with length ne,
containing the shape function values for marker point [.

The forcing on the Eulerian points would be:

Tl

ko d ol
fi= E ot
I=1

nl is the number of markers associated to the Eulerian
point. To compute c,we require that the total force is

.
———
L

not changed by the transfer:

nte ntl

Y fEAVE =3 FAV!
=1

k=1
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Basic characteristics of the MLS scheme:

» Conserves momentum and torque

» Very robust in treating multi-body moving
boundary problems

» Transfer function build to arbitrary order of
accuracy

»Can be combined with any numerical method

» structured/unstructured

» FD/FVIFE




Accuracy study:
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Cylinder in a cavity, Re=1000

||u-u540|||_2

Error norms



& MLS forcing scheme
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Oscillating cylinder:

Reynolds number:
Re=UD/yv =185

Motion of cylinder:
y t =Asin 2zft

? Domain:
. T ® 4 > x:-10D [ 40D
;! R e y:-15D 015D
O o — ‘ Grids:
1 e —————————— B — - ———— ——& |

T 200x160

305 1 1.:::15 1?1 1.I15 1?2 125 400x 320
fe”l:]

800 x 640
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Oscillating cylinder: force distribution on the surface
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| 1 0.2 B
« O
0.8 O o2
AL i 04

1.0

1.1

1 o L | L l L ) L L | A | L 1 ]
0 90 180 270 360 0 90 180 270 360

8 —— Present: Grid 800x640 \
6 (deg) - == Present: Grid 400x320 0 (deg)
‘oo Present: Grid 200x160
) Guilmineau & Oueuntey (2002)



®: Parallel AMR NS-solver

 Immersed boundary approaches are usually tied to structured Cartesian
grids that do not allow flexibility in grid refinement. As a results limited
applicability to:

« Problems with highly irregular boundaries undergoing large
displacements/deformations

 Moderate, large Reynolds numbers

« Itis desirable to combine advantages of Cartesian grids with adaptively
Increasing resolution in particular zones of the flow domain.




Parallel AMR NS-solver

An octree of blocks:

» Block structured

» All blocks have same dimensions
» Blocks at different level of refinement have different
grid spacing and cover different portions of the domain
» Global block numbers based on Morton order (space
filling behavior)

» Blocks have leaf-parent relation
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Parallel AMR NS-solver
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Level 4
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® Parallel AMR NS-solver
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nyb + 2 nouard
nyb + nguard +1 | |
nyb + nguard | |
> grid composed of blocks -
» all blocks have same size 18
B
> each block reserves space for layers of guard c I, ;{ll
nxb+nguard T
nxb+nguard+1
nxb + 2 nouard

Indexing scheme for a 2D grid block with 2 guard cells
{nguard=2) at each block houndary. Interior cells are
colored red, guard cells are colored blue.
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» We use a projection method, where

advective and diffusive terms are advanced
explicitly (d)
» We use the Paramesh toolkit (developed by
MacNeice and Olson) for the implementation )
of the AMR process. The package createsand | | | /T
maintains the hierarchy of sub-grid blocks, with / ~
each block containing a fixed number of grid ' '

points. @/ 4G+ &)

* Asingle-block Cartesian grid solver is 11

employed in each sub-grid block: A 0 N L

{ZH a_
-

» standard staggered grid in each sub-
block

 second-order central finite-differences S \

5

A hybrid direct/multigrid solver is used for 0 0 1 @ _,'_._' "

the Poisson equation (developed in b & 4. 7 07 |

P | : |

collaboration with the FLASH-Group)

.V {.r .- g - )
» Guard cells are used to discretize equations standard staggered grid

at the interior coarse-fine interfaces

coarse-fine interface



Parallel AMR NS-solver

The multigrid algorithms have an inherent scaling
limitation:
« as the grid gets coarser, there is less computational
load to distribute among processors.

« as the number of blocks at a level approaches the
number of processors, we begin to see the overhead
cost of low computation/communication ratio.

» further reduction in the number of blocks,
processors start to become idle and load balance
deteriorates (at the coarsest level, very few
processors are busy).
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® Parallel AMR NS-solver
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Oct Tree Lével Mesh

PFFT

full multigrid Hybrid with
terminated

multigrid

Level 4

ARV

Hybrid with terminated —

full multigrid multigrid

» we do not complete a V cycle, and instead coarsening of
the grid is stopped at a predetermined level.

* the coarse level may be any level that is fully refined (i.e.
containing blocks that completely cover the computational
domain).

* The solution at this level is computed using one of the
parallel direct solvers




g Parallel AMR NS-solver

Inclusive time to perform a single Poisson solve on Intrepid (BG/P).
Weak scaling graph (number of blocks per processor kept approximately constant).
The hybrid data points correpond to a direct solve on the finest common level.

