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Abstract

In this paper we study 1D equations with nonlocal flux. These
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1 The model equations

The 2D quasi-geostrophic equation(QG), which models the dynamics of the
mixture of cold and hot air and the fronts between them, is given by

θt + (u · ∇)θ = 0, (1.1)

u = ∇⊥ψ, θ = −(−∆)
1
2 ψ,

θ(x, 0) = θ0(x),

where ∇⊥ = (−∂2, ∂1). Here, θ(x, t) represents the temperature of the air.
Besides its direct physical significance ([16, 21]), the quasi-geostrophic equa-
tion has very interesting features of resemblance to the 3D Euler equation,
being also the finite time blow-up for (QG) an outstanding open problem.
With respect to that question there are pioneering studies due to Constantin,
Majda and Tabak [7]. In particular they obtained a finite time blow-up crite-
rion, which says that the local smooth solution for initial data θ0 ∈ Hk(R2),
k ≥ 3, blows up at T if and only if

∫ T

0

‖∇⊥θ(t)‖L∞dt = ∞.

There are many studies on the equations following that work ([2, 4, 12, 13, 19,
22, 28]). Motivated mainly by [6], we are concerned here on constructing and
studying a one dimensional model equation of (QG). In order to derive that
model equation we first write (QG) in another equivalent form as follows:
From the second equation of (QG) we have the representation

u = −∇⊥(−∆)−
1
2 θ = −R⊥θ, (1.2)

where we have used the notation, R⊥θ = (−R2θ,R1θ) with Rj, j = 1, 2, for
the two dimensional Riesz transform defined by (See e.g. [26].)

Rj(θ)(x, t) =
1

2π
PV

∫

R2

(xj − yj)θ(y, t)

|x− y|3 dy.

Using the representation (1.2), we find that (1.1) is transformed into

θt + div[(R⊥θ)θ] = 0, (1.3)

because div(R⊥θ) = 0. To construct the one dimensional model we consider
the unknown function θ(x, t) defined for (x, t) ∈ R× R+ or T× R+ , and
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replace the Riesz transform, R⊥(·) in (1.3), by the Hilbert transform H(·)
defined by

Hω(x) =
1

π
P.V.

∫ ∞

−∞

ω(y)

x− y
dy,

or

Hf(x) =
1

2π
P.V.

∫ π

−π

f(x− y)

tany
2

dy

in the periodic case. And finally we replace div (·) in (1.3) by ∂x. Then the
equation (1.3) is transformed into

θt + (H(θ)θ)x = 0, (1.4)

θ(x, 0) = θ0(x).

This was already studied in [1] and [18], which was proposed in a different
physical situation. In [18] it was considered the following equation

θt + δ(H(θ)θ)x + (1− δ)H(θ)θx = 0 with 0 ≤ δ ≤ 1 (1.5)

and the existence of singularities for 0 < δ < 1
3
, δ = 1

2
and δ = 1 was

proved.1 Also, in [18], the question of singularities of (1.5) for the other
ranges of 0 < δ ≤ 1 was left open. In Theorem 2.1 below, we proved exis-
tence of singularities for the full range of 0 < δ ≤ 1, thus solving the problem.
The proof of existence of singularities in the case δ = 0 is solved in [11] using
a different technique.

In the case of 2D viscous Quasi-geostrophic equation Constantin and Wu
[8] showed that for α > 1 the system

(∂t + u · ∇) θ = −κ(−∆)
α
2 θ, (1.6)

u = ∇⊥ψ, θ = −(−∆)
1
2 ψ

does not develop singularities in finite time. For the critical viscosity α = 1 it
is an open problem, considered as a model problem of the 3D Navier-Stokes
equations (See [3], [4], [5], [9], [10], [17], [22], [23], [24] and [25], for more
details).

1Notice that after the change θ → −θ, equation (1.5) can be formulated as it originally
appears in [18].
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In section 3 and 4 we study the following one dimensional model of the
critical viscous QG

θt + (θH(θ))x = −κHθx,

θ0(x) = θ(x, 0),

where the critical viscosity term −κ(−∆)
1
2 θ in (1.6) is replaced by −κ(Hθ)x.

