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Abstract

Recent gyrokinetic stability calculations have revealed that the spherical
tokamak is susceptible to tearing parity instabilities with length scales of a few
ion Larmor radii perpendicular to the magnetic field lines. Here we investigate
this ‘micro-tearing” mode in greater detail to uncover its key characteristics and
compare it with existing theoretical models of the phenomenon. This has been
accomplished using a full numerical solution of the linear gyrokinetic—-Maxwell
equations. Importantly, the instability is found to be driven by the free energy
in the electron temperature gradient as described in the literature. However, our
calculations suggest it is not substantially affected by either of the destabilizing
mechanisms proposed in previous theoretical models. Instead the instability is
destabilized by interactions with magnetic drifts and the electrostatic potential.
Further calculations reveal that the mode is not significantly destabilized by the
flux surface shaping or the large trapped particle fraction present in the spherical
tokamak. Its prevalence in spherical tokamak plasmas is primarily due to the
higher value of plasma g and the enhanced magnetic drifts due to the smaller
radius of curvature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The linear tearing instability, described by Furth et al [1], progresses by relaxing a sheared
magnetic field into a lower energy magnetic island structure. Importantly, the energy released
from this process decreases as a function of mode number, which prevents the formation of
shorter wavelength tearing instabilities. However, later calculations by Hazeltine et al [2]
demonstrated that the linear tearing instability could also be driven by an electron temperature
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gradient in slab geometry. This new mechanism may enable the tearing instability to exist at
higher mode numbers, giving rise to the term ‘micro-tearing mode.’

For a given toroidal mode number 7, the distance between adjacent rational surfaces is
8r = 1/nq’, where ¢’ is the radial derivative of the safety factor g. Consequently, the chains of
islands formed by micro-tearing instabilities are in close proximity and may overlap producing
a stochastic field line structure. When this occurs, the electrons are no longer confined to
equilibrium flux surfaces and are able to move radially by moving along the perturbed field
lines. This process can produce significant electron heat transport, which could explain the
high ratios of 7;/ T, measured in a number of spherical tokamak (ST) plasmas (including those
from START and NSTX [3,4]).

The drive mechanism for this micro-tearing instability can be explained in terms of the
parallel thermal force [5]. This force is due to the different frictional forces experienced
by electrons travelling in opposite directions along a parallel temperature gradient and has a
magnitude given by

Fip ~ —ne ey
where n. and T, are the electron density and temperature, respectively. The parallel current
resulting from this force will produce a magnetic field perturbation B. Instability then arises
if this field perturbation aligns with an equilibrium electron temperature gradient V7.

The later paper by Hassam [5], uses a second order Chapman—Enskog expansion of the
fluid equations to recover a similar solution. This work notes that the time-dependent thermal
force is also important to the drive mechanism of the micro-tearing instability. (This time-
dependent force is not present in first order Chapman—Enskog fluid theories, so the Braginskii
equations [6] are unable to recover the instability.)

Drake and Lee [7] expand on the work of Hazeltine et al [2], by carefully defining three
collisional limits in which the slab/cylindrical micro-tearing instability can be analytically
treated: the collisional regime, where v, > ; the semi-collisional regime, defined by
e > wand B > kv /o (nb. perturbations take the form & = £el"'="¢=" such that
ky = (m —nq)/Rq); and finally the collisionless regime where v, < w. In these expressions,
Vi, 18 the thermal velocity of electrons, w is the mode frequency, k| is the wavenumber of the
mode parallel to the equilibrium field lines and v, = (4mwn.e*lni)/((2T,)% zmé/ 2) determines
the collision rate experienced by electrons. Hot tokamak plasmas typically have v, < o,
which best agrees with the collisionless limit of Drake and Lee. Importantly the thermal
force vanishes in this limit, meaning the collisionless micro-tearing mode is stable in slab
geometry [7, 8] suggesting the micro-tearing mode may not be important in fusion plasmas
such as ITER.

However, the paper by Catto and Rosenbluth [9] demonstrates another drive mechanism
for the tearing instability in the ITER relevant banana regime (V. < wp, Where wy. is the
electron bounce frequency). In this limit electrons close to the trapped—passing boundary
can easily scatter between the trapped and passing populations. This increases the effective
collision rate in a layer around the trapped—passing boundary and allows a destabilizing current
to flow. Catto and Rosenbluth [9] have shown this can destabilize the tearing mode in the regime
Ve/€ < w. In similar spirit, Connor et al [10] show the trapped particle driven mode is stable
when Ve /€ > w > V,.

