
Noncurvature-driven modes in a transport barrier
B. N. Rogers
Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755

W. Dorland
Department of Physics, University of Maryland, College Park, Maryland 20742

sReceived 21 October 2004; accepted 11 April 2005; published online 8 June 2005d

Transport barriers that form in both the edge and interior regions of high temperature magnetically
confined discharges are characterized by steep plasma gradients, strongE3B and diamagnetic
flows, and varying levels of magnetic shear. This study addresses the linear stability of such
configurations in the context of a simple slab model using both analytic calculations as well as
numerical simulations from the gyrokinetic GS2 code. Three linear modes of potential importance
are found: the Kelvin–Helmholtz instability, the tertiary mode, and a nonlocal drift wave instability.
Each mode is unstable only in the presence of nontrivial spatial variations in either theE3B flow
and/or the plasma gradients. The strongest conclusion of this study is that the drift wave mode may
be an important driver of anomalous transport in the edge region of magnetic confinement devices.
Two other weaker conclusions that warrant further study are as follows:s1d the Kelvin–Helmholtz
instability may be associated with edge-localized modes or edge transport ands2d the tertiary mode
can potentially limit the radial growth of a transport barrier. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1928250g

I. INTRODUCTION

This paper explores the linear stability of simple slab
plasma configurations without magnetic curvature using both
analytic and numerical studies. Our numerical results are
produced using the electromagnetic, gyrokinetic GS2 code,1

while our analytic calculations are based on the Braginskii
and gyrofluid models. The configurations we study are char-
acterized by shearedE3B and diamagnetic flows, weak col-
lisionality, and finite magnetic shear. Our main application of
interest is the edge pedestal region of high temperaturese.g.,
H moded tokamak discharges, but the results we obtain are
also potentially relevant to internal transport barrierssITBsd,
and to other physical systems. Our neglect of the magnetic
curvature is motivated by the strong plasma gradients found
in pedestals and ITBs, which we find are capable of driving
instabilities with growth rates that surpass those of
curvature-driven modes. Strong parallel flows, though some-
times present in laboratory fusion experiments, will be ad-
dressed in future work.

The simulations indicate the potential importance of at
least three instabilities: the Kelvin–HelmholtzsKHd instabil-
ity, the tertiary mode,2 and a nonlocal drift wave instability.
These instabilities are all global modes, in the sense that they
are all dependent on nonlocal variations of the background
“equilibrium” quantities, and are all absent from local simu-
lations in which the background plasma gradients and the
E3B shearVE8 sif presentd are spatially constant. The latter
two sthe tertiary mode and the drift wave instabilityd, on the
other hand, are also quasilocal, in the sense that they can be
radially localized to scales that are the geometric mean of the
equilibrium scale and smaller scales, and are therefore sen-
sitive to the profile variations only in a relatively small re-
gion. This makes some general analytic progress possible in

these cases through Taylor expansion of the background pro-
files.

Depending on the parameters, the KH instability is po-
tentially the strongest instability of the three modes. Because
of its magnetohydrodynamiclikesMHD-liked character and
large radial scalesscomparable to the barrier widthd, the on-
set of this instability might trigger a complete edge-
localized-mode-likesELM-liked collapse of the profiles. On
the other hand, depending on the details of the nonlinear
evolutionsnot calculated hered, it might be associated mainly
with transport. As is well known, in the simplest case of a
shearless magnetic field withki=0, the only requirement for
instability is an inflection point in the backgroundE3B flow
VE. This condition is usually satisfied in aH-mode edge ped-
estal, while in the case of ITBs, the prevalence of inflection
points is less clear. In any case, given an inflection point, we
address here two factors that can stabilize the KH mode:
magnetic shearsmoderately strong in the edge but weak in
internal barriersd and ion diamagnetic effectssstrong in both
casesd. In the presence of magnetic shear, it is impossible to
satisfy ki=0 everywhere within the envelope of the mode,
and so the mode can be stabilized by line bending if either
the magnetic shear or the barrier width becomes sufficiently
large. Estimates given later suggest that, due to the magnetic
shear alone, the Kelvin–Helmholtz instability hovers near
marginal stability in theH-mode edge. In the absence of
magnetic shear, we show that ion diamagnetism alone can
stabilize the mode if the ion diamagnetic velocityV* i is at
least comparable toVE and in the opposite direction. Unless
core velocity profiles in ITBs quite generally lack inflection
points, the fact that KH instabilities arenot observed to limit
ITBs is likely due to these ion diamagnetic effects. With
respect toH-mode pedestals, typical edge profiles from ex-
perimental observations, as well as the profiles predicted by
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some numerical simulations, seem at least roughly close to
the marginal case ofVE+V* i .0. A more detailed study that
includes both realistic magnetic geometry and two-fluid ef-
fects is therefore needed to determine the precise role of the
Kelvin–Helmholtz instability in the tokamak edge.