We show that the solutions to this equation may also develop singularities
with the same initial data as in the inviscid case for any κ < ‖θ0‖L∞ . When
the viscosity κ ≥ ‖θ0‖L∞ then the solution remains smooth. In section 4
we prove global existence of solutions for the periodic case with small initial
data. If the second order viscosity term µθxx added

θt + (θH(θ))x = µθxx,

θ0(x) = θ(x, 0),

then explicit solutions can be constructed for all positive µ by applying the
Hopf-Cole transform. See Appendix A.

2 The formation of finite time singularities

2.1 Blow-up in finite time: periodic case.

We shall consider periodic solutions of the equation (1.5) with δ > 0, where
θ(x + 2π, t) = θ(x, t). Our goal is to show that, for very general smooth
initial data θ0, there is no C1([−π, π] × [0, T )) solution of (1.5) with δ > 0
for all time T.

First let us observe that

i) Hf(x) =
1

2π
P.V.

∫ π

−π

f(x− y)

tany
2

dy

ii) Λf(x) = Hfx(x) =
1

2π
P.V.

∫ π

−π

f(x)− f(y)

sin2 x−y
2

dy

iii) If the real valued function f ∈ C1 has a maximum (respectively a
minimum) at x0 then Λf(x0) ≥ 0 (respect. Λf(x0) ≤ 0).

Theorem 2.1 Given a periodic non-constant initial data θ0 ∈ C1([−π, π])
such that

∫ π

−π
θ0(x)dx = 0, there is no C1([−π, π]× [0,∞)) solution to (1.5)

with δ > 0.
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Proof: Suppose the existence of such a solution θ(x, t). We have

d

dt

∫ π

−π

θ(x, t)dx = −δ

∫ π

−π

(θHθ)xdx− (1− δ)

∫ π

−π

θxHθdx

= (1− δ)

∫ π

−π

θHθxdx ≥ 0

Therefore

M(t) ≡ maxxθ(x, t) ≥ 0

m(t) ≡ minxθ(x, t)

and, in t=0, we have the strict inequalities: M(0) > 0, m(0) < 0. Both M(t),
m(t) are continuous Lipschitz functions and by H. Rademacher’s theorem,
they are differentiable at almost every point t.

Under the hypothesis of differentiability we may choose x(t), x(t) such
that

M(t) = θ(x(t), t)

m(t) = θ(x(t), t)

for every t ≥ 0. Let t0 be a point of differentiability of M(t). By compacity
we may choose a sequence of positive numbers hj → 0 so that x(t0 + hj)
converges to x0. Then by continuity we will obtain that M(t0) = θ(x0, t0).

Next, let us consider

M(t0 + hj)−M(t0)

hj

=
θ(x(t0 + hj), t0 + hj)− θ(x0, t0)

hj

=
θ(x(t0 + hj), t0 + hj)− θ(x(t0 + hj), t0)

hj

+
θ(x(t0 + hj), t0)− θ(x0, t0)

hj

≤ θt(x(t0 + hj), t0 + hj) · hj

hj

= −(1− δ)θx(x(t0 + hj), t0 + hj) ·Hθ(x(t0 + hj), t0 + hj)

−δθ(x(t0 + hj), t0 + hj) · Λθ(x(t0 + hj), t0 + hj)

for certain hj, 0 ≤ hj ≤ hj.
Taking limit when hj → 0 we get the inequality

M ′(t0) ≤ −δθ(x0, t0)Λθ(x0, t0) ≤ 0
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and since this happens at almost every point t0, we may conclude that M(t)
is a positive decreasing function. Furthermore, if we compute the derivative
taking a sequence of negative hj we will reverse the sign of the inequality.
Therefore at each point of differentiability of the function M we will get the
identity

M ′(t0) = −δθ(x0, t0)Λθ(x0, t0).

By a completely analogous argument we obtain that the negative function
m(t) is also decreasing and satisfies:

m′(t) = − δ

2π
m(t)

∫ π

−π

θ(x, t)− θ(y, t)

sin2 x−y
2

dy ≤ 0

at almost every t, where x is a point such that m(t) = θ(x, t). Furthermore,
since

∫ π

−π
θ0(x)dx ≥ 0 and M(t) ≤ M(0), m(t) ≤ m(0) < 0 the set

{y : θ(y, t) ≥ θ(x, t)

2
}

has strictly positive measure greater than a universal constant. In particular,
there exists a universal positive constant C so that:

δ

2π

∫ π

−π

θ(y, t)− θ(x, t)

sin2 x−y
2

dy ≥ C|θ(x, t)|.