Multigrid (~40 blocks/proc) ===  Hybrid (~40 blocks/proc) - -~
Multigrid (~20 blocks/proc) —€—  Hybrid (~20 blocks/proc) —f—
25  Multigrid (~10 blocks/proc) --&-- Hybrid (~10 blocks/proc) --4=}-- -
20 | i
)
=
=
8
e 15} -
4b]
£
|_
10 | -
5 F -
D 1 1 1 1 e aal 1
100 1000 10000

Log number of cores

Vanella et al, J. Comput. Science, 2010

100000
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‘& Parallel AMR solver: summary of algorithm
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[' Compute SGS-viscosity V, l

T

. .
|r Fill Guard calls for V. |
T

] .
Compute intermediate velocities & from Eq, (11),
with f sello zero

.
l F#l quard cebs for 17, apply boundary conditions. |

L
[ Test ab loaf-blocks for refirement-derefinement, |
i

refine s dercline
L £ 2 N 1
Add children blocks (o the Quadratic restiction of PV, |
| octree, no by Eq, (4) ’
R L N 4 - 3
‘ Quadratic pralongation of o, ‘ Linear restriction of 11 , |
vy by Eq. (5). ;
L} 1
‘ Dwergence-presarving ‘ :emm blocks from the ’
\oroﬁangab’onoll/, | i T
ey no
. S 'y
Solve structural equations for ‘ Prescribe generalized positions and
; generalzed postions and velocties. | velocities of structure.

Y
L3

I

l Qutain naw positions Xf and velocities l,'," of surface markers. |

v Compute Embedded Boundary Forcing field f,

Yol

.
- _ Al .
n=u + At A’l

Match Nuxes for l.l:

Multigrid soluton for :
Preszure comeclion dy)

Match fluxes for Mo/ )/ Ax
Compute Final velocities by
\ Eq. {12). and update pressure. |

4
| Fil Guard cells for new ¢/ """ and /)""'

L3

‘ Compute sub step Flukl loads on generalized coordinates,

|
,.-!»._
TFSIT >
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&: Adaptive mesh refinement: accuracy
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Validation: Taylor Green Vortex

Compare numerical solution to analytical u=—e > cosxsin y

solution of 2D Navier-Stokes equations T
y=e ~ S xXCoSy

Domain: o
[n/2, 5m/2] [7/2, 57/2] P=-= (cos2x +cos2y)

Homogeneous Dirichlet/Neumann velocity
boundary conditions and Neumann
pressure boundary condition
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Validation: Taylor Green Vortex, no temporal AMR

Welocity error (L noem)

Domain with 2

@& - Adaptive mesh refinement: accuracy

- refinement levels
. Linear interpolation
- -2
-~ 10
-~
//‘
e * Domain with 2
- = . o * refinement levels
5 10t ; . .
. £, . o Quadratic interpolation
. = /,’/ 10
10 £ w0’ o g
fix = __,-"'J) (/f
£ T
Uniform domain £ -
10’ L = -~
10’ S 10 pze
ax & -~ .
-, ra
= -~
2
L
1 -
-1
10
Ay fcoarsest grid)
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&: Adaptive mesh refinement: accuracy
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Validation: Taylor Green Vortex, with temporal AMR*

0.04
10_‘r 1 - 1
) =" _ 003} .
— 3 1 - =
3010 2!// + - |
T 3 - Y , 0.02}
5 10 + a 5
10-4r ‘ 4 0.01' 7
0
107 N 3
- - ’ ) HHHH Hl““ ““HHHIH“
b3 -2 -7 /”* ]
= 10"} g 1 =
- i Py
ill . o & ?-G 1072 i RN AR RN NN
10 + | T R R R RN T IR I
= r & - L{ Lllllllllllllllllllllllllllllllnlb '''''''' ]
D & ||||n|n||_|||||n"' ==
10 ¢ 1 ARNERROAE
10 R s oo oo nac oo ISR SIS, 1
107 10" 0 05 1 15 2 25 3
A Time

*Vanella & Balaras, J. Comput. Physics, 2010
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- Adaptive mesh refinement: validation
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Vortex Ring impinging on a wall, Re = 570

Positions in the X=0 plane, for centers of X vorticity:

« Compare AMR solution to |

= Single Block 15t Vortex
numerical solution using a Single 08 S wkEh o
Block, Cartesian solver. *  AMR 2nd Vortan
« Velocity Dirichlet BCs in top and o7} !
Bottom Boundaries, periodic on Ig'
side walls. Pressure Neumann z
BCs: g os
HHH““* 04
‘—‘x\h‘ah‘“‘\_
T o °
T ' |
0 02 04 06 08 !

