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Transport barriers that form in both the edge and interior regions of high temperature magnetically
confined discharges are characterized by steep plasma gradients, BtroBgand diamagnetic
flows, and varying levels of magnetic shear. This study addresses the linear stability of such
configurations in the context of a simple slab model using both analytic calculations as well as
numerical simulations from the gyrokinetic GS2 code. Three linear modes of potential importance
are found: the Kelvin—Helmholtz instability, the tertiary mode, and a nonlocal drift wave instability.
Each mode is unstable only in the presence of nontrivial spatial variations in eithgmxtiBeflow

and/or the plasma gradients. The strongest conclusion of this study is that the drift wave mode may
be an important driver of anomalous transport in the edge region of magnetic confinement devices.
Two other weaker conclusions that warrant further study are as folldshe Kelvin—-Helmholtz
instability may be associated with edge-localized modes or edge transpd)ahd tertiary mode

can potentially limit the radial growth of a transport barrier2@5 American Institute of Physics

[DOI: 10.1063/1.1928250

I. INTRODUCTION these cases through Taylor expansion of the background pro-
files.

This paper explores the linear stability of simple slab  Depending on the parameters, the KH instability is po-
plasma configurations without magnetic curvature using bothentially the strongest instability of the three modes. Because
analytic and numerical studies. Our numerical results ar@f its magnetohydrodynamiclikéMHD-like) character and
produced using the electromagnetic, gyrokinetic GS2 &odejarge radial scaleGcomparable to the barrier widththe on-
while our analytic calculations are based on the Braginskiset of this instability might trigger a complete edge-
and gyrofluid models. The configurations we study are chartocalized-mode-lik(ELM-like) collapse of the profiles. On
acterized by sheardel X B and diamagnetic flows, weak col- the other hand, depending on the details of the nonlinear
lisionality, and finite magnetic shear. Our main application ofevolution(not calculated hepeit might be associated mainly
interest is the edge pedestal region of high temperdtige,  with transport. As is well known, in the simplest case of a
H mode tokamak discharges, but the results we obtain arghearless magnetic field with=0, the only requirement for
also potentially relevant to internal transport barri@gf®8s),  instability is an inflection point in the backgroufx B flow
and to other physical systems. Our neglect of the magneti¥. This condition is usually satisfied in-mode edge ped-
curvature is motivated by the strong plasma gradients foundstal, while in the case of ITBs, the prevalence of inflection
in pedestals and ITBs, which we find are capable of drivingpoints is less clear. In any case, given an inflection point, we
instabilities with growth rates that surpass those ofaddress here two factors that can stabilize the KH mode:
curvature-driven modes. Strong parallel flows, though somemagnetic sheafmoderately strong in the edge but weak in
times present in laboratory fusion experiments, will be addinternal barriersand ion diamagnetic effectstrong in both

dressed in future work. cases In the presence of magnetic shear, it is impossible to
The simulations indicate the potential importance of atsatisfy k=0 everywhere within the envelope of the mode,
least three instabilities: the Kelvin—HelmholtgH) instabil-  and so the mode can be stabilized by line bending if either

ity, the tertiary modé,and a nonlocal drift wave instability. the magnetic shear or the barrier width becomes sufficiently
These instabilities are all global modes, in the sense that thegrge. Estimates given later suggest that, due to the magnetic
are all dependent on nonlocal variations of the backgroundhear alone, the Kelvin—Helmholtz instability hovers near
“equilibrium” quantities, and are all absent from local simu- marginal stability in theH-mode edge. In the absence of
lations in which the background plasma gradients and thenagnetic shear, we show that ion diamagnetism alone can
E X B shearV (if presen} are spatially constant. The latter stabilize the mode if the ion diamagnetic velocity; is at

two (the tertiary mode and the drift wave instabi)itpn the  least comparable t¥g and in the opposite direction. Unless
other hand, are also quasilocal, in the sense that they can lere velocity profiles in ITBs quite generally lack inflection
radially localized to scales that are the geometric mean of thpoints, the fact that KH instabilities aret observed to limit
equilibrium scale and smaller scales, and are therefore selfifBs is likely due to these ion diamagnetic effects. With
sitive to the profile variations only in a relatively small re- respect toH-mode pedestals, typical edge profiles from ex-
gion. This makes some general analytic progress possible iperimental observations, as well as the profiles predicted by
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some numerical simulations, seem at least roughly close tftor example, the typicaH-mode ecige parameters discussed
the marginal case ofg+Vs;=0. A more detailed study that later yield yxy/(kCs) ~Ca/Cs~1/VB>1. This assumption

includes both realistic magnetic geometry and two-fluid ef-also excludes the slab ITG mode from our analysis, as well
fects is therefore needed to determine the precise role of thes the parallel sheared-flow instability discussed by
Kelvin—Helmholtz instability in the tokamak edge. Cowley13 and shear damping effects due to ion-sound

The tertiary mode, in contrast to the Kelvin—-Helmholtz waves™ In any case, as shown later the analytic results are
instability, arises at higl, and is characterized by an adia- in a good agreement with the GS2 simulations, in which the
batic electron response. It is driven by the ion temperaturgarallel ion dynamics are retained. The calculations also fo-
gradient, is radially localized by thEé X B shear, and is in- cus on modes that, at least marginally, satisfy; <1, so
sensitive to the magnetic shear. The equilibrium density grathat an expansion ikipi2<1 is justified. Finally, consistent
dient, studied here for the first time, also plays a complexwith the remarks made earlier regarding diamagnetic effects,
role. According to the numerical calculations, this mode carin the derivations we order the magnitude of the electron and
be stabilized by finite Larmor radiu§LR) effects when the ion diamagnetic flows to be comparable to & B flows.
pedestal width becomes comparable to 5-10 ion Larmor rasiven these assumptions, and working to leading order in
dii. Thus, this instability is expected to be stable in narrowk? p?, we show that equivalent analytic results may be ob-
pedestals and unstable in wide pedestals. While the impotained from either the Braginskii or gyrofluid models. Calcu-
tance of this mode in the edge region will require furtherlations based on the Braginskii model are presented in the
nonlinear study, we note that such a dependéneg a mode main text, while the(equivalen} gyrofluid calculations are
that is unstable only in sufficiently wide pedesjatspoten-  described in Appendix B. We use the same electron model in
tially associated with the existence ofnaaximumpedestal both cases, which includes a simple approximation to elec-
width. tron Landau damping.

