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This paper is concerned with the question of reconstructing a vector in a finite-
dimensional real Hilbert space when only the magnitudes of the coefficients of the 
vector under a redundant linear map are known. We analyze various Lipschitz 
bounds of the nonlinear analysis map and we establish theoretical performance 
bounds of any reconstruction algorithm. The discussion of robustness is with respect 
to random noise and with respect to deterministic perturbations. We show that 
robust and uniformly stable reconstruction is not achievable with the minimum 
redundancy for phaseless reconstruction. Robust reconstruction schemes require 
additional redundancy than the critical threshold.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

This paper is concerned with the question of reconstructing a vector x in a finite-dimensional real Hilbert 
space H of dimension n when only the magnitudes of the coefficients of the vector under a redundant linear 
map are known.

Specifically our problem is to reconstruct x ∈ H up to an overall change of sign from the magnitudes 
{|〈x, fk〉|, 1 ≤ k ≤ m} where F = {f1, . . . , fm} is a frame (complete system) for H.

A previous paper [6] described the importance of the phaseless reconstruction problem. One particular 
case is when the coefficients are obtained from an Undecimated Wavelet Transform. This case is relevant 
for instance in some audio and image signal processing applications, as well as in neural computations as 
performed by the auditory cortex [13].

While [6] presents some necessary and sufficient conditions for reconstruction, the general problem of 
finding fast/efficient algorithms is still open. In [3] we describe one solution in the case of STFT coefficients.

For vectors in real Hilbert spaces, the reconstruction problem is easily shown to be equivalent to a 
combinatorial problem. In [7] this problem is further proved to be equivalent to a (nonconvex) optimization 
problem.
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A different approach (which we called the algebraic approach) was proposed in [2]. While it applies to 
both real and complex cases, noiseless and noisy cases, the approach requires solving a linear system of 
size exponentially in the space dimension. This algebraic approach generalizes the approach in [8] where 
reconstruction is performed with complexity O(n2) (plus computation of the principal eigenvector for a 
matrix of size n). However this method requires m = O(n2) frame vectors.

Recently the authors of [10] developed a convex optimization algorithm (a SemiDefinite Program called 
PhaseLift) and proved its ability to perform exact reconstruction in the absence of noise, as well as its 
stability under noise conditions. In a separate paper [11], the authors further developed a similar algorithm 
in the case of windowed DFT transforms. Inspired by the PhaseLift and MaxCut algorithms, but operating 
in the coefficients space, the authors of [16] proposed a SemiDefinite Program called PhaseCut. They show 
the algorithm yields the exact solution in the absence of noise under similar conditions as PhaseLift.

The paper [4] presents an iterative regularized least-square algorithm for inverting the nonlinear map 
and compares its performance to a Cramer–Rao lower bound for this problem in the real case. The paper 
also presents some new injectivity results which are incorporated into this paper.

A different approach is proposed in [1]. There the authors use a 4-term polarization identity together 
with a family of spectral expander graphs to design a frame of bounded redundancy (mn ≤ 236) that yields 
an exact reconstruction algorithm in the absence of noise.

The authors of [14] study several robustness bounds to the phase recovery problem in the real case. 
However their approach is different from ours in several respects. First they consider a probabilistic setup 
of this problem, where data x and frame vectors fj ’s are random vectors with probabilities from a class of 
subgaussian distributions. Additionally, their focus is on classes of k-sparse signals. In our paper we analyze 
stability bounds of reconstruction for a fixed frame using deterministic analytic tools. After that we present 
asymptotic behavior of these bounds for random frames.

Finally, the authors of [9] analyze the phaseless reconstruction problem for both the real and complex 
case. In the real case the authors obtain the exact upper Lipschitz constant for the nonlinear map αF , 
namely 

√
B where B is the upper frame bound. For the lower Lipschitz constant, they give an estimate 

between two computable singular eigenvalues. Our results have overlaps with their results. However, in 
our paper we improve the lower Lipschitz constant by giving its exact value. There are some significant 
differences between this paper and [9]. In addition to studying of the Lipschitz property of the map αF we 
focus also on two related but different settings. First we study the robustness of the reconstruction given 
a fixed error allowance in measurements. Second we also consider the Lipschitz property of the map αF

2. 
The authors of [9] point out that the map αF2 is not bi-Lipschitz. However in our paper we show αF2

becomes bi-Lipschitz for a different metric on the domain. With this metric (the one induced by the nuclear 
norm on the set of symmetric operators) the nonlinear map αF

2 is bi-Lipschitz with constants indicated in 
Theorem 4.5. Furthermore the same conclusion holds true in the complex case, although this will be studied 
elsewhere.

The organization of the paper is as follows. Section 2 formally defines the problem and reviews existing 
inversion results in the real case. Section 3 establishes information theoretic performance bounds, namely 
the Cramer–Rao lower bound. Section 4 contains robustness measures of any reconstruction algorithm. 
Section 5 presents a stochastic analysis of these bounds. Section 6 presents a numerical example and is 
followed by references.

2. Background

Let us denote by H = R
n the n-dimensional real Hilbert space Rn with scalar product 〈, 〉. Let F =

{f1, . . . , fm} be a spanning set of m vectors in H. In finite dimension (as it is the case here) such a set 
forms a frame. In the infinite dimensional case, the concept of frame involves a stronger property than 
completeness (see for instance [12]). We review additional terminology and properties which remain still 
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true in the infinite dimensional setting. The set F is a frame if and only if there are two positive constants 
0 < A ≤ B < ∞ (called frame bounds) so that

A‖x‖2 ≤
m∑

k=1

∣∣〈x, fk〉∣∣2 ≤ B‖x‖2
. (2.1)

When we can choose A = B the frame is said tight. For A = B = 1 the frame is called Parseval. The frame 
matrix corresponding to F is defined as F = [f1, f2, . . . , fm] with the vectors fj ∈ F as its columns. We 
shall frequently identify F with its corresponding frame matrix F . The largest A and smallest B in (2.1)
are called the lower frame bound and upper frame bound of F , and they are given by

A = λmax
(
FF ∗) = σ2

1(F ), B = λmin
(
FF ∗) = σ2

n(F ) (2.2)

where λmax, λmin denote the largest and smallest eigenvalues respectively, while σ1, σn denote the first and 
n-th singular values respectively. A set of vectors F of the n-dimensional Hilbert space H is said to be full 
spark if any subset of n vectors is linearly independent.