But then one obtains the inequality

|m|′(t) ≥ C|m(t)|2

which implies the blow-up of m(t) in finite time contradicting our hypothesis
about the regularity of θ(x, t).

Since the Hilbert transform H maps the space Λα = {f ∈ L∞, sup |f(x)−f(y)|
|x−y|α <

∞}, 0 < α < 1, into itself, we have the following:

Corollary 2.2 There is no non-zero solution of (1.5) with δ > 0 so that∫ π

−π
θ(x, 0)dx = 0 and θ(·, t) ∈ C1,α, for any α > 0 and for every t, 0 ≤ t ≤

T (θ0).

Remark 2.3 If
∫ π

−π
θ(x, 0)dx ≥ 0 and minxθ0 < 0, then theorem 2.1 and

corollary 2.2 also apply.

In the next section we present some explicit solutions whose singularities
go beyond Theorem 2.1 for δ = 1.
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2.2 Construction of exact solutions for δ = 1.

2.2.1 Periodic case

Following [6] (See [1]) closely, we can transform (1.4) into an equation for
complex valued functions. Let us recall the formulas for the Hilbert transform
(See e.g. [20]):

H(Hf) = −f (2.1)

H(fHg + gHf) = (Hf)(Hg)− fg (2.2)

(Hf)x = H(fx) (2.3)

Then, applying H on both sides of the first equation of (1.4), we have

(Hθ)t +
1

2
((Hθ)2 − (θ)2)x = 0. (2.4)

Thus, if we introduce the complex valued function

z(x, t) = Hθ(x, t) + iθ(x, t), z0(x) = Hθ0(x) + iθ0(x), (2.5)

then (1.4) are the imaginary and the real parts of the equation,

zt + zzx = 0, (2.6)

z(x, 0) = z0(x).

This is the inviscid Burgers equation in complex variable form, which is
actually a condensed form of a system of two equations in contrast to the real
Burgers equation, which is a scalar equation. In this section we are concerned
with the solutions of the following complex inviscid Burgers equation:

zt + zzx = 0 (2.7)

where
z(x, t) = u(x, t) + iθ(x, t)

and u(x, t) ≡ Hθ(x, t). Expanding equation (2.7) in its real and imaginary
parts one gets the system:

ut + uux − θθx = 0 , (2.8)

θt + uθx + θux = 0 . (2.9)
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In order to solve it let us introduce the hodograph transformation. This
transformation is commonly used in the analysis of problems in gas dynamics
and was also introduced, in a completely different context ([14, 15]), in order
to construct explicit solutions developing singularities. It will be used here
for the same purpose. In order to perform the hodograph transformation we
consider x(u, θ) and t(u, θ) instead of u(x, t) and θ(x, t). Having in mind the
relations

ux = Jtθ ,

θx = −Jtu ,

ut = −Jxθ ,

θt = Jxu ,

where J = (xutθ−xθtu)
−1 we deduce by direct substitution that the following

linear system is equivalent to (2.8), (2.9)

−xθ + utθ + θtu = 0 , (2.10)

xu − utu + θtθ = 0 . (2.11)

as far as J−1 6= 0. The system (2.10), (2.11) can be written more compactly
in the form:

−(x− tu)θ + (tθ)u = 0 ,

(x− tu)u + (tθ)θ = 0 ,

which leads to the following Cauchy-Riemann system for η(u, θ) ≡ −(x(u, θ)−
t(u, θ)u) and ξ(u, θ) ≡ −t(u, θ)θ:

ξu = ηθ ,

ξθ = −ηu .

Hence, f(z) = ξ(u, θ) + iη(u, θ) where z = u + iθ is an analytic function.
From the initial data for (2.7) one gets u(x, 0) + iθ(x, 0) which represents a
curve γ in the complex plane parameterized by x. On the other hand, at
t = 0 one has η(u, θ) = x(u, θ) and ξ(u, θ) = 0 defining the values of η and ξ
along γ. Therefore, to solve the initial value problem for (2.7) is equivalent
to extend analytically a complex variable function with values given along a
certain curve γ. Let us consider the example:

f(z) = ln z .
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The function f(z) is analytic in the whole complex plane except for a branch
that we locate at (u, 0) with u > 0. Writing z = reiϕ we have

f(z) = ln r + iϕ = ln
√

u2 + θ2 + i arctan
θ

u
. (2.12)

The real part of f(z) is zero along the circumference of radius 1: γ =
{(u, θ) : u2 + θ2 = 1}. Parameterizing γ in the form (u, θ) = (cos ϕ, sin ϕ)
one gets η = Imf(z) = ϕ. Since along γ one has η(u, θ) = −x(u, θ) it follows
that ϕ = −x which yields the following initial data for z :

z(x, 0) = cos x− i sin x .