The nonlocal drift wave instability is a linear, edge- The GS2 simulations, as well as the analytic models, are
localized version of a nonlinear drift wave mode that hasbased on the standard “flux-tube” orderitign which the
been widely studied in local turbulence simulations of thedeviations of the absolute levels of the density and tempera-
edge regiorf.® These turbulence simulations are typically tures(for examplg are assumed to be small over the region
carried out in the presence of spatially constant plasma greof interest, though deviations in thgadientsof these quan-
dient scale lengths and magnetic shear, and as is welities can be comparable to or larger than the equilibrium
known, radially localized, linearly unstable drift wave values. This assumption becomes marginal at best in the
eigenmodes do not exist in such systems. Nonlinearly, howplasma edge, particularly in the case of the Kelvin—-
ever, drift wave physics is hypothesized to play an importantelmholtz mode, which is expected to vary on the same
role in driving small-scale turbulence tmode-like param- scale as the equilibrium quantities. The quantitative study of
eters in the edge region, where resistive ballooning modesuch modes would therefore seem to require a fully nonlocal
are expected to become weik.We show here that in the approach that goes beyond some of the calculations pre-
presence of more realistic pedestal-like profiles in either théented here.

E X B velocity and/or the density gradient, a robustly un-  This paper is organized as follows. We present the elec-
stable, radially localized linear eigenmode reappears in thtgon model that is used in the analytic calculations in Sec. Il
simulations, with or without magnetic shear. This result isthe Braginskii ion model in Sec. lll, and a set of reference
consistent with past theoretical studies of drift waves goingedge parameters in Sec. IV. We then apply the results to the
back for decades, which have shown that strong spatial varid<elvin—Helmholtz mode in Sec. V, the tertiary mode in Sec.
tions in the density gradieht? can overcome the damping VI, and the drift wave mode in Sec. VII. Section VIII con-
introduced by magnetic shear. Here, to obtain a theoreticdhins a summary of the main findings in each case. In the
description of the mode that is in reasonable agreement witBppendixes, we discuss the validity of the adiabatic approxi-
the GS2 simulations for edgelike parameters, we go beyonthation (Appendix A), demonstrate the correspondence be-
past work and include in our analytic calculations the contri-tween the Braginskii and gyrofluid mode{#\ppendix B),
butions from electron Landau damping, electromagnetic efand the analyze the role of shear in the case of the drift wave
fects, as well as the spatial variation in tBe< B velocity, =~ mode(Appendix Q.

density, and temperature profiles. This mode, due to its rela-

tively large size(approaching the pedestal width it9edind

its fairly robust linear growth rates even in the presence ofl. ELECTRON EQUATIONS

E X B and magnetic shear, is a strong candidate for driving . . .
anomalous transport in tHeé-mode edge. . In this se_ctlon we describe our electron model, al_wd ob-

The analytic calculations we present are based on th ain a coIIectl_on of important results t.hat are used in th?
Braginskii and gyrofluid models. These models are both “re_ollqwmg gectlons. Thesg re;ult; are mdependent of ones
duced,” in the sense that magnetosonic waves are assumedct'(‘BO'.Ce of ion model, which is discussed in the following
be fast and are ordered out of the system. On the other hanﬁ‘?c“"”- . L
we also neglect the contribution of ion Landau damping and The electron model we consider is given by

parallel sound waves. This assumption requires that din= inHJ, (1)
d;>kcs for the modes of interest, wheog=\(To+T;)/m; is
the sound speed. In the case of the Kelvin—-Helmholtz mode, V,T,=0, (2)
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adx — V(¢ —n) = (ud+ v+r|k|)J, (3) cases of interest. For exampl&vy can approach the
growth rates of some of the faster modes of interest here, and
where in the more collisional edge plasma of Alcator C-Mod, for
J= ViX. Vi=d,+a2XV x-V,, (4) example, the electron mean-free path can approach the par-
allel connection lengtli\,,s,~ gqR). This issue is further un-
d=q+2XV, -V, V,=Rd+94, (5) derscored by the GS2 simulations, which in the case of the

drift wave mode, for example, exhibit a weak stabilizing
L, \2 oo dg dependence on the equilibrium electron temperature gradient
a= (—) y Ps= T, MEa, (6) that is not properly reproduced by E@). In any case, here
Calo L. L1 we will use Eq.(2) and leave the detailed study of electron
temperature gradient effects for future work.
A= M\/E”th_eto V= gt @) We now separate the various quantities into an “equilib-
2 L eror rium” part, assumed to depend only mnand a perturbation.
For any quantityf,

Cse C c ~ Lo
=—, d =—, d.:_, 8 — ik y+ik,z
Pee™ e’ © e oy ®) f=fo(x) + f(x)e” e, (17)
eBy  , Amne df =7F - ikyfod,  ¥=y+ikyey, (18)
Ci:_’ wpe:—! (9)
m,C mg A y~ ’
V”f = |k|f - |Gfkyf0X, k“ = kZ+ aky)(o, (19)
T T B}
2 _ e 2 _leo  2__ Po oo e ~ Do~
Cse™ m’ Vthe = m’ AT 4rngm’ (10 V”J:|k||Vix—|k”)(:I&X[K%&X(X/K\)]—Ikik”x. (20)
As an example, in the particular case of constant magnetic
t :
(tV,.V,)= (LthLSsLLVL,phys LIIV,phys>v (11) shear considered later,
0 - X
BO,phys: Bo<ez + _iI)__hLSey) i (21)
(nTo = (ne'p“ys, Te"’“”) e (12) )
No Teo L7 L,
- kH = L_(kz,phyé-s"' kyx)- (22
(¢ ) - CtOﬁlsphys _ tOCAAz,phys (13) s
X 2B, ' L2LB, /' Due to the form of Ohm’s lawEq. (3)], it turns out to be
most convenient to work in terms of the variahpe-n, the
= A A so-called nonadiabatic response. We therefore define
Bonys= ~ 2 X V. Ay pnyst BoZ. (14) P
The term proportional to\. in Eq. (3) represents a simple be=¢d=N,  ye=y+iky(dho—ng). (23

approximation to electron Landau dampitfghe v termrep-  Herey, is the(compley growth rate in a frame drifting with
resents electron-ion collisions, and the, term arises from  the electrons, whiley [see Eq.(18)] is the growth rate in a

ten the normalized equations in terms of arbitrary time anq:an express and:ﬁ in terms 0f<~f> andV,J as
e

length scalegy, L, L;. These can be chosen to suit the

particular problem or mode under consideration. For ex- ~:}. 1% g o2 :i T 2
ample, when comparing to the GS2 simulations in the fol- 7(Ikyn°¢ psVid) ?e(lkynoqse PV, (24)
lowing sections, we choosé | =pse L =R, {p=R/Cse in
which case ~ o~ 1 _- 5
d= o +N==(yd+ pVJ). (25
Be _ 4moTe Ye
ps=1, a=_"=—7, (15) . . .
2 Bb For later use in the study of the tertiary mode, note that in the
adiabatic limit(a—0,u—0,r—0,A—0),
Me Me veiR ™M ~
=—, =———, A= —_— 16 =
i \/Zmi (16) Ge=0+-"-, (26)
The parameteR, usually associated with the radius of cur- ~ _ pVJ
o ; . p=h=—"——. (27)
vature, is introduced here only as a convenient parallel nor e

malization scale. It has no physical meaning in the present
slab system and, when our results are written in non-The condition under which this approximation becomes valid
normalized units, it necessarily drops out. is discussed in Appendix A, and is given by E44).