For a vector x ∈ H, the collection of coefficients {〈x, fj〉 : 1 ≤ j ≤ m} represents the analysis map 
of vector x given by the frame F , and from which x can be completely reconstructed. In the phaseless 
reconstruction problem, we ask the following question: Can x be reconstructed from {|〈x, fj〉| : 1 ≤ j ≤ m}? 
Consider the following equivalence relation ∼ on H: x ∼ y if and only if y = cx for some unimodular 
constant c, |c| = 1. Since we focus on the real vector space H = R

n, we have x ∼ y if and only if x = ±y. 
Clearly the phaseless reconstruction problem cannot distinguish x and y if x ∼ y, so we will be looking 
at reconstruction on Ĥ := H/ ∼= R

n/ ∼ whose elements are given by equivalent classes x̂ = {x, −x} for 
x ∈ R

n. The analogous analysis map for phaseless reconstruction is the following nonlinear map

αF : Ĥ → R
m
+ , αF (x̂) =

[∣∣〈x, f1〉
∣∣, ∣∣〈x, f2〉

∣∣, . . . , ∣∣〈x, fm〉
∣∣]T . (2.3)

Note that αF can also be viewed as a map from Rn to Rm
+ . Throughout the paper we will not make an 

explicit distinction unless such a distinction is necessary.
Thus the phaseless reconstruction problems aims to reconstruct x̂ ∈ Ĥ from the map αF (x). We say a 

frame F is phase retrievable if one can reconstruct x̂ ∈ Ĥ for all x̂, or in other words, αF is injective on Ĥ. 
The main objective of this paper is to analyze robustness and stability of the inversion map, and to give 
performance bounds of any reconstruction algorithm.

Before proceeding further we first review existing results on injectivity of the nonlinear map αF . In 
general a subset Z of a topological space is said generic if its open interior is dense. However in the 
following statements, the term generic refers to Zarisky topology: a set Z ⊂ K

n×m = K
n × · · · × K

n is 
said generic if Z is dense in Kn×m and its complement is a finite union of zero sets of polynomials in nm
variables with coefficients in the field K (here K = R).

Theorem 2.1. Let F be a frame in H = R
n with m elements. Then the following hold true:

1. The frame F is phase retrievable in Ĥ if and only if for any disjoint partition of the frame set F =
F1 ∪ F2, either F1 spans Rn or F2 spans Rn.

2. If F is phase retrievable in Ĥ then m ≥ 2n − 1. Furthermore, for a generic F with m ≥ 2n − 1 the map 
αF is phase retrievable in Ĥ.

3. Let m = 2n − 1. Then F is phase retrievable in Ĥ if and only if F is full spark.
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4. Let

a0 := min
‖x‖=‖y‖=1

m∑
j=1

∣∣〈x, fj〉∣∣2∣∣〈y, fj〉∣∣2 ≥ 0, (2.4)

so that

m∑
k=1

∣∣〈x, fk〉∣∣2∣∣〈y, fk〉∣∣2 ≥ a0‖x‖2‖y‖2
. (2.5)

Then F is phase retrievable on Ĥ if and only if a0 > 0.
5. For any x ∈ R

n define the matrix R(x) by

R(x) :=
m∑
j=1

∣∣〈x, fj〉∣∣2fjf∗
j . (2.6)

Let λmin(R(x)) denote the smallest eigenvalue of R(x), and let a0 = min‖x‖=1 λmin(R(x)). Equivalently 
let a0 be the largest constant so that R(x) ≥ a0‖x‖2I for all x ∈ H, where I is the identity matrix.
Then F is phase retrievable on Ĥ if and only if a0 > 0.
Additionally the constant a0 introduced here is the same as the constant a0 given by (2.4).

The results (1)–(3) are in [6], and (4)–(5) are in [4].

3. Information theoretic performance bounds

In this section we derive expressions for the Fisher Information Matrix and obtain performance bounds 
for reconstruction algorithms in the noisy case.

Consider the following noisy measurement process:

yk =
∣∣〈x, fk〉∣∣2 + νk, νk ∼ N

(
0, σ2), 1 ≤ k ≤ m (3.1)

where the noise model is AWGN (additive white Gaussian noise): each random variable νk is independent 
and normally distributed with zero mean and σ2 variance.

Consider the noiseless case first (that is νk = 0). Obviously one cannot obtain the exact vector x ∈ H

due to the global sign ambiguity. Instead the best outcome is to identify (that is, to estimate) the class 
x̂ = {x, −x} from αF (x). As such, we fix a disjoint partition of the punctured Hilbert space H, Rn \ {0} =
Ω1 ∪ Ω2, such that Ω2 = −Ω1. We make the choice that the vector x belongs to Ω1. Hence any estimator 
of x is a map ω : Rm −→ Ω1 ∪ {0}. Denote by Ω̊1 its interior as a subset of Rn. Such a decomposition is, 
for example

Ω1 =
n⋃

k=1

{
x ∈ R

n : xk ≥ 0, xj = 0 for j < k
}
.

Note its interior is given by Ω̊1 = {x ∈ R
n, x1 > 0}.

Under these assumptions we compute the Fisher Information matrix (see [15]). This is given by

(
I(x)
)
k,j

= E
[(
∇ logL(x)

)(
∇ logL(x)

)T ] (3.2)

where the likelihood function L(x) is given by
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L(x) = p(y|x) = 1
(2π)m/2σm

exp
(
− 1

2σ2

m∑
k=1

∣∣yk −
∣∣〈x, fk〉∣∣2∣∣2

)
. (3.3)

After some algebra (see [4]) we obtain

I(x) = 4
σ2R(x), R(x) =

m∑
j=1

∣∣〈x, fj〉∣∣2fjfT
j . (3.4)

Note the matrix R(x) is exactly the same as the matrix introduced in (2.6). Thus we obtain the following 
results:

Theorem 3.1. The frame F is phase retrievable if and only if the Fisher information matrix I(x) is invertible 
for any x �= 0.

When F is phase retrievable let a0 be the positive constant introduced in (2.4). Then

I(x) ≥ 4a0

σ2 ‖x‖2
I (3.5)

where I is the n × n identity operator.

This allows to state the following performance bound result (see [15] for details on the Cramer–Rao lower 
bound).