This initial data is compatible with (2.4), since H(sin x) = − cos x. From
(2.12) and the definition of η and ξ it follows

−tθ = ln
√

u2 + θ2 (2.13)

−(x− tu) = arctan
θ

u
(2.14)

which define implicitly the real and imaginary parts (u(x, t), θ(x, t)) of the
solution to (2.7) at any given (x, t). From (2.14) one can get

θ = −u tan(x− tu)

which inserted in (2.13) yields

tu tan(x− tu) = ln

∣∣∣∣
u

cos(x− tu)

∣∣∣∣ . (2.15)

Expression (2.15) defines u(x, t) implicitly. Notice that u(x, 0) = cos x satis-
fies (2.15). Our aim now is to show that u(x, t) develops shock-type singu-
larities at finite time. Let us fix our attention to points in a neighborhood of
x = π

2
; that is, in points of the form x = π

2
+ δx with |δx| ¿ 1. From (2.15 )

we get

−tu
cos(δx− tu)

sin(δx− tu)
= ln

∣∣∣∣
u

sin(δx− tu)

∣∣∣∣ (2.16)

which allows the construction of local solutions u(x, t) of (2.15) near x = π
2

in the form
u(

π

2
+ δx, t) ' A(t)δx .
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Inserting this into (2.16) and letting δx → 0 it follows

−tA(t)
1

1− tA(t)
= ln

∣∣∣∣
A(t)

1− tA(t)

∣∣∣∣ . (2.17)

It is easy to show that A(t), defined implicitly by (2.17) in such a way that
A(0) = −1 (notice that ux(

π
2
, 0) = − sin π

2
= −1 ), decreases for t > 0 and

blows-up to −∞ at t = e−1 ' 0. 36788. Hence, our conclusion is that ux(
π
2
, t)

blows-up at finite time. This phenomena represents the formation of a shock
at x = π

2
. We also claim that θx(

π
2
, t) blows up at the same time t = e−1.

Indeed, θx(x, t) = −ux tan(x− tu)−u sec2(x− tu)(1− tux), and at x = π
2

we
have

θx(
π

2
, t) = −ux cot(tu)− u csc2(tu)(1− tux)

= −ux

[ 1
2
sin(2tu)− tu

sin2(tu)

]
− u

sin2(tu)

' 2

3
tuux − 1

t2u

for |t − e−1| ¿ 1. Since ux(
π
2
, t) ↘ −∞ and u(π

2
, t) → 0 as t → e−1, we

conclude that θx(
π
2
, t) blows up at t = e−1.

In figures 1 and 2 below we represent the profiles for u and θ at five dif-
ferent times t = 0, 0.09, 0.18, 0.27, e−1. Observe the appearance of a discon-
tinuity in the derivative with respect to x both for u and θ at x = (2n+1)π

2
,

n ∈ Z.

–2.5

–2

–1.5

–1

–0.5

0

0.5

1

–4 –2 2 4

Figure 1: θ at t = 0, 0.09, 0.18,
0.27, e−1.

–1

–0.5

0.5

1

–4 –2 2 4

Figure 2: u at t = 0, 0.09, 0.18,
0.27, e−1.
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3 The critical viscous equation

If we add the first order viscous term (−∆)
1
2 θ to the one dimensional inviscid

model, we get the following equation:

θt + ((Hθ)θ)x = −κHθx .

Again, introducing z = u + iθ with u = Hθ one gets the following viscous
complex Burger’s equation:

zt + zzx = −iκzx.