Importantly, gyrokinetic simulations have identified the micro-tearing mode in a number
of ST H-mode plasmas [11-14]. Here we build on these previous calculations with a closer
investigation of the instability. In particular, the key characteristics of the instability are
uncovered and compared with existing theoretical models of the phenomenon. Section 2
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Table 1. Global parameters for the MAST equilibrium at # = 0.265 s in MAST discharge #6252.
Here By is the toroidal magnetic field on the magnetic axis, I, is the plasma current, R and a are,
respectively, the major and minor radius of the last closed flux surface, Rmag is the major radius
of the magnetic axis. Ppeam is the applied neutral beam heating, and finally Zeir = ), Q%nx /ne
(where s labels the ion species and Qj is the electric charge of the ion species.).

By (T) I, (MA) R(m) a(m) Rmag (m) Poeam (MW) Zeft

0.458 0.738 0.816  0.558 0.901 1.67 1.5

Table 2. Important parameters for the poloidal flux surface ¥, = 0.4. T, and T; are the electron
and ion temperatures, P is the plasma pressure, while n gives the number density for both ions
and electrons. The normalized gradient of a quantity x is defined as a/L, = (—1/x)(dx/dyr,),
while § = (,/q)(dg/dv,). The parameters b = Ve Q7 Zefr (me/mi)'/*(Te/T;)*/* and b =
(4rrnee*nn) /((2T,)/ zmé/ 2) determine the collision rates of ions and electrons (respectively) and
are both normalized to vy, /a. The quantity r is the half diameter of the flux surface across its
midplane, while p; is the Larmor radius of thermal ions.

T, 592eV ve 0429
T; 611eV v 0.0125
a/Lt, 2.04 B 01
a/Lt,  2.04 q 1.346

n 436 % 10Ym=3  § 0.286
a/L, —0.177 r 0.311m
P 838 Pa Pi 7.64 mm
a/Ly 1.87

of this paper describes the equilibrium model we have considered and also the system of
equations employed in the study of the micro-tearing mode. In section 3 the key features of
the instability are discussed, including the sensitivity to temperature/density gradients, beta,
collisionality, geometry, trapped particles and also the importance of the electrostatic potential
and the ion response. These results confirm the micro-tearing modes found in MAST are not
well described by the existing literature and reveal the processes that are crucial for instability.
Our conclusions are given in section 4.

2. Plasma model

The plasma considered is MAST discharge #6252, which is a well-diagnosed Elmy H-mode
plasma with neutral beam heating. An equilibrium reconstruction for this plasma has been
calculated during a steady level of the plasma current and just before the neutral beams were
switched off. (The key plasma parameters are listed in table 1, and a detailed discussion of
the equilibrium calculation has been given in a previous publication [11].) In particular, we
study the ¥, = 0.4 poloidal flux surface of this equilibrium (¥, = (¥ — ¥min)/ (¥max — Ymin)
where 1 is the poloidal flux), since this was found to be highly susceptible to the micro-tearing
mode. (The important plasma parameters for this surface are given in table 2). A significant
difference between the plasma model employed here and that used in previous work [11] is
the reduction in the number of kinetically modelled species from five to just two (main ions
and electrons). This has significantly improved the tractability of our calculations without
significantly affecting the results (see figure 1).

The linear gyrokinetic-Maxwell equations [15,16] have been employed to study the micro-
tearing instability present in this equilibrium. These equations provide a kinetic description
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Figure 1. Growth rate () and real frequency (w) of micro-tearing modes on the v, = 0.4 surface
(both are normalized to v, /a). These are plotted as functions of the normalized wave number ky o;
(see appendix for the definition of the x and y coordinates used in GS2). The solid line represents
the two species model, while the dashed line represents the five species model.

for the plasma in the limit

o _ki_p

—r -~ -~iK] kip~1 2

2" n I < Lp 2
where 2 is the gyrofrequency, w is the oscillation frequency of the field perturbations, k; and
k) are the perpendicular and parallel numbers and L is the scale length of variations in the
equilibrium distribution function. The linear gyrokinetic equation for a Fourier mode k is
given by the expression below.

08 08, 1, JB . 0B 085
Bok, +o) - Bk 4 “px (2 +vjz.— ) - Buk,
at oR Q or or oR
QSFOS 0 .aFOs 2 A
- s 0000 2y = Cléa,l, 3
( T o =g X3k Sk, [&5.k. ] (3)

where R = r — (Z x v)/$; is the guiding centre coordinate, the nonadiabatic distribution
function is given by g, = fs + (Qs¢Fos/Ts) (where Q, is the particle charge, ¢~>
is the electrostatic potential, ﬂ is the perturbed distribution function and Fy, is the
Maxwell-Boltzmann distribution function), finally &, = [(;Aﬁkl Jo(z) =y AAH,kL Jo(@)+ (v /lkL])
équL J1(2)] where z = k v, /. Particle collisions are modelled using a Lorentz collision
operator:

&

where v is the particle collisionrate, £ = v /v is the pitch angle variable and |g denotes a partial
derivative at constant R. This operator calculates the pitch angle scattering of particles due to
collisions, which enables an accurate model of trapped particle interactions. It also conserves
energy and particle numbers. However it does not model the energy scattering involved in
collisions and does not include momentum conservation. The diffusive term proportional
to ki is found to have little influence on the linear micro-tearing mode [12]. However,
preliminary work suggests it may have a more important effect in nonlinear simulations of
the instability [17]. Both ion—electron collisions and electron—electron collisions are included
in the electron collision rate v, (v), while only ion—ion collisions are included in the ion collision

(g M| _0rE)

Cle ]_vs(v) ol
Skl = R 9 |p 202

kigs,h} , 4)
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Figure 2. Eigenfunctions for the electrostatic potential ¢, the parallel vector potential A} and
the parallel electric field E) plotted as functions of the ballooning angle 6. The real part of each
eigenfunction is represented by a solid line, whilst the imaginary parts are represented by dotted
lines.

rate v;(v). However, it is found that electron—ion collisions are by far the most important of
these collisional processes.

The gyrokinetic—-Maxwell equations have been solved numerically using the initial value
code GS2 [18]. This code assumes the equilibrium temperature and density scale lengths
are constant across the radial simulation domain, and since the radial simulation domain
is generally quite small for the micro-tearing instability in MAST, this approximation is
reasonable (see [11]). Two further assumptions have also been made to improve the numerical
tractability of these calculations . First the parallel magnetic perturbations (B” =VxA))
have been neglected, which, despite the high plasma g, have little effect on the micro-tearing
mode (see section 3.8). Second, the plasma has been approximated as quasi-neutral. (Results
obtained using the quasi-neutrality condition were found to be in good agreement with those
obtained from Poisson’s equation.)

3. Results

Figure 2 is a plot of the parallel electric field E |- the electrostatic potential ¢ and the parallel
vector potential AH resulting from the micro-tearing instability at k, p; = 0.5. Each quantity
is plotted as a function of the ballooning angle 6 (this labels distance along a magnetic field
line using the poloidal angle). Importantly, the electrostatic potential and parallel electric field
are highly extended along the field lines due to the rapid parallel motion of electrons. The
parallel vector potential is confined to a much smaller range in 6, which, in real space, produces
a radially extended function. This corresponds to the ‘constant vy’ approximation of linear
tearing theory [1].

The tearing nature of this instability becomes apparent when Poincaré sections are plotted
of the perturbed magnetic field. In GS2 this is achieved using a flux tube simulation domain
(see [19] for details), which is a long thin tube aligned parallel to the magnetic field lines.
The parallel length extends from 6 = [—m, ] (as opposed to the ballooning representation
where this domain can be arbitrarily large), while the perpendicular dimensions are a few
Larmor radii. Parallel vector potential data from GS2 is then used to determine the path of
selected magnetic field lines through the flux tube. Once these paths have been established, a
perpendicular slice is taken through the tube at constant poloidal angle 6 and the points where
the field lines intersect with this slice are plotted.

The Poincaré plots in figure 3 were produced using A” data for a single micro-tearing
mode with wavenumber k,p; = 0.66. Each plot is given on an (x, y) grid, where x and y
are the perpendicular coordinates in the flux tube, and are both normalized to the ion Larmor
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Figure 3. Poincaré plots for the micro-tearing instability with ky 0;=0.66 at & = 0, where the x
and y axes are given in units of p;. The amplitude of the perturbation increases from left to right,
so that the middle plot has a magnitude five times greater than the left-hand plot and four times
smaller than the right-hand plot. The right-hand plot also includes a contour diagram of the parallel
current Jj.

radius p;. (The definitions of x and y are given in the appendix.) A second horizontal axis
labels the equivalent ¢ values for the x-axis. Importantly, the field lines are tracked from the
same starting points in each plot, while the amplitude of the magnetic field perturbation (due to
the instability) increases from left to right. A magnetic island structure appears at the rational
surface g = % of each plot which increases in size and complexity as the amplitude of the
perturbation increases. The current plot in figure 3 reveals the ‘O’ point of the island is at
the current minimum, whilst the ‘X’ point of the separatrix is at the current maximum. This
current perturbation occurs in a narrow region around the resonant surface and corresponds to
the current layer of linear tearing mode theory [1].

3.1. Drift-wave characteristics of the micro-tearing mode

The thermal force and trapped particle drive mechanisms for the micro-tearing instability both
require a finite electron temperature gradient from which to draw free energy. The left-hand
side of figure 4 is a plot of growth rate as a function of a/Lt. for the MAST micro-tearing
instability with ky p; = 0.5. (Note, the ion temperature gradient was simultaneously altered to
maintain a constant pressure gradient.) The instability is clearly dependent on the presence of
a finite electron temperature gradient, as predicted by Hazeltine et al [2]. Further calculations
have shown the growth rate also varies with the electron density gradient, although a finite
density gradient is not vital to the instability.