Finally, we note the assumption of an isothermal electron ~ The final step in this section is to reldfeto ¢, using
response made in E(R) can be physically marginal in some Ohm’s law[Eq. (3)]. Here we slightly simplify the final re-
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sult by dropping some terms proportional td, that is, 1~ Y+7Y

electron inertia terms associated with the background current =—| Ydet —— psVid|. (39
gradient. These terms, which vanish anyway for the case of e Y

constant magnetic shear, will not play a role in any of ourSolving Eq.(38) for ¢ in terms of ¢, and substituting the
subsequent analyses. Dropping such terms, one obtains result into the vorticity equatiofEq. (31)] gives

ayex = (wy+ v+ Nk DV X = ik e (28 (9><|:_ (%) ™ } = ky27$l +V,J.

Yi
YYidx + :ng”J (40)

For later use in the study of the Kelvin—-Helmholtz mode, Vi

note that in the “ideal” limit ofu—0, v— 0, A —0:

Equivalently, eliminatingg, with Eq. (39), this result can be

- %” % | 29 written as . .
Using this to eliminatéy in Eq. (20) then gives (9{7%0&(?:)} B kyzy_%i =Fu “D
V9= (- Ak B7) + KK SN YA _ﬁx[ﬂw m(@)]
This expression is valid for any profile &f (that is, x{). Ze s
+ K0y + 770) ”S; iy (42)
e

I1l. BRAGINSKII ION MODEL
This is the desired final result relatingto ;be. Using Egs.
n(t20) and (28) to eliminateV\J and Zbe from Eq. (41), for
example, one obtains a single fourth-order eigenvalue equa-
tion for y. This equation describes several distinct instabili-
fies that are discussed in the following sections. Reconnec-
fion modes, though included in the formalism at this point,
will not be discussed here.

As a final point, we note these eigenvalue equations pos-
ses a self-similar family of solutions given by the scaling

To make further progress, it is necessary to suppleme
these results with another equation relafiptp é.. Such an
equation is now obtained by introducing an ion model. As
discussed in the Introduction, we describe here a Braginsk
model, although equivalent results may be obtained to th
order we are working from gyrofluid calculations that are
described in Appendix B.

The Braginskii model we consider is givenlﬁy

V,-dVi(¢+ )=V, (31) y— Ay, ¢o— Ao, Ng— Ang, pig— Apjp, Kj— Ak), v— A,
where A is a constant. As a result, as the flows represented

d;T;i =0, (32 by &, ng, etc., are made stronger, the contributions from
(the collisionality and k; will generally become weaker if

pi=n+T, 7=T/Teo, (339 these quantities are held fixed. On the other hand, for modes
that require finite k; (such as the tertiary mode or the drift

dipi :ngHJ, (34) wave), the unstable values & must also increase in pro-
portion to the strength of the flows. This feature has been

(P T) = ( pi,phys’ Ti,phys) toCs;Pse_ (35) verified numerically by the GS2 simulations.

Pio  Tio L7

. . . IV. REFERENCE PARAMETERS AND GS2 SETUP
Note we have chosen here an isothermal ion equation of

state. This choice is necessary to obtain agreement with the In the following sections, we will refer to some sample
gyrofluid model calculations discussed in the appendixesparameters taken from the literature that roughly characterize
The gyrofluid calculations also make it apparent that the perthe H-mode edge pedestal regions in two tokamaks, DIII-D
turbationsp;, T, appearing above are in fagt,, T;,. The  (Ref. 18 and Alcator C-MOD"’ DIlI-D: R=168 cm,n~ 2
contributions fromp;;, T;; do not enter our system due to our X 10" cm3, m=2mp, To~T;~350eV,B~2T, B~7.1

neglect of the parallel sound wave dynamics. X 1074, pse~0.13 cm, dg~0.12 cm, d,~7.2 cm, $~2, q
Linearizing these equations as discussed in the last see-3.5, A/ qR~ 10, ¢~ 1.8 10° m/s. Alcator C-MOD:
tion, Eq.(34) gives R=68 cm, n~1.5X 10" cm™3, m=2m,, T,~T;~250 eV,
1 B~5.3T, Be~54X10% ps~0.043 cm, d,~0.043 cm,
Pi = Z(ikypjod + p2V,J). (36) di~2.6 cm,5~2,q~3.5 A/ qR~2, Cs~1.5X10° m/s.
Y As noted earlier, comparisons to the GS2 code will uti-
Then definingy; (y shifted into the ion frameas lize the normalization given by Eq¢15) and (16). In this
_ ] normalization, the orderinyg~ V., discussed in the Intro-
%=y +iky(dbo + i) (37 duction is equivalent tap~R/pg. or in either of the two

cases given abovep~ 1.5x 10°. Given thatVg=¢' ~ ¢/ 6

. where §~5 (=5pg) is a “typical” pedestal half width in ei-

D =D+ D = =(vd+ 702V, 38 ther case, one obtaing:~ —V«;~300 in normalized units.
$=drm 7(7'4) 7sV1Y) 38 The magnetic shear model in the GS2 simulations is given

and using Egs(25) and(36), one finds
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FIG. 1. Typical GS2 simulation profiles, corresponding to a “periodic
barrier.”

by Eg. (21) with Ls=qR/S. Due to the radially periodic

boundary conditions in the GS2 code, the simulations we
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present are based on a simple periodic slab geometry with no The Kelvin—Helmholtz instability described by E@4)

curvature,

#o= Ve cogkX),
7'116 = V*in COE(kXX) i
7Ty = Viit cOgkX),

lo= Vai €Ok, Vi = Ve + Viir. (43

As noted earlier, her&/,=T/y,, Pir=Pio,; for simplicity we
take T}, =p{y,=0. A typical example is shown in Fig. 1. Be-

can be stabilized by either ion diamagnetic effects or mag-
netic sheafline bending. To illustrate this, we now consider
two simple models, one periodic and one nonperiodic. In the
periodic case, an analytic form of the dispersion ration may
be obtained in the long-wavelength linkfi.?< 1, whereL is
typical scale length of the equilibrium variation, for example,
L?~|¢y/ ¢5]. Given KlL?<1, the terms on the right-hand
side of Eq.(44) are small, and the leading-order solution is
&=const. The leading order dispersion relation may then be
obtained by integrating Eq44) over one period irx, which
annihilates the left-hand side. The result, givieaconst, is

cause the tertiary and drift wave eigenmodes are spatiall{he dispersion relation

localized to the regions where the plasma gradients are steep-
est, these modes depend on the structure of the profiles only
in a small region, and are not sensitive, for example, to the

2

k>
:O,
o

Yy + L (46)

(

periodic or nonperiodic nature of the profiles or boundarywhere(---) denotes the integral over one period. As an ex-
conditions away from the peak-gradient region. It is less obample, consider

vious that this insensitivity would apply to the Kelvin—

Helmholtz mode, which has a more global mode structure.
However, we present analytic calculations of both periodic
and nonperiodic profiles for this mode as well and show that

the results are indeed qualitatively similar.