==

Y/Do [Nondim]

Q contour for vortex impinging normal to a wall, Re = 570
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®: Adaptive mesh refinement: validation

L
TRyLN

_—

Vortex Ring impinging on a wall, Re = 570

Positions in the X=0 plane, for centers of X vorticity:

1 T 1 X

« Compare AMR solution to [— snge Bloa 1s J

Single Block 16t Vortex

numerical solution using a Single -4 . B
Block, Cartesian solver. L _AMR2nd Vortex

« Velocity Dirichlet BCs in top and
Bottom Boundaries, periodic on
side walls. Pressure Neumann
BCs.

ZK_)o [Nondim]

0 (2 04 06

[ Y/Do [Nondim]

vorticity isolines at a cross section, Re = 570
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Sphere bouncing-off a wall
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(b)

Computational setup and Eulerian/Largangian grid arangement

L3ty

1
1

111

1

0 5 R R 5

|
l
{
|
it
e
l
|
l
l
|



Sphere bouncing-off a wall

T= 0.250

Dry restitution coefficient one
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® Parallel AMR solver: LES module
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Critical issues with AMR/LES:

»In DNS and RANS, the solution is smooth on the grid scale and
interpolation errors due to the reconstruction of the fluxes at the non
matching interfaces between coarse and fine grids are small.

»In LES the flow is not smooth at the smallest scale and numerical errors
in the interpolation between grids can be significant.

» The subgrid-scale (SGS) eddy viscosity is usually proportional to the
filter width squared. A sudden mesh refinement or coarsening results in a
discontinuity in eddy viscosity.

»When a non-uniform filter width is used, differentiation and filtering do
not commute, and additional terms (“commutator errors”) appear in the
equations of motion.




Parallel AMR solver: LES module

Homogeneous turbulence convected through a CF interface:
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& Parallel AMR solver: LES module )
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Filter size near the interface:

015~ : : ; ‘ ;CF-S sirﬁulations ;

= CF-V simulations

N 04
0.05 .
-3 2 1 0 1 2 3 4
xZ A
0.15
N o1
—FC-S simulations
| = FC-V simulations
0.05 ' ‘ — —
-3 -2 -1 0 1 2 3 4
x/




& Parallel AMR solver: LES module 8
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10"~ LA S CE (S i B ————————]
o LDEV, Coarse |
= LDEV, Fine
K3 ——LDEV, CF-S
LDEV, FC-S
LDEV,FC-V_|

Effects of filter size

10°

o LDEV, Coarse |
= LDEV,Fine |
LDEV,CF-§ ||
----LDEV,FC-S |
_LDEV,FC-V |

) 1 0 1 2 3 4
xA.
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& Parallel AMR solver: LES module
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| o LDEV ExpFi, Coarse |
‘ * LDEV Exp Filt, Fine
o | —LDEV Exp Fit CF-S
0| X=07 e e—— L . 1 LDEV Exp Filt, CF-V

Effects of explicit filtering

LDEV Exp Filt, FC-S |
| ===~ LDEV Exp Filt, FC-V

10° 10' 10°
k
0.4 . ! : . ‘
o LDEV Exp Filt, Coarse ||
0.35 « LDEVExpFilt, Fine |
| ——LDEV Exp Fill, CF-§
03, ----LDEV Exp Filt, CF-V ||
2 LDEV Exp Filt, FC-S ||
(117 Ry, P (| ! S— | it Foy 1
g | ~—LOEVExpFilt, FC-V |
~ 02
e
0.15
0.1
0.05-
"—2 4 0 1 2 3 4
xA.




Applications
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Incuspid valve

Right ventricle

Mitra! valve

Left ventricle

CALCIFIED AORTIC VALVE

/o Example: Heart valve disease and treatment
4"’RYU&Q‘
Pulmonary valve
4 chambers
— — 2 atriums
— 2 ventricles
4 valves
Asrtic valve — 2 atrioventricular
Right atrum - ZSemilunar

Left side; high pressure
Right side: low pressure

Mitrial and Aortic valves are the most
commonly affected valves
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S Example: Heart valve disease and treatment
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*Valvular Heart Disease:
* Not regarded as major public health
problem?
« Common and Underdiagnosed?

Burden of valvular heart diseases: a population-based study W

Vuyisile T Nkomao, Julius M Gardin, Thomas N Skefton, John S Gottdiener, Christopher G Scott, Maurice Enriquez-Sarano

Background Valvular heart diseases are not usually regarded as a major public-health problem. Our aim was to assess
their prevalence and effect on overall survival in the general population.

Methods We pooled population-based studies to obtain data for 11911 randomly selected adults from the general
population who had been assessed prospectively with echocardiography. We also analysed data from a community
study of 16501 adults who had been assessed by clinically indicated echocardiography.