Previous theories of the micro-tearing mode often predict a linear relation between the
equilibrium electron temperature and density scale lengths and the real frequency of the mode.
For example, the paper by Catto and Rosenbluth [9] predicts w ~ w}[1 + n./2] (where
ne = (Ly,/LT,)), while numerical calculations by Gladd et al [20] produce real frequencies
which roughly fit the expression, w ~ w}[1 + [1 +0.61n (ﬂe /w:)] ne]. Both these expressions
have a qualitative agreement with calculations for the MAST instability (see figure 4 for
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Figure 4. Growth rates and real frequency of micro-tearing modes as a function of the inverse
electron temperature scale length a/L,. For comparison, the dashed line in the real frequency
plot represents the analytic prediction w ~ @}[1 + ne/2]. Note that the inverse electron density
scale length was kept constant, so n. = L, /Lt varies proportionally with a/Lr,.

the dependence of the real frequency on the electron temperature gradient). However, the
frequency of the MAST instability also depends on the collision rate, which is closer to the
predictions of Gladd ef al.

Curiously there is a minimum in the growth rate of figure 4 at a/Lt. ~ 4.5, which
coincides with a discontinuity in the frequency plot. This signifies a mode switching between
two different micro-tearing instabilities, one which is unstable for 0 < a/L1. < 4.5 (which
we will call mode A), and another which is unstable for a/Lt. > 4.5 (which we will call
mode B). It is not obvious why mode A should be stabilized above a/Lt. =~ 4.5 since the
temperature gradient provides the free energy for the instability. A plausible explanation could
be the dependence of the real frequency on the electron temperature gradient. If a resonance
is important (for example, with the magnetic drift frequency), then increasing |w| may disturb
this resonance and cause mode A to be damped. Interestingly, |w| sharply decreases across
a/Lt. ~ 4.5. This means mode B has a real frequency similar to the real frequency of mode A
at its most unstable and supports the idea that a lower |w| produces a destabilizing resonance
in the plasma.

3.2. The role of collisions

It was discussed earlier that Drake and Lee [7] have defined three specific categories of tearing
mode depending on the level of collisionality. However, it is not obvious which of these three
categories the MAST instability belongs to. Consider figure 5, which shows the growth rate
of the MAST micro-tearing instability as a function of collisionality. The instability is not
collisionless, since the growth rate is clearly dependent on ., and instability requires finite
V. (figure 5). It is also not collisional or semi-collisional, since the collision rate is too low:
0.05 < Ve/w < 2. In fact, the instability seems to lie somewhere between the collisionless
and semi-collisional regimes. Importantly, the MAST instability is unstable for v. ~ w. This
regime has been addressed by Gladd et al [20] and D’Ippolitto and Lee [21] using a modified
Krook collision operator [22,23]. Conversely, at lower collisionalities, the MAST instability
is closer to the limit treated in the trapped particle calculations of Catto and Rosenbluth [9],
where @ > /€.

3.2.1. The energy dependence of the collision operator. Importantly, the thermal force drive
mechanism of Hazeltine ef al [2] and the trapped particle drive mechanism of Catto and
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Figure 5. Plots of growth rate and real frequency for micro-tearing instabilities as a function of
electron collisionality ., for two different collision operators. The solid lines represent the energy
dependent collision operator, while the dashed lines represent the energy independent collision
operator from equation (5).
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Figure 6. Plots of growth rate and real frequency versus collisionality for calculations with a full
ion response (solid lines), and a Boltzmann response for the ions (dashed lines).

Rosenbluth [9] both require an energy dependent collision operator. Consequently we have
tested whether the MAST instability is sensitive to the energy dependence of collisions. This
test involved replacing the velocity/energy dependent collision rate of the electrons with the
collision rate of electrons moving at their thermal velocity:

Ve (V) = Ve(vin,)- &)

Figure 5 is a plot of growth rate and real frequency versus the electron collisionality
Ve, using both the energy dependent collision operator and the energy independent collision
operator. It is clear the instability is not strongly affected by the changed in collision operator,
and thus cannot be strongly dependent on either of the drive mechanisms mentioned in the
literature.