Theorem 3.2. Assume x ∈ Ω̊1. Let ω : R
m → Ω1 be any unbiased estimator for x. Then its covariance 

matrix is bounded below by the Cramer–Rao lower bound:

Cov
[
ω(y)

]
≥
(
I(x)
)−1 = σ2

4
(
R(x)

)−1
. (3.6)

Furthermore, any efficient estimator (that is, any unbiased estimator ω that achieves the Cramer–Rao Lower 
Bound (3.6)) has the covariance matrix bounded from above by

Cov
[
ω(y)

]
≤ σ2

4a0‖x‖2 I (3.7)

and Mean-Square error bounded above by

MSE(ω) = E
[∥∥ω(y) − x

∥∥2] ≤ nσ2

4a0‖x‖2 . (3.8)

Remark 3.3. We point out the importance of the constant a0 introduced in (2.4). On the one hand it 
represents a necessary and sufficient condition for phase retrievability as stated in Theorem 2.1. On the 
other hand the above results prove that a0 provides also a bound for the Fisher Information matrix and 
hence a bound for any efficient estimator of x̂. The larger this constant a0, the smaller the variance of 
the efficient estimator. As we prove in the next section, the same constant a0 represents the lower Lips-
chitz bound for the map αF

2 (4.13) considered between (Ĥ, d1) and the Euclidean space (Rm, ‖ · ‖) – see 
Theorem 4.5.
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Additionally, similar expressions involving the bound a0 occur in the complex case as well. Both the 
stochastic bound above and the bi-Lipschitz result in Theorem 4.5 can be extended to the complex case – 
see [5].

4. Robustness measures for reconstruction

In this section we analyze the robustness of deterministic phaseless reconstruction. Additionally we con-
nect the constant a0 introduced earlier in Theorem 2.1 and used in Theorem 3.1 to quantities directly 
computable from the frame F .

Our approach is to analyze the stability in the worst case scenario, for which we consider the following 
measures. Denote d(x, y) := min(‖x− y‖, ‖x + y‖). For any x ∈ R

n and ε > 0 define

Qε(x) = max
{y:‖αF (x)−αF (y)‖≤ε}

d(x, y)
ε

. (4.1)

The size of Qε(x) measures the worst case stability of the reconstruction for the vector x, under the 
assumption that the total noise level is controlled by ε. We also study the global stability by analyzing the 
measures

qε := max
‖x‖=1

Qε(x), q0 := lim sup
ε→0

qε, q∞ := sup
ε>0

qε. (4.2)

Here ‖.‖ denotes usual Euclidian norm. Note that Qε(x) has the scaling property Qε(x) = Q|c|ε(cx) for any 
real c �= 0. Thus it is natural to focus on unit vectors x.

We introduce now some quantities that play key roles in the estimation of these robustness measures. 
For the frame F let F = [f1, f2, · · · , fm] be its frame matrix. Denote by F [S] = {fk, k ∈ S} the subset of 
F indexed by a subset S ⊆ {1, 2, . . . , m}, and by FS the frame matrix corresponding to F [S] (which is the 
matrix with vectors in F [S] as its columns). Set

A[S] := σ2
n(FS) = λmin

(
FSF

∗
S

)
, (4.3)

where as usual σn and λmin denote the n-th singular value and the minimal eigenvalue, respectively. Note 
that A[S] is in fact the lower frame bound of F [S].

Let S denote the collection of subsets S of {1, 2, . . . , m} so that dim(span(F [Sc])) < n, where Sc =
{1, 2, . . . , m} \ S is the complement of S. In other words, rank(FSc) < n. Denote by Δ and ω the following 
expressions:

Δ = min
S

√
A[S] + A

[
Sc
]

(4.4)

ω = min
S∈S

σn(FS). (4.5)

All of them depend of course on F . However since we fix F throughout the paper, we shall not explicitly 
reference F in the notation for simplicity as there will not be any confusion. Clearly

Δ ≤ ω. (4.6)

Proposition 4.1. Let ε > 0. Then the stability measurement function Qε(x) is given by

Qε(x) = 1 max min
{
‖w1‖, ‖w2‖

}
(4.7)
ε (w1,w2)∈Υ
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where the constraint set Υ is given by

Υ =
{

(w1, w2)
∣∣ 1

2(w1 + w2) = x,
m∑
j=1

min
(∣∣〈fj , w1〉

∣∣2, ∣∣〈fj , w2〉
∣∣2) =

∥∥F ∗
Sw1
∥∥2 +

∥∥F ∗
Scw2

∥∥2 ≤ ε2

}
,

(4.8)

where S := S(w1, w2) = {j : |〈fj , w1〉| ≤ |〈fj , w2〉|}.

Proof. For any x, y ∈ R
n let w1 = x + y and w2 = x − y. Then x = 1

2 (w1 + w2) and y = 1
2 (w1 − w2). It is 

easy to check that for S = {j : |〈fj , w1〉| ≤ |〈fj , w2〉|} we have

∣∣〈fj , x〉∣∣− ∣∣〈fj , y〉∣∣ =
{

±〈fj , w1〉 j ∈ S,

±〈fj , w2〉 j ∈ Sc.

In other words,

∣∣〈fj , x〉∣∣− ∣∣〈fj , y〉∣∣ = min
(∣∣〈fj , w1〉

∣∣, ∣∣〈fj , w2〉
∣∣). (4.9)

Let F be the frame matrix of F . We thus have

∥∥αF (x) − αF (y)
∥∥2 =

∑
j∈S

∣∣〈fj , w1〉
∣∣2 +

∑
j∈Sc

∣∣〈fj , w2〉
∣∣2 =

∥∥F ∗
Sw1
∥∥2 +

∥∥F ∗
Scw2

∥∥2.
Note that d(x, y) = min(‖w1‖, ‖w2‖). The proposition now follows. �

The above proposition allows us to establish the following stability result for the worst case scenario.

Theorem 4.2. Assume that the frame F is phase retrievable. Let A > 0 be the lower frame bound for the 
frame F and let τ := min{σn(FS) : S ⊆ {1, . . . , m}, rank(FS) = n}.

(A) For any ε > 0 we have

min
{

1
ε
,
1
ω

}
≤ qε ≤

1
Δ
. (4.10)

(B) If ε < τ then qε = 1
ω . Consequently q0 = 1

ω .
(C) For any nonzero x ∈ R

n and any 0 < ε < Δx we have

Qε(x) = 1√
A
, (4.11)

where

Δx := 2τ
max(‖fj‖) + τ

min
{∣∣〈fj , x〉∣∣ : 〈fj , x〉 �= 0

}
.

(D) The upper bound q∞ equals the reciprocal of Δ:

q∞ = 1
Δ
. (4.12)
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Proof. To prove (A) we first establish the upper bound in (4.10). Let x ∈ R
n. By Proposition 4.1 we have

Qε(x) = 1
ε

max
w1,w2

min
{
‖w1‖, ‖w2‖

}
under the constraints 1

2 (w1 + w2) = x and

∥∥F ∗
Sw1
∥∥2 +

∥∥F ∗
Scw2

∥∥2 ≤ ε2

for some S. Now assume without loss of generality that ‖w1‖ ≤ ‖w2‖. Then

ε2

‖w1‖2 ≥ ‖F ∗
Sw1‖2 + ‖F ∗

Scw2‖2

‖w1‖2

≥ σ2
n(FS) + σ2

n(FSc)‖w2‖2

‖w1‖2

≥ Δ.