The tertiary mode, in contrast to the Kelvin–Helmholtz
instability, arises at highki and is characterized by an adia-
batic electron response. It is driven by the ion temperature
gradient, is radially localized by theE3B shear, and is in-
sensitive to the magnetic shear. The equilibrium density gra-
dient, studied here for the first time, also plays a complex
role. According to the numerical calculations, this mode can
be stabilized by finite Larmor radiussFLRd effects when the
pedestal width becomes comparable to 5–10 ion Larmor ra-
dii. Thus, this instability is expected to be stable in narrow
pedestals and unstable in wide pedestals. While the impor-
tance of this mode in the edge region will require further
nonlinear study, we note that such a dependencesi.e., a mode
that is unstable only in sufficiently wide pedestalsd is poten-
tially associated with the existence of amaximumpedestal
width.

The nonlocal drift wave instability is a linear, edge-
localized version of a nonlinear drift wave mode that has
been widely studied in local turbulence simulations of the
edge region.3–6 These turbulence simulations are typically
carried out in the presence of spatially constant plasma gra-
dient scale lengths and magnetic shear, and as is well
known,7 radially localized, linearly unstable drift wave
eigenmodes do not exist in such systems. Nonlinearly, how-
ever, drift wave physics is hypothesized to play an important
role in driving small-scale turbulence atH-mode-like param-
eters in the edge region, where resistive ballooning modes
are expected to become weak.3–6 We show here that in the
presence of more realistic pedestal-like profiles in either the
E3B velocity and/or the density gradient, a robustly un-
stable, radially localized linear eigenmode reappears in the
simulations, with or without magnetic shear. This result is
consistent with past theoretical studies of drift waves going
back for decades, which have shown that strong spatial varia-
tions in the density gradient8–12 can overcome the damping
introduced by magnetic shear. Here, to obtain a theoretical
description of the mode that is in reasonable agreement with
the GS2 simulations for edgelike parameters, we go beyond
past work and include in our analytic calculations the contri-
butions from electron Landau damping, electromagnetic ef-
fects, as well as the spatial variation in theE3B velocity,
density, and temperature profiles. This mode, due to its rela-
tively large sizesapproaching the pedestal width itselfd and
its fairly robust linear growth rates even in the presence of
E3B and magnetic shear, is a strong candidate for driving
anomalous transport in theH-mode edge.

The analytic calculations we present are based on the
Braginskii and gyrofluid models. These models are both “re-
duced,” in the sense that magnetosonic waves are assumed to
be fast and are ordered out of the system. On the other hand,
we also neglect the contribution of ion Landau damping and
parallel sound waves. This assumption requires that
]t@kics for the modes of interest, wherecs=ÎsTe+Tid /mi is
the sound speed. In the case of the Kelvin–Helmholtz mode,

for example, the typicalH-mode edge parameters discussed
later yield gKH / skicsd,cA/cs,1/Îb@1. This assumption
also excludes the slab ITG mode from our analysis, as well
as the parallel sheared-flow instability discussed by
Cowley13 and shear damping effects due to ion-sound
waves.14 In any case, as shown later the analytic results are
in a good agreement with the GS2 simulations, in which the
parallel ion dynamics are retained. The calculations also fo-
cus on modes that, at least marginally, satisfyk'ri ,1, so
that an expansion ink'