However, in the absence of magnetic drifts (see section 3.5) energy dependent collisions
become more important to the MAST instability. This makes contact with the numerical
calculations of Gladd et al [20] and D’Ippolitto and Lee [21], who find a micro-tearing
instability in slab geometry, which is reliant on energy dependent collisions, and occurs in
the regime v, ~ w.
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3.3. The role of the ion response

The appropriate form for the ion response in tearing mode calculations has been widely
discussed in the literature. Early calculations by authors such as Drake and Lee [7] utilize
magnetized or unmagnetized approximations for the ion response, depending on the predicted
width of the current layer d (a magnetized response is used if d > p; while an unmagnetized
response is used for d < p;). Later calculations by Cowley et al [8], implemented the effects
of finite ion Larmor radius effects more completely, in the limit d < p;. To discern the
effect ion physics has on the MAST micro-tearing instability, a comparison has been made
between calculations using the full ion response and calculations using an unmagnetized ion
response:

i = -2k ®)
where 7; is the perturbed ion density. The results of these calculations are presented in figure 6,
where the growth rate and real frequency of the instability (at k, 0; = 0.5) are plotted against
collision frequency. It is clear the full ion response has a limited influence on the instability,
contrasting with the calculations of Cowley et al [8], who find FLR effects have a strong
stabilising effect on the collisionless and semi-collisional tearing instabilities. However, this
apparent contradiction can be explained by considering the current layer produced by the MAST
micro-tearing instability. Figure 7 is a contour plot of the current perturbation produced by
the k,p; = 0.5 micro-tearing mode at & = 0. The current perturbation is concentrated in a
small layer around x = 0, and here we define the width of this layer, d, using the following
expression:

d/2

[apWildxdy
Joo Uil dx dy

(N

Figure 7 revealsd ~ p; throughout the unstable collisional range, suggesting the approximation
d < p;, made by Cowley et al [8], is not applicable to the MAST instability. (In the limit
d < pjthe current layer itself is largely unmagnetized, but the full ion response is still important
outside the current layer. Indeed it is finite Larmor radius (FLR) effects outside of the current
layer which Cowley et al find has a stabilizing effect on the instability. On the other hand,
the MAST instability has d/p; ~ 1 so ion FLR effects ought to be important both inside and
outside of the current layer.)

3.4. Micro-tearing instabilities in s—o geometry

While numerical equilibria provide a realistic reconstruction of the experimental situation, they
are somewhat inflexible when one wishes to modify equilibrium parameters. Thus, in order
to study the effect that trapped particles, magnetic drifts and aspect ratio have on the micro-
tearing instability, it is helpful to introduce an analytic equilibrium. Here we have constructed
a shifted-circle, s—« equilibrium [24] where the flux surfaces are specified by

R = Ry(r) +rcos9,
Z =rsin0, (8)

where r is the minor radius of the flux surface, R and Z are the horizontal and vertical
coordinates that specify the flux surface, and Ry(r) is the major radius of the flux surface (the
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Figure 7. (Left) Cross section of the parallel current Jj in the flux tube at@ = 0, and at ky p; = 0.5.
The dashed lines show the width d of the current layer which is defined in equation (7). (Right)
The current width d is plotted as a function of collisionality Ve, using full ion physics (solid line)
and also a Boltzmann response for the ions (dashed line).

s—a model allows this to be a function of the flux surface label r). In this model the total
magnetic drift velocity for electrons is given by

20t +vi R x B
2Q R?B°

&)

VR +Vyp = —

Trapped particles can be included in the s—« model by using the following expression for
the variation of the magnetic field strength:

By
= (10)
1 + € cos(0)
where € = r/Ry is the inverse aspect ratio of the flux surface and controls the fraction of
trapped particles.

In figure 8 the growth rates and real frequencies obtained using the s—« model are compared
with those from the numerical MAST equilibrium. (This is only a rough comparison since
the self consistency of the s—o model deteriorates at high 8 [25].) The same values of ¢, ,
s,a/Lt,a/L,, Ry and r/ Ry are used in both models. It is clear the micro-tearing mode is
unstable in the s—« equilibrium, suggesting the flux surface shaping of the MAST equilibrium
is not particularly important for instability.

Using the s—o model, the major radius Ry and inverse aspect ratio € = r/Ry of a flux
surface can be altered. In figure 8, the value of Ry has been changed keeping r fixed and
allowing r/ Ry to vary. Importantly, all other quantities, such as the temperature and density
scale lengths, are kept constant. This is roughly equivalent to changing the aspect ratio Ry/a
of a tokamak, whilst staying on the same flux surface r. From figure 8 it is clear that any
increase in aspect ratio has a stabilizing effect on the micro-tearing instability, although it is
also apparent the mode remains significantly unstable if the major radius is modestly increased.
This in turn suggests the instability might appear in moderate aspect ratio machines such as
JET (although it will be shown later on that the instability also requires a large 8, which may
prevent it from appearing at large aspect ratio).
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Figure 8. Growth rate and real frequency versus collisionality for four different plasma geometries.
Calculations using the numerical reconstruction are given by solid lines. Results from the s—« model
closest to this equilibrium (using »/ Ry = 0.345 and Ry = 0.879) are given by dashed lines. The
s—a calculations using /Ry = 0.236 and Ry = 1.32 are given by dotted lines. Finally s—« results
using /Ry = 0.118 and Ry = 2.64 are given by dash—dot lines.