It follows that

1
ε

min{‖w1‖, ‖w2‖} ≤ 1
Δ
.

Thus Qε(x) ≤ 1
Δ .

To establish the lower bound in (4.10) we construct for any ε > 0 an x ∈ R
n and vectors w1, w2 satisfying 

the imposed constraints. Let S be a subset of {1, 2, . . . , m} such that rank(FSc) < n and σn(FS) = ω. 
Choose v1, v2 ∈ R

n with the property ‖v1‖ = ‖v2‖ = 1 and
∥∥F ∗

Sv1
∥∥ = ω, F ∗

Scv2 = 0.

Set

t = min
{
ε

ω
, 1
}
, and w1 = tv1.

Hence ‖w1‖ = t ≤ 1. Now we select an s ∈ R so that ‖w1 + sv2‖ = 2. This is always possible since 
s �→ ‖w1 + sv2‖ is continuous and ‖w1 + 0v2‖ = t ≤ 1 ≤ 2 ≤ ‖w1 + 3v2‖. Set w2 = sv2 so ‖w1 + w2‖ = 2. 
We have

|s| = ‖sv2‖ ≥ ‖w1 + sv2‖ − ‖w1‖ = 2 − t ≥ 1.

Thus ‖w2‖ ≥ ‖w1‖. Now let

x = 1
2(w1 + w2) and y = 1

2(w1 − w2).

We have then

∥∥αF (x) − αF (y)
∥∥2 =

m∑
j=1

min
(∣∣〈fj , w1〉

∣∣2, ∣∣〈fj , w2〉
∣∣2)

≤
∑
j∈S

∣∣〈fj , w1〉
∣∣2 +

∑
j∈Sc

∣∣〈fj , w2〉
∣∣2

= t2ω2 ≤ ε2.
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Furthermore

d(x, y) = min(‖w1‖, ‖w2‖) = ‖w1‖ = t.

Hence for this x we have

Qε(x) ≥ d(x, y)
ε

= min
{

1
ε
,
1
ω

}
.

It follows that qε ≥ min{1
ε , 

1
ω}. Now by taking ε > 0 sufficiently small we have qε ≥ 1

ω .
We now prove (B). Assume that ε ≤ min{σn(FS) : rank(FS) = n}. Then clearly we have ε ≤ ω. Thus 

by (4.10) we have qε ≥ 1
ω . Again for each x ∈ R

n with ‖x‖ = 1 we consider w1, w2 for the estimation of 
qε(x). The constraint ‖w1 + w2‖ = 2 implies either ‖w1‖ ≥ 1 or ‖w2‖ ≥ 1. Without loss of generality we 
assume that ‖w1‖ ≥ 1. For the constraint ‖F ∗

Sw1‖2 + ‖F ∗
Scw2‖2 ≤ ε2 for some S, assume that rank(FS) = n

then we have

∥∥F ∗
Sw1
∥∥ ≥ σn(FS)‖w1‖ ≥ min

{
σn(FS): rank(FS) = n

}
> ε.

This is a contradiction. So rank(FS) < n and hence

ε2 ≥
∥∥F ∗

Sw1
∥∥2 +

∥∥F ∗
Scw2

∥∥2 ≥
∥∥F ∗

Scw2
∥∥2 ≥ ω2‖w2‖2.

Thus ‖w2‖ ≤ ε
ω . Proposition 4.1 now yields qε = 1

ω , proving part (B).
Now we prove (C). We go back to the formulation in Proposition 4.1.

Qε(x) = 1
ε

max
w1,w2

min
{
‖w1‖, ‖w2‖

}

under the constraints 1
2 (w1 + w2) = x and

∥∥F ∗
Sw1
∥∥2 +

∥∥F ∗
Scw2

∥∥2 ≤ ε2

where S := S(w1, w2) = {j: |〈fj , w1〉| ≤ |〈fj , w2〉|}. Since αF is injective, either rank(FS) = n or
rank(FSc) = n by Theorem 2.1 (1). Without loss of generality we assume rank(FS) = n. Thus ε ≥ ‖F ∗

Sw1‖ ≥
τ‖w1‖. So ‖w1‖ ≤ ε/τ . We show that for any k ∈ Sc we must have 〈fk, x〉 = 0. Assume otherwise and write 
w2 = 2x − w1, Lx := min{|〈fj , x〉| : 〈fj , x〉 �= 0}. Then

∣∣〈fk, w2〉
∣∣ ≥ 2

∣∣〈fk, x〉∣∣− ∣∣〈fk, w1〉
∣∣ ≥ 2Lx − max

(
‖fj‖

)
‖w1‖ ≥ 2Lx − max

(
‖fj‖

) ε
τ
> ε.

This is a contradiction. Thus for k ∈ Sc we have 〈fk, x〉 = 0 and

∣∣〈fj , w2〉
∣∣ = ∣∣〈fj , 2x− w1〉

∣∣ = ∣∣〈fj , w1〉
∣∣.

It follows that

∥∥F ∗
Sw1
∥∥2 +

∥∥F ∗
Scw2

∥∥2 =
∥∥F ∗w1

∥∥2 ≤ ε2.

Thus ‖w1‖ ≤ ε/
√
A and hence Qε(x) ≤ 1√

A
. Now we show the bound can be achieved. Let w1 satisfy 

‖F ∗w1‖ =
√
A‖w1‖ = ε. Such a w1 always exists. Then clearly w1 and w2 = 2x − w1 satisfy the required 

constraints, and it is easy to check that min(‖w1‖, ‖w2‖) = ‖w1‖ = ε/
√
A.
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Finally we prove (D). By the result at part (A), q∞ ≤ 1
Δ . It is therefore sufficient to show that Qε(x) ≥ 1

Δ

for some x and ε. Let S0 be the subset that achieves the minimum in (4.4). Let u, v ∈ H be unit eigenvectors 
corresponding to the lowest eigenvalues of FS0F

∗
S0

and FSc
0F

∗
Sc

0
respectively. Thus

∥∥F ∗
S0
u
∥∥2 = A[S0],

∥∥F ∗
Sc

0
v
∥∥2 = A

[
Sc

0
]

Let x = (u + v)/2 and ε = Δ, and set w1 = u, w2 = v. Then by Proposition 4.1

Qε(x) ≥ min(‖w1‖, ‖w2‖)
ε

= 1
Δ

since

m∑
j=1

min
(∣∣〈fj , w1〉

∣∣2, ∣∣〈fj , w2〉
∣∣2) ≤ ∥∥F ∗

S0
w1
∥∥2 +

∥∥F ∗
Sc

0
w2
∥∥2 = ε2

This concludes the proof. �
Remark. It may seem strange that Qε(x) = 1√

A
for all x �= 0 and sufficiently small ε while q0 = 1

ω , where 

ω is typically much smaller than 
√
A. The reason is that for Qε(x) = 1√

A
to hold, ε depends on x. Thus we 

cannot exchange the order of lim supε→0 and max‖x‖=1.