2 ri
2!1 is justified. Finally, consistent

with the remarks made earlier regarding diamagnetic effects,
in the derivations we order the magnitude of the electron and
ion diamagnetic flows to be comparable to theE3B flows.
Given these assumptions, and working to leading order in
k'

2 ri
2, we show that equivalent analytic results may be ob-

tained from either the Braginskii or gyrofluid models. Calcu-
lations based on the Braginskii model are presented in the
main text, while thesequivalentd gyrofluid calculations are
described in Appendix B. We use the same electron model in
both cases, which includes a simple approximation to elec-
tron Landau damping.

The GS2 simulations, as well as the analytic models, are
based on the standard “flux-tube” ordering,15 in which the
deviations of the absolute levels of the density and tempera-
turessfor exampled are assumed to be small over the region
of interest, though deviations in thegradientsof these quan-
tities can be comparable to or larger than the equilibrium
values. This assumption becomes marginal at best in the
plasma edge, particularly in the case of the Kelvin–
Helmholtz mode, which is expected to vary on the same
scale as the equilibrium quantities. The quantitative study of
such modes would therefore seem to require a fully nonlocal
approach that goes beyond some of the calculations pre-
sented here.

This paper is organized as follows. We present the elec-
tron model that is used in the analytic calculations in Sec. II,
the Braginskii ion model in Sec. III, and a set of reference
edge parameters in Sec. IV. We then apply the results to the
Kelvin–Helmholtz mode in Sec. V, the tertiary mode in Sec.
VI, and the drift wave mode in Sec. VII. Section VIII con-
tains a summary of the main findings in each case. In the
appendixes, we discuss the validity of the adiabatic approxi-
mation sAppendix Ad, demonstrate the correspondence be-
tween the Braginskii and gyrofluid modelssAppendix Bd,
and the analyze the role of shear in the case of the drift wave
modesAppendix Cd.

II. ELECTRON EQUATIONS

In this section we describe our electron model, and ob-
tain a collection of important results that are used in the
following sections. These results are independent of one’s
choice of ion model, which is discussed in the following
section.

The electron model we consider is given by

dtn = rs
2¹iJ, s1d

¹iTe = 0, s2d
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a]tx − ¹isf − nd = smdt + n + lukiudJ, s3d

where

J = ¹'
2 x, ¹i = ]z + aẑ3 ¹'x ·¹', s4d

dt = ]t + ẑ3 ¹'f ·¹', ¹' = x̂]x + ŷ]y, s5d

a = S Li

cAt0
D2

, rs =
rse

L'

, m = a
de

2

L'
2 , s6d

l = mÎp

2

nthet0
Li

, n = mneit0, s7d

rse=
cse

vci
, de =

c

vpe
, di =

c

vpi
, s8d

vci =
eB0

mic
, vpe

2 =
4pn0e

2

me
, s9d

cse
2 =

Te0

mi
, nthe

2 =
Te0

me
, cA

2 =
B0

2

4pn0mi
, s10d

st,¹',¹id = S tphys

t0
,L'¹',phys,Li¹i,physD , s11d

sn,Ted = Sne,phys

n0
,
Te,phys

Te0
D t0cserse

L'
2 , s12d

sf,xd = Sct0fphys

L'
2 B0

,−
t0
2cA

2Az,phys

L'
2 LiB0

D , s13d

BW phys= − ẑ3 ¹'Az,phys+ B0ẑ. s14d

The term proportional tol in Eq. s3d represents a simple
approximation to electron Landau damping,16 then term rep-
resents electron-ion collisions, and themdt term arises from
electron inertia. Note that, for later flexibility, we have writ-
ten the normalized equations in terms of arbitrary time and
length scalest0, L', Li. These can be chosen to suit the
particular problem or mode under consideration. For ex-
ample, when comparing to the GS2 simulations in the fol-
lowing sections, we chooseL'=rse, Li=R, t0=R/cse, in
which case

rs = 1, a =
be

2
=

4pn0Te0

B0
2 , s15d

m =
me

mi
, n =

me

mi

neiR

cse
, l =Îp

2

me

mi
. s16d

The parameterR, usually associated with the radius of cur-
vature, is introduced here only as a convenient parallel nor-
malization scale. It has no physical meaning in the present
slab system and, when our results are written in non-
normalized units, it necessarily drops out.