The use of the hodograph transformation allows us to obtain a system anal-
ogous to (2.10), (2.11):

−xθ + utθ + θtu = −κtu , (3.1)

xu − utu + θtθ = −κtθ , (3.2)

which can be written as the Cauchy-Riemann system

ξu = ηθ ,

ξθ = −ηu .

for η(u, θ) ≡ −(x(u, θ) − t(u, θ)u) and ξ(u, θ) ≡ −t(u, θ)(θ + κ). With the
same example studied in the previous Section, f(z) = ln z, one would get the
following implicit equations defining u(x, t) and θ(x, t):

−t(κ + θ) = ln
√

u2 + θ2 , (3.3)

−(x− tu) = arctan
θ

u
. (3.4)

The initial data are also u(x, 0) = cos x, θ(x, 0) = − sin x. Fixing our atten-
tion to a neighborhood of x = π

2
, writing u(π

2
+ δx, t) ' A(t)δx and letting

δx → 0 one gets, analogously to (2.17), the following equation for A(t) :

−κt− tA(t)
1

1− tA(t)
= ln

∣∣∣∣
A(t)

1− tA(t)

∣∣∣∣ . (3.5)

If we had A(t) → −∞ at t → T−, then equation (3.5) would converge to the
equation

−κT + 1 = ln
1

T
,
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which can be written in the form

g(T ) ≡ ln T − κT + 1 = 0 .

The function g(T ) has a unique maximum at T = κ−1 and g(κ−1) = ln(κ−1),
provided that κ is positive, so that g(T ) has roots if and only if κ ≤ 1. Hence,
the solutions will form finite time singularities if κ ≤ 1 and will exist globally
if κ > 1.

–1.5

–1

–0.5

0

0.5

1

–4 –2 2 4

Figure 3: θ at t = 0, 0.11, 0.22,
0.33, 0.45 for κ = 0.5.

–1

–0.5

0

0.5

1

–4 –2 2 4

Figure 4: u at t = 0, 0.11, 0.22,
0.33, 0.45 for κ = 0.5.

–1

–0.5

0.5

1

–4 –2 2 4

Figure 5: θ at t = 0, 0.11, 0.22,
0.33, 0.45 for κ = 1.5.

–1

–0.5

0

0.5

1

–4 –2 2 4

Figure 6: u at t = 0, 0.11, 0.22,
0.33, 0.45 for κ = 1.5.

In figures 3 and 4 above we represent θ(x, t) and u(x, t) at t = 0, 0.11, 0.22, 0.33
and 0.45 when κ = 0.5. As we can see, the L∞ norm of u(x, t) tends
to decrease but the solution forms a finite time singularity (later than in
the case κ = 0). In figure 5 and 6 we represent θ(x, t) and u(x, t) at
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t = 0, 0.11, 0.22, 0.33 and 0.45 when κ = 1.5. The solution exists globally
and the L∞ norms of θ(x, t) and u(x, t) decay.

4 Global existence of solutions in the peri-

odic case for small data

In this section we will consider the equation with critical viscosity and κ > 0

θt + ((Hθ)θ)x = −κHθx . (4.6)

Our aim is to prove the following

Theorem 4.1 If the initial data θ0 verifies
∫ π

−π
θ0(x)dx = 0, ‖θ0‖L∞ < κ

and ‖Λ 3
2 θ0‖L2 < ∞, then there is a classical solution of equation (4.6) that

satisfies θ ∈ C1([0,∞)); W
3
2 ([−π, π])) and ‖θ(−, t)‖L∞ < κ for every t ≥ 0.

The proof of this theorem will be based in the following sequence of facts:
Fact 1: If θ ∈ C1([−π, π] × [0, T ]) is a solution of (4.6) where the initial

data θ0 satisfies the hypothesis given in the theorem above, then we have:
i) M(t) = maxxθ(x, t), is a positive monotonically decreasing Lipschitz

function.
ii) m(t) = minxθ(x, t), is a negative monotonically increasing Lipschitz

function.
Proof: The proof follows the scheme introduced in Section 2. Let x(t),

x(t) be chosen in such a way that

M(t) = θ(x(t), t)

m(t) = θ(x(t), t)

and assume that t is a point of differentiability of both Lipschitz functions
M(·), m(·). Then we have:

M ′(t) ≤ −(M(t) + κ)Λθ(x(t), t) ≤ 0

m′(t) ≥ −(m(t) + κ)Λθ(x(t), t) ≥ 0.