Related to the study of stability of phaseless reconstruction is the study of the Lipschitz property of the 
map αF on Ĥ := R

n/ ∼. We analyze the bi-Lipschitz bounds of both αF and αF
2, which is simply the map 

αF with all entries squared, i.e.

αF
2(x) :=

[∣∣〈fj , x〉∣∣2, . . . , ∣∣〈fm, x〉
∣∣2]T . (4.13)

We shall consider two distance functions on Ĥ = R
n/ ∼: the standard distance d(x, y) := min(‖x − y‖,

‖x +y‖) and the distance d1(x, y) := ‖xx∗−yy∗‖1 where ‖X‖1 denotes the nuclear norm of X, which is the 
sum of all singular values of X. Specifically we are interested in examining the local and global behavior of 
the following ratios

U(x, y) := ‖αF (x) − αF (y)‖
d(x, y) , V (x, y) := ‖αF

2(x) − αF
2(y)‖

d1(x, y)
. (4.14)

While all norms in finite dimensional spaces are equivalent, we choose to consider d1, the nuclear norm 
induced distance on Ĥ, because the Lipschitz lower and upper bounds are very much related to the matrix 
R(x) introduced in Theorem 2.1.

We first investigate the bounds for U(x, y). For this the upper bound is relatively straightforward. Let 
w1 = x − y and w2 = x + y. We have already shown in the proof of Theorem 4.2 using (4.9) that

∥∥αF (x) − αF (y)
∥∥2 =

m∑
j=1

min
(∣∣〈fj , w1〉

∣∣2, ∣∣〈fj , w2〉
∣∣2)

≤ min
{

m∑
j=1

∣∣〈fj , w1〉
∣∣2, m∑

j=1

∣∣〈fj , w2〉
∣∣2}

≤ B min
{
‖w1‖2, ‖w2‖2} = Bd2(x, y),
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where B is the upper frame bound of the frame F . Thus U(x, y) has an upper bound U(x, y) ≤
√
B. 

Furthermore, the bound is sharp. To see this, pick a unit vector x ∈ R
n such that 

∑m
j=1 |〈fj , w1〉|2 = B and 

set y = 2x. Then U(x, y) =
√
B.

To study the lower bound U(x, y) we now consider the following quantities:

ρε(x) := inf
{y:d(x,y)≤ε}

U(x, y),

ρ(x) := lim inf
{y:d(x,y)→0}

U(x, y) = lim inf
ε→0

ρε(x),

ρ0 := inf
x

ρ(x),

ρ∞ := inf
d(x,y)>0

U(x, y).

We apply the equality

U2(x, y) =
∑m

j=1 min(|〈fj , w1〉|2, |〈fj , w2〉|2)
min(‖w1‖2

, ‖w2‖2)

where again w1 = x − y and w2 = x + y. Now fix x and let d(x, y) < ε. Without loss of generality we may 
assume ‖y − x‖ < ε. Thus ‖w1‖ < ε and ‖w2 − 2x‖ = ‖w1‖ < ε. Let S = {j, 〈fj , x〉 �= 0} and set

ε0(x) := mink∈S |〈fk, x〉|
maxk∈S ‖fk‖

. (4.15)

Note for any w1 with ‖w1‖ < ε0 and k ∈ S we have

∣∣〈fk, w2〉
∣∣ = ∣∣2〈fk, x〉 − 〈fk, w1〉

∣∣ ≥ 2
∣∣〈fk, x〉∣∣− ∣∣〈fk, w1〉

∣∣ ≥ 2ε0(x)‖fk‖ − ‖w1‖‖fk‖ ≥
∣∣〈fk, w1〉

∣∣,
whereas for k ∈ Sc we have

∣∣〈fk, w2〉
∣∣ = ∣∣〈fk, w1〉

∣∣.
Hence min(|〈fj , w1〉|2, |〈fj , w2〉|2) = |〈fj , w1〉|2 for all j whenever ε < ε0(x). It follows that

U2(x, y) =
∑m

j=1 |〈fj , w1〉|2

‖w1‖2 =
m∑
j=1

∣∣∣∣
〈

w1

‖w1‖
, fj

〉∣∣∣∣
2

.

Thus U2(x, y) ≥ A where A is the lower frame bound for the frame F . Furthermore this lower bound is 
achieved whenever w1 = x − y is an eigenvector corresponding to the smallest eigenvalue of FF ∗. This 
implies that

ρε(x) =
√
A

whenever ε < ε0(x). Consequently ρ(x) =
√
A. We have the following theorem:

Theorem 4.3. Assume that the frame F is phase retrievable. Let A, B be the lower and upper frame bounds 
for the frame F , respectively and for each x ∈ R

n, let ε0(x) be given in (4.15). Then

(1) U(x, y) ≤
√
B for any x, y ∈ R

n with d(x, y) > 0.
(2) Assume that ε < ε0(x). Then ρε(x) =

√
A. Consequently ρ(x) = ρ0 =

√
A.
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(3) Δ = ρ∞ ≤ ω ≤ ρ0 = ρ(x) =
√
A.

(4) The map αF is bi-Lipschitz with (optimal) upper Lipschitz bound 
√
B and lower Lipschitz bound ρ∞:

ρ∞d(x, y) ≤
∥∥αF (x) − αF (y)

∥∥ ≤ √
Bd(x, y), ∀x, y ∈ Ĥ

Proof. We have already proved (1) and (2) of the theorem in the discussion. It remains only to prove (3) 
since (4) is just a restatement of (1) and (3). Note that

ρ2
∞ = inf

d(x,y)>0
U2(x, y) = inf

w1,w2 	=0

∑m
j=1 min(|〈fj , w1〉|2, |〈fj , w2〉|2)

min(‖w1‖2
, ‖w2‖2)

.