Finally, we note the assumption of an isothermal electron
response made in Eq.s2d can be physically marginal in some

cases of interest. For example,kivthe can approach the
growth rates of some of the faster modes of interest here, and
in the more collisional edge plasma of Alcator C-Mod, for
example, the electron mean-free path can approach the par-
allel connection lengthslmfp,qRd. This issue is further un-
derscored by the GS2 simulations, which in the case of the
drift wave mode, for example, exhibit a weak stabilizing
dependence on the equilibrium electron temperature gradient
that is not properly reproduced by Eq.s2d. In any case, here
we will use Eq.s2d and leave the detailed study of electron
temperature gradient effects for future work.

We now separate the various quantities into an “equilib-
rium” part, assumed to depend only onx, and a perturbation.
For any quantityf,

f = f0sxd + f̃sxdegt+ikyy+ikzz, s17d

dtf = ḡ f̃ − ikyf08f̃, ḡ = g + ikyf08, s18d

¹if = iki f̃ − iakyf08x̃, ki = kz + akyx08, s19d

¹iJ = iki¹'
2 x̃ − iki9x̃ = i]xfki

2]xsx̃/kidg − iky
2kix̃. s20d

As an example, in the particular case of constant magnetic
shear considered later,

BW 0,phys= B0Sêz +
xphys

Ls
êyD , s21d

ki =
Li

Ls
skz,physLs + kyxd. s22d

Due to the form of Ohm’s lawfEq. s3dg, it turns out to be
most convenient to work in terms of the variablef−n, the
so-called nonadiabatic response. We therefore define

f̃e = f̃ − ñ, ḡe = g + ikysf08 − n08d. s23d

Hereḡe is thescomplexd growth rate in a frame drifting with
the electrons, whileḡ fsee Eq.s18dg is the growth rate in a
frame drifting with theE3B velocity. Using Eq.s1d, one
can expressñ and f̃ in terms off̃e and¹iJ as

ñ =
1

ḡ
sikyn08f̃ + rs

2¹iJd =
1

ḡe

sikyn08f̃e + rs
2¹iJd, s24d

f̃ = f̃e + ñ =
1

ḡe

sḡf̃e + rs
2¹iJd. s25d

For later use in the study of the tertiary mode, note that in the
adiabatic limitsa→0,m→0,n→0,l→0d,

f̃e = 0 + ¯ , s26d

f̃ = ñ =
rs

2¹iJ

ḡe

. s27d

The condition under which this approximation becomes valid
is discussed in Appendix A, and is given by Eq.sA4d.

The final step in this section is to relatex̃ to f̃e using
Ohm’s law fEq. s3dg. Here we slightly simplify the final re-
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sult by dropping some terms proportional tomJ08, that is,
electron inertia terms associated with the background current
gradient. These terms, which vanish anyway for the case of
constant magnetic shear, will not play a role in any of our
subsequent analyses. Dropping such terms, one obtains

aḡex̃ − smḡ + n + lukiud¹'
2 x̃ = ikif̃e. s28d

For later use in the study of the Kelvin–Helmholtz mode,
note that in the “ideal” limit ofm→0, n→0, l→0:

x̃ =
iki

a

f̃e

ḡe

. s29d

Using this to eliminatex̃ in Eq. s20d then gives

¹iJ =
1

a
h− ]xfki

2]xsf̃e/ḡedg + ky
2ki

2f̃e/ḡej. s30d

This expression is valid for any profile ofki sthat is,x08d.