Fact 2: ‖θ(−, t)‖L2 is monotonically decreasing.
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Proof: From equation (4.6) we have

1

2

d

dt
‖θ‖2

L2 =

∫
θθt =

∫
θxθHθ − κ

∫
θΛθ

= −1

2

∫
θ2Λθ − κ

∫
θΛθ.

Since∫
θ2(x)Λθ(x)dx =

∫
θ2(x)

∫
θ(x)− θ(y)

[sinx−y
2

]2
dydx = −

∫
θ2(y)

∫
θ(x)− θ(y)

[sinx−y
2

]2
dxdy

=

∫ ∫
θ(x) + θ(y)

2

[θ(x)− θ(y)]2

[sinx−y
2

]2
dydx,

and ∫
θ(x)Λθ(x)dx =

∫ ∫
[θ(x)− θ(y)]2

[sinx−y
2

]2
dydx,

we obtain

1

2

d

dt
‖θ‖2

L2 = −1

2

∫ ∫
[
θ(x) + θ(y)

2
+ 2κ]

[θ(x)− θ(y)]2

[sinx−y
2

]2
dydx

≤ −κ

2
‖Λ 1

2 θ‖2
L2 ≤ −κ

2
‖θ‖2

L2 , (4.7)

which implies the result. Furthermore we get ‖θ‖2
L2 ≤ ‖θ0‖2

L2e−κt.
Fact 3: Integrating the inequality (4.7) we obtain:

∫ T

0

‖Λ 1
2 θ‖2

L2dt ≤ 1

κ
‖θ0‖2

L2 .

Next, let us consider:

1

2

d

dt
‖Λ 1

2 θ‖2
L2 =

∫
Λ

1
2 θΛ

1
2 θt = −

∫
Λθ(θHθ)x − κ

∫
|Λθ|2dx

= −
∫

ΛθθxHθ −
∫

(Λθ)2θ − κ‖Λθ‖2
L2

=

∫
H(Λθθx)θ −

∫
(Λθ)2θ − κ‖Λθ‖2

L2

=
1

2

∫
θ[(Hθx)

2 − (θx)
2]−

∫
(Λθ)2θ − κ‖Λθ‖2

L2

= −1

2

∫
θ[(Hθx)

2 + (θx)
2]− κ‖Λθ‖2

L2

≤ (‖θ‖L∞ − κ)‖Λθ‖2
L2 .
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Since ‖θ0‖L∞ < κ, we have

1

2

d

dt
‖Λ 1

2 θ‖2
L2 ≤ −c(κ)‖Λθ‖2

L2 ,

where c(κ) = (κ− ‖θ‖L∞) > 0.
An integration of our last inequality yields:

∫ T

0

‖Λθ‖2
L2dt ≤ C(κ)‖Λ 1

2 θ0‖2
L2 .

where C(κ) = 1
2c(κ)

.

Fact 4: The evolution of the norm ‖Λ 3
2 θ‖L2 follows from the following

estimates:

1

2

d

dt
‖Λ 3

2 θ‖2
L2 = −

∫
Λ

3
2 θΛ

3
2 (θHθ)x − κ‖∆θ‖2

L2

=

∫
Λ

3
2 θΛ

3
2 ΛH(θHθ)− κ‖∆θ‖2

L2

=

∫
∆θ∆[

1

2
(Hθ)2 − 1

2
θ2]− κ‖∆θ‖2

L2

=

∫
∆θ(∆(Hθ)Hθ + |∇Hθ|2 − θ∆θ − |∇θ|2)− κ‖∆θ‖2

L2 .