For any w1, w2, assume without loss of generality that 0 < ‖w1‖ ≤ ‖w2‖. Let S = {j : |〈fj , w1〉| ≤ |〈fj , w2〉|}. 
Set v1 = w1/‖w1‖, v2 = w2/‖w2‖ and t = ‖w2‖/‖w1‖ ≥ 1. Then

∑m
j=1 min(|〈fj , w1〉|2, |〈fj , w2〉|2)

min(‖w1‖2
, ‖w2‖2)

=
∑
j∈S

∣∣〈fj , v1〉
∣∣2 + t2

∑
j∈Sc

∣∣〈fj , v2〉
∣∣2

≥
∑
j∈S

∣∣〈fj , v1〉
∣∣2 +

∑
j∈Sc

∣∣〈fj , v2〉
∣∣2

≥ Δ2.

Hence ρ∞ ≥ Δ.
Let S and u, v ∈ H be normalized (eigen) vectors that achieve the bound Δ, that is:

‖u‖ = ‖v‖ = 1,
∑
k∈S

∣∣〈u, fk〉∣∣2 +
∑
k∈Sc

∣∣〈v, fk〉∣∣2 = Δ2.

Set x = u + v and y = u − v. Then, following [9]

∥∥αF (x) − αF (y)
∥∥2 =

∑
k∈S

∣∣∣∣〈u + v, fk〉
∣∣− ∣∣〈u− v, fk〉

∣∣∣∣2 +
∑
k∈Sc

∣∣∣∣〈u + v, fk〉
∣∣− ∣∣〈u− v, fk〉

∣∣∣∣2

≤ 4
(∑

k∈S

∣∣〈u, fk〉∣∣2 +
∑
k∈Sc

∣∣〈v, fk〉∣∣2
)

= 4Δ2.

On the other hand

d(x, y) = min
(
‖x− y‖, ‖x + y‖

)
= 2.

Thus we obtain

‖αF (x) − αF (y)‖
d(x, y) ≤ Δ.

The theorem is now proved. �
Remark. The two quantities, ρ∞ and q∞ satisfy ρ∞ = 1

q∞
. However there are subtle differences between 

Qε(x) and ρε(x) so that the simple relationship ρε(x) = 1/Qε(x) does not usually hold. One such difference 
is due to the significance of ε for the two bounds. See the numerical example presented in the last section.
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Remark. The upper Lipschitz bound 
√
B has been obtained independently in [9]. The lower Lipschitz 

bound we obtained here strenghtens the estimates given in [9]. Specifically their estimate for ρ∞ reads 
σ ≤ ρ∞ ≤

√
2σ where

σ = min
S

max
(
σn(FS), σn(FSc)

)
(4.16)

Clearly σ ≤ Δ ≤
√

2σ.

We conclude this section by turning our attention to the analysis of V (x, y). A motivation for studying 
it is that in practical problems the noise is often added directly to αF

2 as in (3.1) rather than to αF . Such 
noise model is used in many studies of phaseless reconstruction, e.g. in the Phaselift algorithm [10], or in 
the IRLS algorithm in [4].

Let Symn(R) denote the set of n × n symmetric matrices over R. It is a Hilbert space with the standard 
inner product given by 〈X,Y 〉 := tr(XY T ) = tr(XY ). The nonlinear map αF

2 actually induces a linear 
map on Symn(R). Write X = xxT for any x ∈ R

n. Then the entries of αF
2(x) are

(
αF

2(x)
)
j

=
∣∣〈fj , x〉∣∣2 = xT fjf

T
j x = tr(FjX) = 〈Fj , X〉, (4.17)

where Fj := fjf
T
j . Now we denote by A the linear operator A : Symn(R) −→ R

m with entries

(
A(X)

)
j

= 〈Fj , X〉 = tr(FjX).

Let Sp,q
n be the set of n ×n real symmetric matrices that have at most p positive and q negative eigenvalues. 

Thus S1,0
n denotes the set of n × n real symmetric non-negative definite matrices of rank at most one. Note 

that spectral decomposition easily shows that X ∈ S1,0
n if and only if X = xxT for some x ∈ R

n.
The following lemma will be useful in this analysis

Lemma 4.4. The following are equivalent.

(A) X ∈ S1,1
n .

(B) X = xxT − yyT for some x, y ∈ R
n.

(C) X = 1
2(w1w

T
2 + w2w

T
1 ) for some w1, w2 ∈ R

n.

Furthermore, for X = 1
2 (w1w

T
2 + w2w

T
1 ) its nuclear norm is ‖X‖1 = ‖w1‖‖w2‖.

Proof. (A) ⇒ (B) is a direct result of spectral decomposition, which yields X = β1u1u
T
1 −β2u2u

T
2 for some 

u1, u2 ∈ R
n and β1, β2 ≥ 0. Thus X = xxT − yyT where x :=

√
β1u1 and y :=

√
β2u2.

(B) ⇒ (C) is proved directly by setting w1 = x − y and w2 = x + y.
We now prove (C) ⇒ (A) by computing the eigenvalues of X = 1

2 (w1w
T
2 +w2w

T
1 ). Obviously rank(X) ≤ 2. 

Let λ1, λ2 be the two (possibly) nonzero eigenvalues of X. Then

λ1 + λ2 = tr{X} = 〈w1, w2〉,

λ2
1 + λ2

2 = tr
{
X2} =

(
‖w1‖2‖w2‖2 +

∣∣〈w1, w2〉
∣∣2)/2.

Solving for eigenvalues we obtain

λ1 = 1
2
(
〈w1, w2〉 + ‖w1‖‖w2‖

)
,

λ2 = 1(〈w1, w2〉 − ‖w1‖‖w2‖
)
.
2
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Hence, by Cauchy–Schwarz inequality, λ1 ≥ 0 ≥ λ2 which proves X ∈ S1,1
n . Furthermore, it also shows that 

the nuclear norm of X is ‖X‖1 = |λ1| + |λ2| = ‖w1‖‖w2‖. �
Now we analyze V (x, y). Parallel to the study of U(x, y) we consider the following quantities:

με(x) := inf
{y:d(x,y)≤ε}

V (x, y),

μ(x) := lim inf
{y:d(x,y)→0}

V (x, y) = lim inf
ε→0

με(x),

μ0 := inf
x

μ(x),

μ∞ := inf
d(x,y)>0

V (x, y),

as well as the upper bound supd1(x,y)>0 V (x, y). By (4.17) we have |〈fj , x〉|2 − |〈fj , y〉|2 = 〈Fj , X〉 where 
Fj = fjf

T
j and X = xxT − yyT . Hence

V 2(x, y) =
∑m

j=1 |〈Fj , X〉|2

‖X‖2
1

.