V. KELVIN-HELMHOLTZ INSTABILITY

The standard Kelvin—Helmholtz instability, modified by

diamagnetic and electromagnetic effects, may be conve-

niently obtained from Eq(41) in the limit that the nonideal
terms on the right-hand side of Ohm'’s law proportionalito
v, A are neglected and we considérp§< 1. Dropping terms
of O(K? p2) compared to unity in Eq(42), F, reduces tdF,
=V,J. Then using the expression f&;J given by Eq.(30)
in Eq. (41), one obtains
2 2
ax[<W+ . )axg} = ki(_ 5 )g,

]
vvit—
o

a

(44)

where

#o= Ve cogkex), (47)
7Pio = Vs cogkX), (48)
Xo =By cogkx), (49
y=y+ik,Ve cogkx), (50)
7=y +ikViio + iky (Ve + Vi) cogkx), (59)
kj =k, + ak B, cogk,x), (52)
which leads to the dispersion relati¢ior k§< k)z()
Ay +ikVaio) = %kﬁ[vE(vE +V.i) — aBJ] - k;z (53)

The exact numerical solution of E¢44) in the case with
kj=0 and V:«;=V.;p=0, along with the corresponding GS2
simulation values, is shown in Fig. 2, where we plot
¥l (k\Ve) versusk,/k, (other parameters in the GS2 simula-
tions arek,p;=0.2, T;=T,, $=0, B,=107%. Consistent with
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Ve(Ve+V,) >0 (58
N Prodicted ﬂ is a necessary condition for instability. This condition may
0.8 stability = also be obtained in the general periodic or nonperiodic case

Y boundary

by multiplying Eq.(44) by &, integrating over the domain of
the mode, integrating the left-hand side by parts, and solving
for y. One finds that Eq(58) (with V.; interpreted as the

02| k\a\_ BE total ion diamagnetic velocitymust be satisfiedomewhere
o bttt 4] within the envelope of the mode in order for instability to be
o 01 02 03 04 05 possible. In the most unstable casekgfO0, therefore, the
(a) 8/8, (b) (1+v./vp)

mode will be stable itVs; is in the opposite direction tb'z
FIG. 3. KH modey vs (3 8/& and (b) V.. and at least equal in magnitude. Consistent with thi.s, the
numerical solution of Eqi44) as well as the GS2 simulations
both predict stability of the Kelvin—Helmholtz mode when
= ) Eqg. (58) is not satisfied. This is demonstrated in Figb)3
Eq.iSS), Y= kYVE/Vzwat ky<ky. The maximum grov_vth rgte which showsy/ vy, (the growth rate normalized to its value
is 7/—_0.27I<XVE for k,=0.5%,. The frequencyim(y)] in this with V. =0) versus(1+V./Ve) [Eq. (58) divided byVE] in
cas?qls £€10. Eq.(46) it is cl hat fini hat | the case 06=0 andV:;;=0. Since one expecté.;/Vg~-1
eturning to Eq.(4) it is clear that finitek, (that is, for the H-mode pedestal as discussed earlier, it would seem
finite B, and/orkz) is stabilizing. The threshold for stabiliza- that diamagnetic effects, like magnetic shear, may also sta-
tion is k”~ Vayiy ~aVe/L or in physical units, bilize or nearly stabilize the Kelvin—Helmholtz mode for

Ve typical edge conditions.
Ki,phys ™ cA_L' (54) To illustrate the effects of magnetic shear in a more re-
. o alistic velocity profile, we now consider a simple nonperi-
Assumingk; phys~ kyX/Ls~ 1/Ls, this gives odic pedestal model with a constant magnetic sheee Egs.
L CAL Ca 5 (21) and(22)] and, for simplicity, no ion diamagnetic effects,
* Ve Vema o = Vedtanh(x/5), (59)
Figure 3a) shows the comparison of this condition with ) 5
GS2 simulations for the case of a sinusoiliat B flow pro- $o=Vy = Vell - [tanh(x/§)]}, (60)
file and constant magnetic shdaee Eqs(21) and(22)]. As
in a tokamak, we parametrize the shear lerigtin terms of p; =0; (61)

the parametes as L;=qR/S, and v, is the growth rate for

§=0. The other GS2 simulation parameters jg=0.2, T; or choosing the normalization, =4, t=6/Ve, Ly=Ls,

=T Ppo=2%10% and B,=10"“ Motivated by Eq.(55), on $o = tanh(x), (62
the lower axis we plot the data as a function of the dimen-
sionless parameter, $)=V, = 1 -[tanhx) ]2, (63)
Ca S . _ ARV max
=_, §=—" 56 _

Ve & 27 (58 p=0, (64)
(or in the GS2 units discussed earl&gFqié\ 8./ 2¢0). As a Ky =K, oo+ kX (65)
demonstration of the predicteq scaling, we show the re- I~ Tzphys=s ’
sults for two differentq values:q=4 andg=38. Stability is Vel \2
reached a6=0.515,, or evaluatings, with the parameters of a= (LS) . (66)
Sec. IV (one finds §=4.0 for DIII-D and §=3.5 for Cad

C-MOD), 5=2. Stabilization of the KH mode due to shear in For a—o, the fastest growing mode ha%hys (0.16,

this simple model is therefore reached at a valué thfat is ~0.4DVe/ 8 for ky,pny0=0.9. Overall stability is reached at
typical of the edge. As_|m|lar fmo_lmg is obta_lned below m_the a=2 (where the marginally stable mode hle}%hysé 14,
case of a more realistic nonperiodic velocity shear profile. | K, phyd-s=0.7). Note that the conditiom~ 2, given Eq(66),
Turning now to the role of ion diamagnetic effects, one and 5~L is consistent with Eq.(55). Upon taking L
can see from Eq53) that either a spatially constant or spa- =qR/3 as in a tokamak, and defining a normalizEd<B

tially varying ion diamagnetic flowrepresented by/;q and flow velocity Ve v=(Ve/va)(8/0) (S0 thatVe~1) one
Vi, respectively can also stabilize the mode. Denoting thefinds Y Ven=(Velvn)(d/p) ( en~1)

right-hand side of Eq(53) by T3 (' therefore being the

growth rate of the mode whe¥i.;,=0), one finds that insta- ~ (VELS)2 ~ <pi2qRV )2 67
bility requires @= chd ) \&ds eV