Let us observe that

|
∫

[∆θ∆(Hθ)Hθ − θ∆θ]| = |
∫

[θ
1

2
((∆Hθ)2 − (∆θ)2) + θ(∆θ)2]|

≤ ‖θ‖L∞‖∆θ‖2
L2

and since ‖Λθ‖2
L4 ≤ C‖Λθ‖L2‖Λ 3

2 θ‖L2 we have

|
∫

∆θ[|∇Hθ|2 − |∇θ|2]| ≤ C‖∆θ‖L2‖Λθ‖2
L4

≤ C‖∆θ‖L2‖Λθ‖L2‖Λ 3
2 θ‖L2

≤ δ‖∆θ‖2
L2 +

C

δ
‖Λθ‖2

L2‖Λ 3
2 θ‖2

L2

where C is a constant and we choose δ = κ−‖θ0‖L∞
2

. By Fact 1 follows that

1

2

d

dt
‖Λ 3

2 θ‖2
L2 ≤ C

δ
‖Λθ‖2

L2‖Λ 3
2 θ‖2

L2 +
1

2
(‖θ0‖L∞ − κ)‖∆θ‖2

L2 .
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Therefore

‖Λ 3
2 θ‖2

L2(t) ≤ ‖Λ 3
2 θ0‖2

L2e
C
δ

R t
0 ‖Λθ‖2

L2(s)ds ≤ ‖Λ 3
2 θ0‖2

L2e
C(κ)‖Λ 1

2 θ0‖2
L2

by Fact 3.
Fact 5: Here we show that the previous facts continue to hold for the

equation

θt + (θHθ)x = −κΛθ + εθxx (4.8)

θ(x, 0) = θ0

uniformly on ε > 0, under the hypothesis that ‖Λ3θ0‖L2 < ∞.
a) Given ε > 0 and initial data θ0 ∈ W 3(−π, π) such that:

∫ π

−π

θ0(x)dx = 0 and ‖θ0‖L∞ < κ,

there exists
T = T (ε, ‖θ0‖L∞ , ‖(θ0)xxx‖L2) > 0,

with ‖(θ)xxx‖L2 < ∞ for 0 ≤ t ≤ T . The proof of a) follows from the
following estimates:

1

2

d

dt
‖θxxx‖2

L2 = −
∫

θxxx(θHθ)xxxx − κ‖Λ 7
2 θ‖2

L2 − ε‖Λ4θ‖2
L2

=

∫
θxxxx(θHθ)xxx − κ‖Λ 7

2 θ‖2
L2 − ε‖Λ4θ‖2

L2 .

Let us observe that

|
∫

θxxxx(θHθ)xxx| ≤ ‖θxxxx‖L2‖(θHθ)xxx‖L2

≤ ‖θxxxx‖L2 [‖θxxx‖L2(‖Hθ‖L∞ + ‖θ‖L∞)

+ (‖θxx‖L∞ + ‖Hθxx‖L∞)‖θx‖L2 ]

≤ C‖Λ4θ‖L2‖θxxx‖L2‖Λθ‖L2

≤ ε

4
‖Λ4θ‖2

L2 +
C

ε
‖θxxx‖2

L2‖Λθ‖2
L2 .

That is

1

2

d

dt
‖θxxx‖2

L2 ≤ C

ε
‖θxxx‖2

L2‖Λθ‖2
L2 (4.9)
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and since ‖Λθ‖L2 ≤ C‖Λ3θ‖L2 , we obtain local existence for ‖θxxx‖L2 .
Therefore θ ∈ C2 for 0 ≤ t ≤ T and Fact 1, 2 and 3 follows for ε > 0.

b) In particular from (4.9) and using the following inequality

1

2

d

dt
‖θ‖2

L2 = −1

2

∫
θ2Λθ − κ

∫
θΛθ − ε‖Λθ‖2

L2

≤ −ε‖Λθ‖2
L2 .

we get

‖θxxx‖2
L2 ≤ ‖(θ0)xxx‖2

L2e
Cε
R T
0 ‖Λθ‖2

L2ds ≤ ‖(θ0)xxx‖2
L2e

Cε‖θ0‖2
L2

where Cε = Cε(ε, θ0) is a constant, allowing us to conclude that ‖θxxx‖L2 < C
for all time and that θxx is a continuous function, which gives us the maxi-
mum principle for (4.8).

End of the proof: Therefore, for fixed ε > 0, one obtains a solution θε ∈
C2([−π, π]× [0,∞)) of the problem

θε
t + (θεHθε)x = −κΛθε + εθε

xx

θε(x, 0) = θε
0

where θε
0 is the convolution of θ0 with a smooth approximation of the identity,

so that, uniformly on ε > 0, we have
‖θε(−, t)‖L∞ < κ for every t ≥ 0.
‖θε(−, t)‖2

L2 ≤ ‖θ0‖2
L2e−κt.∫∞

0
‖Λθε‖2

L2dt ≤ C(κ)‖Λ 1
2 θ0‖2

L2 .

‖Λ 3
2 θε‖L2 ≤ C(κ, θ0)‖Λ 3

2 θ0‖L2 .