Lancet 2006; 368: 100511

Published Online
Avgust 18, 2006
DOl10.100 8¢ 501 40-
6736(06)69208-8

See Comment page 969

Mayo Clinic, Rochester, MN,
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Example: Heart valve disease and treatment

14
12
10

—— All Valve Disease
Mitral Valve Disease
Aortic Valve Disease

A\A
— T

18-44 45-54 55-64 65-74 >75
Age (years)

Prevalence of heart valve disease (%)




@ Example: Heart valve disease and treatment
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Replacement of defective heart valves with
artificial prostheses is a ‘safe’ and routine
surgical procedure worldwide

12% of adults over 70 will has mitral or aortic
valve disease.

Several different types of prosthetic valves:
Mechanical HV
Bioprosthetic (tissue) HV

Prosthetic valves cannot exactly mimic natural
valves

Thrombogenesis is a major complication (2%
year)

Developing new designs is expensive and time
consuming:

In-vitro testing / animal studies / clinical
trials

Takes more than 10 years and ~$50 million

Predictive computer simulations can reduce
cost




@ Example: Heart valve disease and treatment
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Long-term results with conventional AVR: Bad for the Brain

c‘l) Point-estimate
+85% CI

THROMBOEMEBOLISM:
FPERCENT PER YEAR
n

0+ O
SE BS MS MH OSO0CUC 5l CM ET 5B

Figure 3. Thromboembolism rates for mechanical acotic valves. The
vertical axis is the linearized rate in percentage per year. Each symbal
represents one seres. Circles indicate that only late events were usad to
calculate the rates; diamonds indicate that both early and late events were
used. BS = Bjork Shiley; CM = Carbomedics; ET = Edwards Teloa or
Duromedics; MH = Medtronic Hall; M5 = Monostru; OC = COmni-
carbon; OFC = FDA%S Objective Performance Criteria (from reference
29% 05 = Omniscience, 5B = Sorbin Bicarbon; 5E = Star Edwards; 5]
= Bt Jude; UC = Ultracor. From refarence 29,
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2 g Example: Heart valve disease and treatment
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Level 1: Assessment of PHV performance through hydrodynamic

- Direct numerical simulation of the fluid
structure interaction problem (solution of NS
equations, Newtonian fluid, incompressible
flow.

- Detailed information macroscopic flow
patterns

*DeTulio et. al. J. Fluid Mech. (2009)
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5‘@; Example: Heart valve disease and treatment
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Level 2. Hemolysis and thrombosis modeling

» Mechanical hemolysis is the result of excessive hydrodynamic forces on
the red blood cell’s (RBC) membrane.

* Frequently used models relates hemolysis levels to the stress scalar

magnitude and duration of exposure, based on data coming from steady
shear experiments at short time scales.

.
\_ "
4
80 003
a0
— 0.02
E
40 —
2 =)
m
g S
20t '{,,'*. { TN " 0.01
0 B e e R e e - - —
0 — —

100 150 200 0 50 100 150 200
time [ms] time [ms]



JERSI
%\“‘ Ty
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Level 2. Hemolysis and thrombosis modeling current limitations

- Important questions need to be addressed:
« How important is the local history of stress exposure (i.e.

successive application of high stress fields) to determining the
effective hemolysis limits?

» What is the effect of neighboring cells in the suspension on
mitigating or amplifying the effective stress on the cell?
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108 Example: Heart valve disease and treatment
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Level 3: Developing better hemolysis and thrombosis models
through whole blood simulations

: 0O ¢C
1 nm
Molecular coarse-grain
Cc /.\ d
-0
F NS N Sy
75 nm qu.m 800 nm
INE NN
fFNIF NI TN
| B B B B
Single-spectrin coarse-grain Multiple-spectrin coarse-grain
e f

24, 000-node REC model 500- RBC model
Model RBC structure Pasticles par- | Foecs flald Fluid structure RECS pae
RBC parameters simulation
. 10 i A << 1 (one protein
Fully atomistic Bonded atoms 107 -10 100 Atomistic network unit cell
Molecular coarse |Bonded multi-atom 10° - 10° 20 Multi-atom beads 1-10
grain beads 3 or continuum
SHge-spaciiin Nodes joined by 10* 10 Continuum 1,000
coarse-grain spectrin links
Pseudo-nodes
ro';':;':“’f:i:cm" joined by pseudo- <10° 10 Continuum 1,000,000
"9 spectrin links




@ Example: Heart valve disease and treatment
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Level 3: whole blood simulations on Petascale computing platforms

- Sample computation:
« 3 million blocks (323)
* 5 million blood elements (1000 degrees of freedom each)
 10% timesteps
16 million hours, wall clock on 100k cores is 6.6 days
» data to be stored: 1.2 Pbytes

*Challenges:
 Explore fine grain parallelism due to the large number of cores O(10°)
» Utilize MPI and direct p-threads