Fo> [kyV.iol/2 (57) whered, =c/ w,,; is the ion skin depth. Thus, the condition for
One can also see from E(p3) that stability <2 gives
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1/2 N A IR 0.02 P
5= 0.8p, vEN : (68) CEes o ] r /‘-\

JA 1 oo\ ]

For a fixed level ofVg and magnetic shear, the mode there- 1

T
\
14
[l
~
//

fore becomes unstable when the pedestal is sufficiently nar§ i : 001 F \ 3
row. Including ion diamagnetic effects, one obtains a similar A / E ) ]
estimate with the replacemeWt— \Vg(Vg+Vi)). o8 &% ™ ooos |/ \ 4

Evaluating Eq(68) for the sampléH-mode edge param- I.,, \ F -
eters given in Sec. IV, and assumiigy~ 1, we obtain a 0 o e Y TP VR I vy
marginally stable value of~ 5p; for either DIII-D or Alca- " 0 k, N ) ! (razdial S mfm 8

tor C-Mod. Given thats here is the characteristic pedestal
scale length and is thus about half the total pedestal widttsiG. 4. Tertiary modey vs (a) k, for 7,=2 (squares 7 =3.8 triangles, and
this estimate is close to the value observed in the experib) A

ments. An accurate assessment of the importance of this

mode in theH-mode edge therefore requires a careful ac-

count of both magnetic shear and ion diamagnetic effectsequilibrium quantities in Eq(69) as in Eq.(71), introducing
With respect to internal transport barriers, which are characthe normalized variables

terized by strong sheared flows and very weak magnetic

shear, the general absence of the KH mode is likely due in  §= i, k,= kA, T'=y- i|2y§(2, (72)
part to diamagnetic stabilization. Ay
~ 7+ |k ¢ (O) "
y= =, y%=34(e50), (73)
VI. TERTIARY MODE %0
In contrast to the Kelvin—Helmholtz mode, which is 27p2T},(0) \ M ™ (74
most unstable fok,— 0, the tertiary modemay be obtained = #5(0) T VEPs

from Eq.(41) by considering the limit of higl, in which the o5 ) _
adiabatic approximation given by Eq&6) and (27) be- and assuminggps <1, one obtains the leading order terms

comes valid:g,=0 and p2V,J=7y.4. Applying these to Eq. % ir -, ~
(41), one obtains S Dol =) | = (&_ +k - Cn) b, (75
~ _ y
axl?(?"’ T?e)ax(%> + T%Zﬁ} = |:pl§ + ki(?"' 779)]?1’ oo Azn (0) 7
(69) " TpsT|0(O)

The tertiary instability is an eigenmode of this equation e begin the analysis of Ed75) by considering the
which is driven by the ion temperature gradiéifj and is ~ case ofC,=ny=0. In this case, a unique result fgtk,) may
spatially localized by th& x B shear profile. As is the case be obtained by solving Ed75) numerically. The result for
in the edge pedestal, we assume tihgt Ve takes on some 3, =Re(y)=Rey)/ ¥, versusk, is shown in Fig. 4a) (dashed
positive maximum value at a location wheFg<0, so that  line), and is seen to agree well with the GS2 res(dtpiares,

T " obtained Wlthkxpl 0.2, T;=T,). The fastest growing mode
oy > 0. (70

_ ' _ occurs fork ,(=k,A;)=0.96 and hasy=0.56+1.44. For k
To make further analytic progress with EE9), we will 1, 5=(0.80+0. 84)k Thus
assume that the temperature gradient satisfies the orderlng
7Tig~ ¢g, Or in physical unitsVs; 1~ p;Vini/ Lt~ Vg, where ” psVe
Lt~ T/ T}, is the ion temperature scale length. We also as- Re(y) ~ v0= At|¢ 0)] ~ 4/ L (77)
sume, for reasons explained later, that<L, where L,
~ng/ng, so thaty=L,/Ly>1. Finally, we utilize the fact Ps
that L?>p2 where L is the equilibrium scale. With these Im(y) = - ky¢p(0)| 1 +O ik = kyVE. (78)

assumptions, the tertiary mode turns out to havex-aoale
length A~ VLps that is large compared ta, but small com- The mode is seen to drift with the locBlx B velocity and
pared toL. This allows us to expang); about its maximum, have a growth rate that is weaker than the typical Kelvin—

taken to be ak=0: Helmholtz valueyy, ~ Ve/L by a factor of Vpg/L (onl
Bo(X) = B(0) + P02+ -+ . (71) rj(i(jzs_tlr/%ductlon for typical pedestals, in whiahps/L
[The quantitiesn) and T; can be similarly expanded, but Turning to the case with finitey (C,# 0), the growth

given the assumptions just outlined, the higher order contrirate[Re(%y)] for the valueC,,=3.8 is shown in Fig. &). The
butions to these quantities do not enter the final result, so thaplid line is the solution of Eq(75) and the triangles are the
one can takeny=n((0) and T/,=T/,(0).] Expanding the GS2 values obtained witk,p;=0.2, T;=T,. (The agreement
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between the two is not as good for these parameters due to Turning first to the case in which some analytic progress
the stabilizing contribution of FLR effects in the GS2 simu- can be made, we considigl > 1 whereL?~ |Fo/Fj| andFq
lations) As is the case for an€,=1, the maximum growth is any of the equilibrium quantities), ¢¢, T,. Thex scale of
rate occurs at the wave numtj\glr: \g’a where the last two the md%d will turn out to be smaller thah by a factor of
terms on the right-hand side of E5) almost cancel. Drop- 1/\‘"ky|-,
ping these terms, the form of E¢/5) becomes identical to L
the previousC,=0 case in the Iimitﬁy< 1, in which % Ay \/kj< L,
=(0.80+0.84)k,. Thus, forC,=1, the peak growth rate has Y