We are now in position to use compacity to select a converging subse-
quence θε to obtain a solution θ of the equation (4.6) satisfying the require-
ments of theorem 4.1.

Appendix A

Adding the second order viscosity term µθxx to the one dimensional inviscid
QG model equation, we obtain

θt + (H(θ)θ)x = µθxx, (4.10)

θ(x, 0) = θ0(x).
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In [1] and [18] they show the existence of singularities with a specific initial
data for the equation (4.10).

Introducing the complex valued function, z(x, t) = Hθ(x, t) + iθ(x, t) as
previously, we find that (4.10) is the imaginary part of the complex viscous
Burgers equation,

zt + zzx = µzxx, (4.11)

z(x, 0) = z0(x).

One can solve (4.11) explicitly by the (complex) Hopf-Cole transform as
follows. We consider the change of variable z 7→ w, defined by

z(x, t) = −2µ
wx(x, t)

w(x, t)
.

By elementary computations we find that w(x, t) satisfies the complex heat
equation,

wt = µwxx

w(x, 0) = exp
(

1
2µ

∫ x

−∞ z0(s)ds
)

We first consider the case of the whole domain of R. Using the well-known
heat kernel representation of the solution w(x, t), we obtain the explicit so-
lution of the complex Burgers equation as

z(x, t) =

∫∞
−∞

x−y
t

exp
[
− |x−y|2

2µt
− 1

2µ

∫ y

−∞ z0(s)ds
]
dy

∫∞
−∞ exp

[
− |x−y|2

2µt
− 1

2µ

∫ y

−∞ z0(s)ds
]
dy

. (4.12)

Substituting z0(x) = (Hθ0)(x) + iθ0(x), and taking the imaginary part of
(4.12), we find explicitly the solution of (4.10) given by

θ(x, t) =
−B̃(x, t)

∫∞
−∞

x−y
t

A(x, y, t)dy + Ã(x, t)
∫∞
−∞

x−y
t

B(x, y, t)dy

Ã2(x, t) + B̃2(x, t)
,

(4.13)
where we denoted

A(x, y, t) = exp

[
−|x− y|2

2µt
− 1

2µ

∫ y

−∞
Hθ0(s)ds

]
cos

(
1

2µ

∫ y

−∞
θ0(s)ds

)
,
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B(x, y, t) = exp

[
−|x− y|2

2µt
− 1

2µ

∫ y

−∞
Hθ0(s)ds

]
sin

(
1

2µ

∫ y

−∞
θ0(s)ds

)
,

and

Ã(x, t) =

∫ ∞

−∞
A(x, y, t)dy, B̃(x, t) =

∫ ∞

−∞
B(x, y, t)dy.

Next, in the periodic case, we can solve (4.11) explicitly, using the Fourier
series combined with the Hopf-Cole transform. We first solve the complex
heat equation by the standard Fourier series method as

w(x, t) =
∑

k∈Z
ŵ0(k)e−µk2t+ikx,

where

ŵ0(k) =
1

2π

∫ π

−π

w0(x)e−ikxdx =
1

2π

∫ π

−π

exp

[
1

2µ

∫ x

0

z0(y)dy − ikx

]
dx

=
1

2π

∫ π

−π

exp

[
1

2µ

∫ x

0

(Hθ0)(y)dy + i

(
1

2µ

∫ x

0

θ0(y)dy − kx

)]
dx.

Hence,

θ(x, t) = −2µ Im
{wx

w

}
= −2µRe

{∑
k∈Z kŵ0(k)e−µk2t+ikx

∑
k∈Z ŵ0(k)e−µk2t+ikx

}

with ŵ0(k) given above.
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[5] P. Constantin, D. Córdoba and J.Wu, On the critical dissipative Quasi-
geostrophic equation. Indiana Univ. Math. J. 50 (2001), 97-107.

[6] P. Constantin, P. Lax and A. Majda, A simple one-dimensional model
for the three dimensional vorticity, Comm. Pure Appl. Math. 38 (1985),
715-724.

[7] P. Constantin, A. Majda, and E. Tabak, Formation of strong fronts in
the 2-D quasi-geostrophic thermal active scalar, Nonlinearity 7 (1994),
1495-1533.

[8] P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic
equations, SIAM J. Math. Anal. 30 (1999), 937-948.
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