3.5. The effect of magnetic drifts

In the previous section an s—o model was utilized to vary Ry and € = r/Ry simultaneously.
Consequently, both the magnetic drift velocity (which is inversely proportional to Ry) and the
trapped particle fraction (which is given by €!/?) were changed. In this section the s—a model
is used to vary Ry while keeping € = r/Ry constant, allowing us to consider the effect of
magnetic drifts in isolation.

The role that magnetic drifts play in the micro-tearing instability has not been fully
treated in the literature. The majority of papers use either slab or cylindrical geometry to
help tractability [2,7,8,20], while a smaller number attempt to understand the role that trapped
particles have on the instability [9, 10], but ignore the effects that curvature and VB drifts
have on untrapped electrons. Figure 9 compares the growth rates and real frequencies for
calculations with a number of different major radii and with a range of collisionalities. These
results show magnetic drifts have a significant destabilizing effect on the instability, and it is
found that the destabilization comes predominantly via the untrapped electron species.

It is tempting to suggest the instability is driven by bad curvature at the outboard midplane
of the tokamak, which is the destabilization mechanism for the toroidal ITG/ETG mode.
However, in the case of the micro-tearing mode, the passing electrons must travel many
poloidal orbits in an oscillation time of the mode (1/w) and would be very sensitive to the
average magnetic drift rather than just the bad curvature at the outboard midplane. Also,
calculations have been performed where o = —(2uoRq?/B?)(dp/dr) has been increased in
order to reduce the average curvature (this has been done inconsistently so that the driving
gradients are kept constant). This was found to increase the growth rate of the micro-tearing
instability, whereas bad curvature driven modes, such as the toroidal ITG mode, are expected to
be stabilized. Thus, the destabilizing influence of magnetic drifts appears to be due to another
process (perhaps a resonance between the mode frequency and the magnetic drift frequency
as suggested in section 3.1).

The results from figure 9 show there is also an underlying slab drive mechanism for the
micro-tearing instability in MAST, since the mode is unstable even when the magnetic drift
velocity is zero. As we mentioned earlier, this additional mechanism appears to be closer to
the slab calculations of Gladd er al [20], since the instability becomes much more sensitive to
the energy dependence of the collision operator in the absence of magnetic drifts.
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four different major radii at fixed inverse aspect ratio /Rp. Solid lines represent Ryp = 0.879,
dashed lines represent Ry = 1.32, dotted lines represent Ry = 2.64, dash-dot lines represent
Ro = oo (i.e. cylindrical geometry). Note that ky p; = 0.5 for all of these calculations.

O~14 T T AL T T O T T T
012 | - 021 ]
04 | -
0.1 06 | |
> 0.08 {1 s-08f = -
0.06 i 1r T ]
. 12 F RS
0.04 4al |

0.02 16 ! !

0.1 I

V,

Figure 10. Plots of growth rate and real frequency versus collisionality using the s—« model
with four different inverse aspect ratios r/Ro at fixed major radius Ry. Solid lines represent
r/Ro = 0.354, dashed lines represent r/Ry = 0.236, dotted lines represent /Ry = 0.118 and
dot-dash lines represent r/ Ry = 0.

3.6. Calculations without trapped particles

It is also possible to investigate the role that trapped particles play in the micro-tearing
instability using the s—o model. To do this we simply vary the ratio r/ Ry whilst keeping
Ry fixed. Figure 10 compares the growth rates and real frequencies of calculations with a
number of different values of r/ R and a range of collisionalities. Importantly these collision
frequencies are well below the electron bounce frequency which is w, = 12.6 (all frequencies
are normalized to vy, /a) so the banana orbits of trapped electrons are important.

Figure 10 reveals that the trapped particles are destabilizing at lower collision frequencies,
which is in general agreement with the predictions of Catto and Rosenbluth [9]. It is also
apparent that trapped particles are most destabilizing at smaller inverse aspect ratio, where the
calculations of [9] are most accurate.

Importantly the trapped particles have a stabilizing effect at higher collision frequencies.
This is probably because the trapped particles cannot respond to a parallel electric field, so
in the absence of destabilizing boundary layer effects, the trapped particles will significantly
reduce the perturbed current in the plasma and hence damp other drive mechanisms for the
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Figure 11. Plots of growth rate and real frequency as a function of collisionality. Solid lines
include ¢, whilst the dashed lines have ¢ = 0.

micro-tearing instability. Thus, we can see the stabilizing effect becomes stronger as the
trapped particle fraction increases and is particularly strong for the aspect ratio of MAST.