Set w1 = x − y and w2 = x + y and apply Lemma 4.4 we obtain

V 2(x, y) =
∑m

j=1 |〈fj , w1〉|2|〈fj , w2〉|2

‖w1‖2‖w2‖2 . (4.18)

We can immediately obtain the upper bound:

V (x, y) ≤
(

sup
‖e1‖=1,‖e2‖=1

m∑
j=1

∣∣〈fj , e1〉
∣∣2∣∣〈fj , e2〉

∣∣2)1/2

=
(

max
‖e‖=1

m∑
j=1

∣∣〈fj , e〉∣∣4
)1/2

=: ΛF
2

where ΛF denotes the operator norm of the linear analysis operator T : H → R
m, T (x) = (〈x, fk〉)mk=1

defined between the Euclidian space H = R
n and the Banach space Rm endowed with the l4-norm:

ΛF =
(

max
‖x‖=1

m∑
k=1

∣∣〈x, fk〉∣∣4
)1/4

(4.19)

Note also that

ΛF
2 = max

‖x‖=1
λmax

(
R(x)

)

where R(x) was defined in (2.6). An immediate bound is ΛF ≤
√
B max ‖fk‖ with B the upper frame bound 

of F .
Fix x �= 0 and let d(x, y) → 0. Then either y → x or y → −x. Without loss of generality we assume that 

x → y. Thus w1 = x − y → 0 and w2 = x + y → 2x. However w1/‖w1‖ can be any unit vector. Thus

μ2(x) = 1
‖x‖2 inf

‖u‖=1

m∑
j=1

∣∣〈fj , x〉∣∣2∣∣〈fj , u〉∣∣2 = 1
‖x‖2 inf

‖u‖=1

〈
R(x)u, u

〉
= 1

‖x‖2λmin
(
R(x)

)

where R(x) was introduced in (2.6). Thus we obtain
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μ2(x) = 1
‖x‖2λmin

(
R(x)

)
, μ2

0 = min
‖u‖=1

λmin
(
R(u)

)
.

On the other hand note

inf
d(x,y)>0

V 2(x, y) = inf
w1,w2 	=0

∑m
j=1 |〈fj , w1〉|2|〈fj , w2〉|2

‖w1‖2‖w2‖2 = min
‖u‖=1

λmin
(
R(u)

)
= a2

0,

where a0 was introduced in (2.4). Thus we proved:

Theorem 4.5. Assume the frame F is phase retrievable. Then

μ(x) = 1
‖x‖

√
λmin

(
R(x)

)
, (4.20)

μ∞ = μ0 = min
u:‖u‖=1

√
λmin

(
R(u)

)
=

√
a0. (4.21)

Furthermore αF
2 is bi-Lipschitz with upper Lipschitz bound ΛF

2 and lower Lipschitz bound 
√
a0:

√
a0d1(x, y) ≤

∥∥αF
2(x) − αF

2(y)
∥∥ ≤ ΛF

2d1(x, y)

where a0 is the same positive constant used in Theorems 2.1 and 3.1, and ΛF is the norm of the analysis 
operator defined between the Euclidian space H and l4({1, 2, . . . , m}).

Remark. Note that the distance d(., .) is not equivalent to d1(., .). Theorem 4.5 now also implies that αF
2

is not bi-Lipschitz with respect to the distance d(., .) on Ĥ. This fact was pointed out in [9].

5. Robustness and size of redundancy

Previous sections establish results on the robustness of phaseless reconstruction for the worst case sce-
nario. A natural question is to ask: can “reasonable” robustness be achieved for a given frame, and in 
particular with small number of samples? We shall examine how q∞ scales as the dimension n increases.

Consider the case where m = 2n −1. This is the minimal redundancy required for phaseless reconstruction. 
In this case any frame F would have Δ = ω. Hence we have min{1/ω, 1/ε} ≤ qε = 1/ω. The stability of 
the reconstruction is thus mostly controlled by the size of 1/ω. The question is: how big is ω, especially as 
n increases?

Assume that the frame elements of F are all bounded by L, ‖fj‖ ≤ L for all fj ∈ F . Consider the n + 1
elements {fj : j = 1, . . . , n +1}. They are linearly dependent so we can find cj ∈ R such that 

∑n+1
j=1 cjfj = 0. 

Without loss of generality we may assume |cn+1| = min{|cj |}. Set v = [c1, c2, . . . , cn]T . Let G = [f1, . . . , fn]. 
Then Gv =

∑n
j=1 cjfj = −cn+1fn+1. Now all |cj | ≥ |cn+1| so ‖v‖ ≥ √

n|cn+1|. Thus

‖Gv‖ = |cn+1|‖fn+1‖ ≤ L√
n
‖v‖.

It follows that σn(G) ≤ L√
n
, and hence

ω ≤ L√
n
. (5.1)

Note that here we have considered only the first n + 1 vectors of the frame F . The actual value of 
ω will likely decay much faster as n increases. In a preliminary work we are able to establish the bound 
ω ≤ CL/

√
n3 where C is independent of n [18]. But even this estimate is likely far from optimal.
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Conjecture 5.1. Let m = 2n − 1 and ‖fj‖ ≤ L for all fj ∈ F . Then there exist constants C > 0 and 
0 < β < 1 independent of n such that

ω ≤ CLβn.

A related problem is as follows: Consider an n × (n + k) matrix F = [g1, g2, . . . , gn+k]. Let τ =
min{σn(FS) : S ⊂ {1, . . . , n + k}, |S| = n}. Assume that all ‖gj‖ ≤ 1. How large can τ be? For k = 1 we 
have already seen that it is bounded from above by C/

√
n. The preliminary work [18] shows that for k = 1

it is bounded from above by C/n
3
2 .

Conjecture 5.2. There exists a constant C = C(k, n) such that

τ ≤ C

nk− 1
2
,

where C(k, n) = Ok(logqk n) for some qk > 0. Here Ok denotes the dependence on k.

Thus in the minimal setting with m = 2n − 1 it is impossible to achieve scale independent stability for 
phaseless reconstruction. The same arguments can be used to show that even when m = 2n + k0 for some 
fixed k0 scale independent stability is not possible. A natural question is whether scale independent stability 
is possible when we increase the redundancy of the frame. As it turns out this is possible via a recent work 
by Wang [17]. More precisely, the following result follows from the main results in [17]:

Theorem 5.3. Let r0 > 2 and let F = 1√
n
G where G is an n ×m random matrix whose elements are i.i.d. 

normal N(0, 1) random variables such that m/n = r0. Then there exist constants 0 < Δ0 ≤ ω0 dependent 
only on r0 and not on n such that with high probability we have

Δ ≥ Δ0, ω ≥ ω0.