= \C, and y=(0.80+0.84)\C,. In physical units, the Which allows for several simplifications. First, the left-hand

n side of Eq.(41) can be written as

(81)

conditionk, = \a is equivalent to

27 = @> = i (9x|:—iﬁx<ie)i| - 2—I?ie :_ivz:ée"' (82
kyp; <noT{o Ty (79 YYi . Sy — Y ~

which is consistent with the restrictid(jpi2<l if ;,>1,as or eliminating?j)e with Eq. (28) and collecting terms
assumed earlier. In addition, the growth rate can be written

as B(J' =[A(X) +KB(X)J, I=V3Y, (83
Re(y) = 0.80k,Ayyp = 0.80Vny(0) 45 (0)/2. (80)  whereJ’=42J and
Thus, despite th&], dependence df,, the peak growth rate AX) =ye(ayy + kD), (84)
does not depend on the temperature gradient in this case.
As noted in the Introduction, according to the GS2 simu-  B(x) =y (uy+ v+ M|k |) + K'p2(% + m7e). (85

lations, the tertiary mode can be stabilized by finite Larmor » ) o o
radius effects when the pedestal scale length becomes suf’fﬂ, addition, givenAq<<L, the equilibrium quantitiesy, ¢,
ciently narrow. This is shown in Fig.(d), which is a plot of ~ Tio ¢&n be Taylor-expanded about the point where the mode
the growth rate of the mode versus the radial mode widtHS localized. We assume for S|mpI|9|ty that.these quantities
A/ p,. Stabilizing FLR contributions lead to a significant re- &ll have maxima at the same spatial locatior0, and we
duction of the GS2 growth rate relative to the lowest ordef?€glect the magnetic shear, so thatconst[All of the equi-
theory in this case when, =< 3p;, which (for the parameters librium prof!Ies need not vary sangIIy, however. qu ex-
of the simulation corresponds to equilibrium profiles scales @MPle, we find that a spatial well in either tBe< B velocity

kepi = 0.2. This suggests that FLR effects become importanPofile (¢g'#0), or the plasma gradient®.g., ng # 0), or
for the tertiary mode at pedestal widths comparable to exPoth yield a well-localized solution with a growth rate close

perimental values. to that of local theory. We therefore write

ny(x) = ny(0) + N (O)x&/2 + - -+, (86)
VIl. DRIFT WAVE INSTABILITY ¢6(X) - ¢6(0) n ¢6’(0)X2/2 +oeee (87)

The electron drift wave instability can be obtained from ’ ) e

Eq. (41) in the case that any or all of the terms proportional ~ Tio(X) = Tig(0) + Tig(0)x72 + - -+, (89
to w, v, or A in Ohm’s law[Egs.(3) or (28)] are retained. In
the general case of spatially varying profilesdg n;, etc., AX) = A(0) + A"(0)x%/2 + -+, (89
Eq. (28) can be used to eliminatg, from Eq.(41), resulting )
in a single fourth-order eigenvalue equation forWe have B(x) = B(0) + B"(0)x7/2 + - -+ . (90)

solved this equation numerically for pedestal-like equilib- T . :
rium profiles, and have found results that agree well with theSUbStItlJtlrlg these into Eq83), and ordering

GS2 simulations discussed later in this section. Even in the ) 1 353 1k )
presence of significant values of the magnetic shear, both A(0) ~ kiB(0), £ ? vl T_Y <k, (91
d

analyses predict the existence of well-localized eigenmodes
with maximum growth rates that can approaoh. In the  one finds that the only way that E@3) can be satisfied is if
limit of k,L>1, whereL is the scale of the equilibrium pro- )
files, the growth rates and frequencies obtained from both ~ A(0) +k/B(0) =0 +--- (92)
n.umencal _stu@es are close_ to the values predicted t_)y a using Eqs(84) and (85) (evaluated ak=0),
simple cubic dispersion relation from local theory. Dropping
the magnetic shedjustified in Appendix G we demonstrate — K+ Kpl(vi+ )]

. . . _ H _ ‘y‘y = - — — .
this result analytically by showing that fourth-order eigen [ ave+ (uy+ v+)\|kH|)k§
value problem foik L >1 may be reduced to a second-order
harmonic oscillator equation with a simple Gaussian solu-This result, a cubic polynomial to be solved fgris the local
tion. The resulting dispersion relation, to leading order, isdispersion relation mentioned earlier. As a result of (@),
equivalent to that of local theory. it is necessary to keep the next-order terms in the Taylor

(93
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expansion oA andB only on the right-hand side of E¢3),
yielding

T =(cy+ cpxdJ, (94)
where

_A0) +KB(0) _ A"(0) +KZB"(0) o5

22 BOo) ' " 2B(00) (95)

Equation(94) is the harmonic oscillator equation, with the
lowest order solution

Jo g orR, (96)
wherec; andc, must be related by
c= - ey (97)

The consistgncy of Eq97) with Eq. (92) can be seen by
noting thatyc,; ~k,/L is much smaller than the natural scale
of the terms inc2~k§. To leading order Eq(97) therefore
reduces tac,=0, which is equivalent to Eq92). One can
also verify that the ordering given in E€Q1) is consistent
with Eq. (94). Estimatingd’~(1/A%)3~ (k,/L)J, X2~ A2,
c1~k§/L2, andc,=-vc;~k,/L, all the terms in Eq(94) are

Phys. Plasmas 12, 062511 (2005)
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FIG. 5. Drift wave modey vs k.

local GS2 growth rate, without magnetic shear. The dashed
lines indicate the GS2 results in the local limit with no mag-
netic shear, in which the gradients are spatially constant
(equal to the maximum values at the “center” of the pedestal
in the nonlocal caselt is evident that the theory correctly
predicts the growth rate of the drift wave instability with or
without radially varyingE X B shear’ Finally, we have also
numerically verified the theoretical results regarding the im-

found to be of the same order, as one would expect. Finallyyact of magnetic shear, i.e., for typical barrier configurations

consistent with Eq(81), one sees from Eq96) that thex
scale of the mode id4~ c;¥*~ \L/k, as claimed.

The spatial localization of the eigenfunction in E§6)
requires that R(es’ci)>0. When calculatingv"cl_from Cy
given in Eq.(95), however, the overall sign ofc, is not
determined. Provided that R\El) #0, therefore, it is always
possible to choose this sign so that(R®) >0. The excep-
tional case of R@/c;)=0, which is obtained when, is real

considered elsewhere in this paper, the magnetic shear has no
significant effect on the growth rate of the drift wave for
0<§< 3. This numerically verified insensitivity t8is con-
sistent with estimates described in Appendikf@ example,
Eq. (C4)].