3.7. The electrostatic potential

Gladd et al [20] find the electrostatic potential has a strong destabilizing influence on the micro-
tearing instability when w < V.. The importance of the electrostatic potential has also been
tested for the MAST micro-tearing instability by completing calculations with and without
the electrostatic potential for a wide range of collisionalities (see figure 11). It is immediately
apparent that the electrostatic potential has a strong destabilizing influence on the micro-tearing
instability. Indeed if both the electrostatic potential and the magnetic drifts are turned off then
the mode is stabilized.

3.8. The effect of B and BII

Figure 12 presents a scan of growth rate versus total 8. Two models of the plasma are
compared, one including parallel magnetic perturbations (BH) and one without. Importantly,
these calculations keep 8’ and V P constant while varying 8 (which is inconsistent), so the
strength of magnetic perturbations in Ampére’s law is varied, while the equilibrium is kept the
same. The micro-tearing instability clearly requires a significant 8 value for instability. Below
B ~ 0.1 (which is the B value of the MAST equilibrium) the growth rate decreases rapidly.
This is understandable since the lower values of 8 make it more difficult for the magnetic
field to be perturbed. However, above B ~ 0.15 the growth rate decreases again, which is not
understood at present. Finally, we note that éll is unimportant to the micro-tearing instability,
even at 8 ~ 0.4.

4. Conclusion

The tearing nature of the instability found in MAST has been confirmed by producing Poincaré
plots of the perturbed magnetic field. These reveal chains of magnetic islands on the mode
rational surfaces, and it is around these rational surfaces that most of the current perturbation
lies in a ‘current layer.” The centre of each island coincides with current minima, while the
‘X’ points coincide with current maxima, and the width of each magnetic island grows as the
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Figure 12. Plots of growth rate and real frequency versus plasma 8. Solid lines include parallel
magnetic perturbations, dashed lines do not.

amplitude of A | increases. These observations are in good agreement with linear tearing mode
theory [1].

Previous work describes two different drive mechanisms for the micro-tearing instability.
The first is due to the thermal force driving parallel currents in the plasma [2]. The second
is caused by currents flowing in the collisional layers that form around the trapped—passing
boundaries, whenever v./e < w? [9]. Both these mechanisms require an energy dependent
collision operator, and both are dependent on a finite electron temperature gradient. Crucially,
numerical studies in this paper have shown that neither drive mechanism is particularly
important to the MAST instability, since the mode is largely unaffected when the energy
dependence is removed from the collision operator. The trapped particle drive of Catto and
Rosenbluth [9] appears to have a small destabilizing effect when V. /e < w, but there is clearly
another drive mechanism for the micro-tearing instability that has not been described in the
literature.

This new drive mechanism requires an electron temperature gradient from which to draw
energy and has some dependence on the density gradient. The real frequency of the mode has
a roughly linear dependence on both of these gradients, which suggests it has drift-wave-like
properties. More detailed studies show the micro-tearing mode is strongly destabilized by
magnetic drifts and the electrostatic potential. Indeed, if neither of these effects are included,
then the MAST instability is completely stabilized.

The MAST micro-tearing mode is unstable in the collisional range 0.05 < V./w <
2. The lower end of this range pertains to the calculations of Catto and Rosenbluth [9]
(which have already been mentioned), while the higher end of this range lies somewhere
between the collisionless and semi-collisional regimes defined by Drake and Lee [7].
Importantly the collisional range of the MAST instability includes the collisional region
Ve ~ w, which Gladd et al [20] and D’Ippolito and Lee [21] have treated numerically.
Nonetheless, despite treating the correct collisional range, these papers do not predict the
MAST instability since they require an energy dependent collision operator for instability.
However, if we remove magnetic drifts from our calculations then energy dependent
collisions do become more important, thus making some contact with these earlier slab
calculations [20,21].

Importantly, it has been found that the exact form of the ion response has little effect on
the MAST instability, despite the fact the current layer width d ~ p;. Importantly, this does
not conflict with previous calculations that include the full ion response [8], since these were
performed in a different limit (d < p;).
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Finally, the prevalence of the micro-tearing instabilities in simulations of the spherical
tokamak is not due to its characteristic shaping, but rather it seems to be a result of the larger
B, and the smaller radius of curvature in the ST (which provides stronger magnetic drifts).
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Appendix. GS2 coordinates

GS2 uses a Clebsch representation for the magnetic field,
B =Va x Vi, (12)

where ¥ is the poloidal magnetic flux and « = ¢ — g6 +v(6, V) labels different field lines on
a flux surface. Thus, ¥ and « are two coordinates perpendicular to the field in the flux tube,
while the distance along the field line is labelled using the poloidal angle 6, which extends
from 6 = (—m, ). In GS2 « and ¢ are transformed to x and y using

X = - wo)ag‘)p, (13)
y = aa dl/fNORM7 (14)
dp

where a is the plasma minor radius, B, is the vacuum magnetic field at the centre of the last
closed flux surface, ¥norm = ¥/ (a>B,) and p, is a normalized flux surface label increasing
from zero at magnetic axis to one at the last closed flux surface. This results in a coordinate
system (x, y, 6).