Proof. Theorem 1.1 and Theorem 3.1 of [17] proves the following result: Let λ > Δ > 1 be fixed. Assume 
that A = 1√

n
B where B is an n ×N random Gaussian matrix with i.i.d. N(0, 1) entries such that N/n = λ. 

Then there exists a constant c > 0 depending only on τ0, λ and Δ such that

min
S⊆{1,...,N},|S|≥Δn

σn(AS) ≥ c

with probability at least 1 − 3e−τ0n. The value c was explicitly estimated in terms of τ0, λ and Δ in the 
proof of Theorem 3.1 in [17].

The theorem now readily follows. Observe that because r0 > 2, in the expression for Δ we may choose 
λ = r0 Δ = r0

2 > 1 and clearly we have

Δ ≥ min
S⊆{1,...,N},|S|≥Δn

σn(FS) ≥ Δ0,

for some Δ0 > 0 independent of n. For ω we may choose λ = r0 and Δ = r0 − 1 > 1. Again the theorem of 
[17] implies that

ω ≥ min
S⊆{1,...,N},|S|≥Δn

σn(FS) ≥ ω0. �
In the theorem the values Δ0 and ω0 can be estimated explicitly using the estimates in [17]. Here with 

high probability is in the standard sense that the probability is at least 1 − c0e
−βn for some c0, β > 0. Thus 
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Fig. 1. Plots of sample medians of Δ and ω (left plot) and Δ and σ, 
√

2σ (right plot) for randomly generated frames of size m = 2n. 
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 2. Plots of largest sample value of Δ and ω (left plot) and Δ and σ, 
√

2σ (right plot) for randomly generated frames of size 
m = 2n. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

scale independent stable phaseless reconstruction is possible whenever the redundancy is greater than 2 +Δ, 
Δ > 0, at least for random Gaussian matrices.

6. Numerical examples

In this section we present two numerical studies of the stability bounds derived earlier.
1. First consider the following setup. For each n between 2 and 14 we generate 100 realizations of random 

frames of m = 2n vectors where each entry is i.i.d. normally distributed with zero mean and unit variance. 
For each realization we compute Δ, ω and σ. For each fixed n we compute the sample median, the largest 
sample value and the smallest sample value of these random variables.

Fig. 1 contains the plots of sample medians of Δ, ω and σ’s for each value of n. The left plot contains 
only Δ (the lower Lipschitz constant) and ω (the lower Lipschitz constant for small perturbations); the right 
plot contains Δ and the two bounds σ and 

√
2σ as obtained in [9]. Similar statistics are plotted in Fig. 2

where sample medians are replaced by the largest sample values, and in Fig. 3 where sample medians are 
replaced by smallest sample values.

Note there is about 1–2 orders of magnitude spread between the largest and the smallest sample value 
of these random variables.
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Fig. 3. Plots of largest sample value of Δ and ω (left plot) and Δ and σ, 
√

2σ (right plot) for randomly generated frames of size 
m = 2n. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

2. Next we consider the following specific example. H = R
2, m = 4 and the frame containing

f1 =
[

1
0

]
, f2 =

[
0
1

]
, f3 =

[
1
1

]
, f4 =

[
1
−1

]

which is a tight frame of bounds A = B = 3. The frame is full spark hence phase retrievable. The bounds 
Δ and ω defined by (4.4) and (4.5) are given by

Δ =
√

3 −
√

5 = 0.874032, ω = 1

which corresponds to choices S = {1, 3} and S = {1, 2, 3}, respectively. The parameters σ introduced in 
(4.16) is given by

σ =

√
3 −

√
5

2 = 0.618034

and corresponds to S = {1, 3}. The parameter τ introduced in the statement of Theorem 4.2 is given by 

the same expression, τ = σ =
√

3−
√

5
2 = 0.618034 and corresponds to the same selection S = {1, 3}.

Tedious algebra can provide closed form expressions for ρε(x) as function of radius ε. Because of scaling 
relation ρcε(cx) = ρε(x) for all c > 0 it follows that only the direction of x describes this function. For 
instance for x(1) = (1, 0) we obtain the following expression:

ρε
(
x(1)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
3, ε < 1√

2√
3 − 4

√
2

ε + 4
ε2 ,

1√
2 ≤ ε <

√
2

1,
√

2 ≤ ε

For x(2) = (1, 1) we obtain:

ρε
(
x(2)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
3, ε < 1√
3 − 4

ε + 4
ε2 , 1 ≤ ε < 2

√
2, 2 ≤ ε

The plots of these two functions are depicted in Fig. 4.
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Fig. 4. Plots of ρε(x(1)) (left plot) and ρε(x(2)) (right plot) as function of radius ε. The red circle is at 
√
A =

√
3. The horizontal 

dotted line is the lower bound Δ = 0.874. (For interpretation of the references to color in this figure, the reader is referred to the 
web version of this article.)

Fig. 5. Plots of ρε(x(3)) as function of radius ε. The red circle is at 
√
A =

√
3. The horizontal dotted line is the lower bound 

Δ = 0.874. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Following the proof of Theorem 4.3 it follows the critical direction that achieves the lower bound 
√
Δ is 

given by x = u + v where u and v are the two normalized eigenvectors associated to the lowest eigenvalue 
(i.e. the lower frame bound) for {f1, f3} and {f2, f4} respectively. The lowest eigenvalue is given by 3−

√
5

2
and the eigenvectors are

u =

⎡
⎢⎣−
√

2
5+

√
5

1+
√

5√
2(5+

√
5)

⎤
⎥⎦ , v =

⎡
⎢⎣−
√

2
5−

√
5

1−
√

5√
2(5−

√
5)

⎤
⎥⎦

and thus the critical vector is

x(3) = u + v =

⎡
⎢⎣−
√

2
5+

√
5 −
√

2
5−

√
5

1+
√

5√
2(5+

√
5)

1−
√

5√
2(5−

√
5)

⎤
⎥⎦ =

[
−1.3764
0.3249

]

The function ρε(x(3)) is computed numerically and is plotted in Fig. 5. For reference we pictured a cir-
cle at 

√
A =

√
3 and we plotted a dotted line at Δ = 0.874. We remark in all three cases, the limit 
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limε→0 ρε(x) =
√
A = ρ0 as predicted by Theorem 4.3. Furthermore, minε>0,x ρε(x) = Δ = ρ∞ as proved 

in same Theorem 4.3.
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