According to the analytic dispersion relation and consis-
tent with the simulations, the most unstable mode at typical
H-mode pedestal parameters has a growth rate that is signifi-

and negative, cannot arise provided that the local dispersiogantly reduced due to electromagnetic effe(itsite 8.) and

relation[Eqg. (92)] predicts instability for the parameters un-
der consideration. To see this, note tbatan be determined
to leading order by solving the local dispersion relatji&iq.

is driven almost entirely by electron Landau damping. These
points are demonstrated in Fig. 6. The left plot shows
obtained from GS2 for varioug, values, using the same

(92)] for vy, and substituting the result into the expression forparameters as before, except wifF1.5. On the right we

¢, given by Eq.(95). Inspection ofc; then shows that it will
always be complex provided that Re # 0.

show growth rates maximized ovéy, at fixed k,ps=0.6.
This figure shows that electron Landau damping, while sta-

We now turn to a comparison of the analytic results tobilizing at lower 3, values, can be the main driver of insta-

GS2 simulations and numerical solutions of E4l). The

GS2 simulations are based on the simple periodic slab geom-

bility at larger B (e.g., those typical of experiments
In addition, as one would expect given the radially lo-

etry discussed in Sec. IV. Our procedure is to allow the simucalized nature of the mode, the instability is only weakly

lations to settle into an equilibrium witk,=0, and then look
at the stability of this state to a spectrum of small firkfe-
perturbations. We first consider the paramet¥fs=114,
Vign=—Vsiin/ 7=-240, V.;7=0, 7=0.05, B.=0, mi/m=2.7
X104 k=0.05 and k=7.5. Plots of Réy) and w
=-Im(y) as a function ok, are shown in Fig. 5, where the
normalizing factor in physical units isp=c./L, (in the
nonlocal casel., is evaluated at point of steepest gradient
The growth rates in the figure, made at fixkd=7.5, are

about a factor of 2 smaller than the maximal values for the

mode at these parametéreot shown, which arise at smaller
k,~ 2. The solid lines are the loc&ubic) dispersion relation
[Eq.(92) or Eq.(93)]. The full numerical solution of Eq41)
as well as the next-order dispersion relat|dy. (97)] (not

shown) yield similar results. The triangles represent the non-

sensitive to the detailed form of the profiles. For example, in

0.25 E—#=0

015 F
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£
~
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0.05 |-

0’.;.!4..!1.21|.|Ai11
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FIG. 6. Drift wave growth ratey vs (a) k, and(b) Be.
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the numerical study of Eq41), we have analyzed both the its true role. The possible role of KH modes in ITBs depends
periodic profiles of Eq.43) as well a hyperbolic-tangent critically upon the details of the velocity profile, which are
model-like Eq.(59), and find that the difference between the not well known. It is likely, however, that KH instabilities
two [for fixed values of¢g(0), ny'(0), Tg(0)] is negligible. play some role in ITB phenomenology.

Lastly, it should be noted that although the presence of
magnetic shear appears to eliminate the presence of linearly
unstable eigenmodes in the local GS2 simulatitess one B. Tertiary mode

would expec), substantial transient growte.g., due to con- This is an adiabatic electron, electrostatic mode arising

vective modejin this case is still observed. Indeed, for typi- o higher; that is driven by the ion temperature gradient. It
cal H-mpd(; edge pellrar?eyers, t?e arrl}pllfllc.:alnon factor oby 56 has a complex dependence on the density gradient. As-
served in the GS2 simulations of small initia perturbatlonssuming theE X B velocity Vg and the ion diamagnetic veloc-

can be quite large. Further work that also includes nonlineailrty V., are comparable in magnitude, it has a typical width
simulations is in progress to determine the role of such cony \*"J_p L in the direction of profile variation and a growth
S

vective modes. rate that is smaller than that of the Kelvin—Helmholtz mode
by a factor of~+p¢/L (only a modest reduction for typical
Viil. SUMMARY OF MAIN RESULTS H-mode pedestalsAccording to the GS2 simulations, the

We have analyzed the linear stability of a slab geometrynode is stabilized by finite Larmor radius effects for pedestal
containing spatially varying X B and diamagnetic flows in scale lengths that approach experimentally observed values.
a sheared magnetic field, similar to the profiles found in thé?ut another way, for narrow pedestals, the tertiary instability
edge region of high temperatufid mode magnetically con- growth rate increasesas the pedestal widens. Like the
fined plasmas. Strong parallel flows, though sometime&elvin—Helmholtz mode, further nonlinear simulations are
present in experiments, were not addressed. We have pr@eeded to determine its true importance in the tokamak edge.
sented the results of gyrokinetic simulations using the GS2
code, as well as analytic calculations based on the Braginskii

and gyrofluid models. The analytic calculations are limited toC: Nonlocal drift wave mode

H 2 2 : H H H . . . . . .
the regime ofk{ p{<1. In this regime, the Braginskii and This mode is driven by either electron inertia, electron-

gyrofluid models yield equivalent results, and show goodion collisionality, or electron Landau damping and, like the
overall agreement with the simulations. Some other assUMpsrevious case, also has finkte It is robustly unstable in the
tions and limitations of the study are outlined in the Intro- presence of magnetic arix B shear at typical H-mode
duction. _ o edge discharge levels. The eigenmode is spatially localized
We find at least three linear modes of potential impor-py extrema in either th& x B velocity or the density gradi-
tance in such systems: the Kelvin—Helmholtz instability, thegnt, and at higher wave numbers at which a local treatment
tel’tiary mOde, and a nonlocal drift wave |nStab|I|ty All three becomes Va|ide_g_'ky|_> 1) has a growth rate given by Eq
modes are unstable only in presence of nontrivial spatiadgg,)_ The most unstable mode has a frequency that is com-
variations in either thé&c X B flow and/or the p|a8ma gl’adi- parable tOw*e in a frame that rotates with the loc&l X B

ents. Our main results in each case are as follows. velocity. Under typical H-mode conditions, its growth rate is
. . N significantly reduced by electromagnetic effects, which be-
A. Kelvin—Helmholtz instability come important at finite plasmg, and electron Landau

damping plays an essential destabilizing role. An accurate

This instability is driven by the spatial variations in the Y - ) c
E x B velocity V. In the absence of magnetic shear and iondescription of this mode therefore requires a model that in-
ludes electron Landau damping effects, as well as electro-

diamagnetic effects, the most unstable eigenmode has a tyrﬁ ; ; o >
cal growth ratey~Vg/L, whereL is the scale of spatial magnetic effects and nonlocal profile variations. This mode

variations inVg, a wave numbek,~1/L in the direction of seems to be a good candidate for driving particle and heat

Ve, a width A~L in the direction of variatior(e.g., radial transport in the H-mode edge, in which curvature-driven
direction in a tokamak and k,=0. It can be stabilized by modes are known to become weak due to diamagnetic stabi-

magnetic shear if the profile widthe-L) are sufficiently lization, or in the edge of linear devices.
wide [see Eq(68), for examplé. It can also be stabilized by

ion diamagnetic effects if the ion diamagnetic velodityis ~ ACKNOWLEDGMENTS

at least comparable in magnitude Y@ and in the opposite

direction over the envelope of the mode, such talVe Plasma Dynamics, the U.S. Department of Energy Grant No.
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completely suppresses this instability. This may account for

why the KH mode has thus far not been greatly emphasizedpoen b A: VALIDITY OF THE ADIABATIC

by the microscale simulation community. According to our \pprROXIMATION

rough estimates, it is near marginal stability under typical

H-mode edge conditions, and thus a more detailed study To see when the adiabatic approximation is valid, con-
based on a realistic magnetic geometry is necessary to assesger using Eq(27) to estimatéy in the adiabatic limit:
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~ |')’e ~
X~ 2 2 2 (AL)
K J_Ps