References

[1] Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 469
[2] Hazeltine R D, Dobrott D and Tang T S 1975 Phys. Fluids 18 1778
[3] Roach CM, Akers R J, Conway N J, Dodge T M, Gryaznevich M P, Helander P, Sykes A, Walsh M J, the START
Team and the NBI Team 2001 Nucl. Fusion 41 11
[4] Synakowski E J et al and the NSTX Research Team 2002 Plasma Phys. Control. Fusion 44 A165
[S] Hassam A B 1980 Phys. Fluids 23 2493
[6] Braginskii S I 1965 Reviews of Plasma Physics vol 1 ed M A Leontovich (New York: Consultants Bureau)
[7] Drake J F and Lee Y C 1977 Phys. Fluids 20 1341
[8] Cowley S C, Kulsrud R M and Hahm T S 1986 Phys. Fluids 29 3230
[9] Catto PJ and Rosenbluth M N 1981 Phys. Fluids 24 243
[10] Connor J W, Cowley S C and Hastie R J 1990 Plasma Phys. Control. Fusion 32 799
[11] Applegate D J 2004 Phys. Plasmas 11 5085
[12] Roach C M et al and the MAST Team 2005 Plasma Phys. Control. Fusion 47 B323
[13] Redi M H et al 2004 Nonlinear turbulence simulations for NSTX H-modes 31st EPS Conf. on Controlled Fusion
and Plasma Physics (London) number P2.162
[14] Wilson H R et al 2004 Nucl. Fusion 44 917
[15] Taylor J B and Hastie R J 1968 Plasma Phys. 10 479
[16] Catto P 1977 Plasma Phys. 20 719


http://dx.doi.org/10.1063/1.861097
http://dx.doi.org/10.1088/0029-5515/41/1/302
http://dx.doi.org/10.1088/0741-3335/44/5A/313
http://dx.doi.org/10.1063/1.862950
http://dx.doi.org/10.1063/1.862017
http://dx.doi.org/10.1063/1.865841
http://dx.doi.org/10.1063/1.863352
http://dx.doi.org/10.1088/0741-3335/32/10/004
http://dx.doi.org/10.1063/1.1801251
http://dx.doi.org/10.1088/0741-3335/47/12B/S23
http://dx.doi.org/10.1088/0029-5515/44/8/010
http://dx.doi.org/10.1088/0032-1028/10/5/301

1128 D J Applegate et al

[17] Applegate D J 2007 Gyrokinetic studies of a spherical tokamak H-mode plasma PhD Thesis University of
London

[18] Kotschenreuther M, Rewoldt G and Tang W M 1995 Comput. Phys. Commun. 88 128

[19] Beer M A, Cowley S C and Hammett G W 1995 Phys. Plasmas 2 2687

[20] Gladd N T, Drake J F, Chang C L and Liu C S 1980 Phys. Fluids 23 1182

[21] D’Ippolito D A and Lee Y C 1980 Phys. Fluids 23 711

[22] Williamson H 1968 J. Phys. A: Math. Gen. 1 629

[23] Bhatnagar P L, Gross E P and Krook M 1954 Phys. Rev. 94 511

[24] Connor J W, Hastie R J and Taylor J B 1979 Phys. Rev. Lett. 40 396

[25] Miller RL, Chu M S, Greene J M, Lin-Liu Y R and Waltz R E 1998 Phys. Plasmas 5 973


http://dx.doi.org/10.1016/0010-4655(95)00035-E
http://dx.doi.org/10.1063/1.871232
http://dx.doi.org/10.1063/1.863119
http://dx.doi.org/10.1088/0305-4470/1/6/301
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1063/1.872666

	1. Introduction
	2. Plasma model
	3. Results
	3.1. Drift-wave characteristics of the micro-tearing mode
	3.2. The role of collisions
	3.3. The role of the ion response
	3.4. Micro-tearing instabilities in s-- geometry
	3.5. The effect of magnetic drifts
	3.6. Calculations without trapped particles
	3.7. The electrostatic potential
	3.8. The effect of  and "707E B

	4. Conclusion
	 Acknowledgments
	 Appendix. GS2 coordinates
	 References