The magnitude of the nonadiabatic respoﬁzge:an now be
estimated from Ohm'’s layEqg. (28)] as

G a?;+79w7+v+xm|>ki—$

(A2)
¢ kkaPs
Thus, o< ¢ will be valid when
a¥a+ye(wy+ v+ NkDK] < kK pl (A3)

or in physical(non-normalizedl units,

[ — o
;g + 79( VE Vet \/;Uthel k|> kidg < IZCAkJ_Pse (A4)

APPENDIX B: BRAGINSKII VERSUS GYROFLUID
MODELS

In this appendix, we show how E1) can be recov-

ered in the gyrofluid formalism. In the first section, we re-

write Eq. (41) in terms of the guiding center potentigl In

Phys. Plasmas 12, 062511 (2005)

S Yeu _ —p 12—
Fz‘ﬁx{ﬂ% + T'ye)&x<$>:| + {?‘ 77e+k)2/(7i
S

+ T@]ﬁf (B9)
Note that all they’s here except thes,, term depend o,
rather than onjy(=go+ mp2y/ 2+ ++). To the order that we
are working here, however, the difference between these is
negligible. The only exception where this would not be the
case is they, , term, which is formally a factor of 1K, po)?
larger than the other terms.

Finally, in the adiabatic Iimit(?i)e—>0,‘lf—> ) and con-
sideringn{=0, note this is the same as H) of Ref. 2, in
which the tertiary mode was first discussed.

2. Gyrofluid ion model

Dropping terms of ordetk, p;)* compared to unity, the
gyrofluid model we consider is given By

the second section, we explain how this same result can be

obtained from the gyrofluid model. In the third section, we

give a more general proof of the equivalence of the two

models to the order df* p? that we are working.

1. Equation (41) in gyrofluid notation

To make contact with the gyrofluid model, we first in-
troduce some new notations,

ALY (B1)
Ye

W =T20(1+27p2V2 + -+ ) D, (B2)

y=T3%p=(1+3703V% + )¢, (B3)

Yeu=T57e (B4)

=y+iky(p = T5ng) (B5)

=y+iky (g = ng) = 5iky7pZng + - (B6)

Here, ¢ is the guiding center potential, andy=I(b)e™®
where b=7p2V2 and Iy(b)=Jy(ib) is the modified Bessel
function. Recall from Eq.27) that in the adiabatic limit
(I)—>¢> S0 that\If—n,b Operating on Eq(41) with F1’2 ig-
noring thek? p?
that

rl’z{vla ) (TVEPSX”J)} (7—‘”’-’

- '}’e)qf +
Ve Ps
(B7)

Eq. (41) can be written as

FESES

(B8)

corrections to the left-hand side, and noting Likewise, writing T
1=

ding + 3[702V3 ¢, T,1=0, (B10)
dT, =0, (B11)
ng=n—-piVi[y+r(n+T))/2], (B12)
d=da+[¢ -1, [ab]=2-V,axV, b. (B13)

To make contact with Eq(BS) we need to express every-

thing in terms of¥ and ¢e First consider the electron den-
sity n. Writing n=ng+h and using Eqs(24) and (B2) one
obtains
o &
n=ik,ng=
e

+ F(—)l/Z@

-)W. (B14)

In this section, as in E¢B8) we will retain the non-
adiabatic terms only to leading order iﬁpi2 (but treating
¢~ 1), SO we do not need to worry about the difference
betweeng, and iy, in v, here. Next, writingy= i+, and
using the definitions of and ¢o(=¢—n) and Eq.(B14), one
finds

1
=ikyno= b < - —7'psV2
Ye

b=T3%p=T5%(ge+T) =V +r1’2<%) (B15)
Ye
Tmﬁ'L one obtains from EqB11),
~ {fr ~
7 Y e

Here, again, we only neetl, to leading order irk, p;. Note
that this also allows us to ignore the difference between the
guiding centerT, and the usual fluidl',. Finally, writing
Ng=Ngo+MNy, and definingpjp=ny+T,,, one can substitute
Egs.(B14), (B15), and(B16) into Eqg.(B12) to obtain
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Ngo=No ~ Pg[‘/flé + 7P/ 2], (B17) Ls~ \"m/ Kz phys (C1)
o~ ,gge ool ) gge A reasonably accurate description of the fastest growing
Ng =V +ikno— — psV° ) (v +ikympio/2) — mode for the parameters discussed in the text may be ob-
Ye Ye tained by writing Eq(93) as a cubic iny,, and then neglect-
s _ , T ing the highest order terr(rfpc?/g). An analysis of the resulting
—pVI (A +7)y+ikysT 2= (+---. (B18  quadratic then yields the estimate fgrof the fastest grow-
Y ing mode (at fixed k,, assumingkZpZ,<1, and neglecting
To obtain Eq.(B8), substitute these results fog, , andT, Vei)s
into Eq. (B10) and collect terms.

K ~ (a+ uk)2ng(ng + mpjy) (€2
3. General proof of equivalence

Given Eq.(B2) which relatesy and ¢, Eqs.(B10)—(B13)
may be written &2

or in physical unitfassuming.,~ Ly ~L)

E kypse 2 2\1/2 \/Ekxpse
ding + %[ngi b, g1 1=0, pg=ng+Ty,, (B19) Kz phys \/; L (1 +kyde) 2 L ° €3
n=ng+p2V2(p+31mpy, ) + -+, (B20)  Substituting this into Eq(C1) and assumind.s=qR/3 yield

the threshold condition for magnetic shear to become impor-
di=d+[¢, -], [ab]=2-V,ax Vb, (B21)  tant,

wherep,, is the guiding center iofperpendiculgrpressure. R B — Ro.. —

Operating on Eq(B20) with d; and using Eq(B19) gives S~ q%se\/;\’kyL ~ q%se\s’ﬂ. (C9)
dn=d[p2Vi(p+309.)] - 3[p2Vi g 1. (B22)

. . Taking L ~5ps. and evaluating the right-hand side for the

One can now use the identity reference edge parameters discussed in the text gield

dVif=V2df-2[V, ¢V, f]-[V?¢,f], (B23)  (DIlI-D or C-MOD), which implies that magnetic shear is

. likely to pl ignificant role for thi .

where[a;b]=[a,.b]+[a,.b,] to write Eq.(B22) as unlikely to play a significant role for this mode
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