III. BRAGINSKII ION MODEL

To make further progress, it is necessary to supplement
these results with another equation relatingx̃ to f̃e. Such an
equation is now obtained by introducing an ion model. As
discussed in the Introduction, we describe here a Braginskii
model, although equivalent results may be obtained to the
order we are working from gyrofluid calculations that are
described in Appendix B.

The Braginskii model we consider is given by17

¹' ·dt¹'sf + tpid = ¹iJ, s31d

dtTi = 0, s32d

pi = n + Ti, t = Ti0/Te0, s33d

dtpi = rs
2¹iJ, s34d

spi,Tid = Spi,phys

pi0
,
Ti,phys

Ti0
D t0cserse

L'
2 . s35d

Note we have chosen here an isothermal ion equation of
state. This choice is necessary to obtain agreement with the
gyrofluid model calculations discussed in the appendixes.
The gyrofluid calculations also make it apparent that the per-
turbationspi, Ti appearing above are in factpi', Ti'. The
contributions frompii, Tii do not enter our system due to our
neglect of the parallel sound wave dynamics.

Linearizing these equations as discussed in the last sec-
tion, Eq. s34d gives

p̃i =
1

g̃
sikypi08 f̃ + rs

2¹iJd. s36d

Then definingḡi sg shifted into the ion framed as

ḡi = g + ikysf08 + tpi08 d s37d

and using Eqs.s25d and s36d, one finds

f̃i = f̃ + tp̃i =
1

ḡ
sḡif̃ + trs

2¹iJd s38d

=
1

ḡe
Sḡif̃e +

ḡi + tḡe

ḡ
rs

2¹iJD . s39d

Solving Eq. s38d for f̃ in terms of f̃i and substituting the
result into the vorticity equationfEq. s31dg gives

]xFḡḡi]xS f̃i

ḡi
D +

tḡi8

ḡi

rs
2¹iJG = ky

2ḡf̃i + ¹iJ. s40d

Equivalently, eliminatingf̃i with Eq. s39d, this result can be
written as

]xFḡḡi]xS f̃e

ḡe
DG − ky

2ḡḡi
f̃e

ḡe

= Fi, s41d

Fi = ¹iJ − ]xStḡe8
rs

2¹iJ

ḡe
D − ]xFḡsḡi + tḡed]xSrs

2¹iJ

ḡḡe
DG

+ ky
2sḡi + tḡed

rs
2¹iJ

ḡe

. s42d

This is the desired final result relatingx̃ to f̃e. Using Eqs.
s20d and s28d to eliminate¹iJ and f̃e from Eq. s41d, for
example, one obtains a single fourth-order eigenvalue equa-
tion for x̃. This equation describes several distinct instabili-
ties that are discussed in the following sections. Reconnec-
tion modes, though included in the formalism at this point,
will not be discussed here.

As a final point, we note these eigenvalue equations pos-
ses a self-similar family of solutions given by the scaling
g→Lg, f08→Lf08, n08→Ln08, pi08 →Lpi08 , ki→Lki, n→Ln,
whereL is a constant. As a result, as the flows represented
by f08, n08, etc., are made stronger, the contributions fromn
sthe collisionalityd and ki will generally become weaker if
these quantities are held fixed. On the other hand, for modes
that require finite ki ssuch as the tertiary mode or the drift
waved, the unstable values ofki must also increase in pro-
portion to the strength of the flows. This feature has been
verified numerically by the GS2 simulations.

IV. REFERENCE PARAMETERS AND GS2 SETUP

In the following sections, we will refer to some sample
parameters taken from the literature that roughly characterize
the H-mode edge pedestal regions in two tokamaks, DIII-D
sRef. 18d and Alcator C-MOD.19 DIII-D: R.168 cm,n,2
31013 cm−3, mi =2mp, Te,Ti ,350 eV, B,2 T, be,7.1
310−4, rse,0.13 cm, de,0.12 cm, di ,7.2 cm, ŝ,2, q
,3.5, lmfp/qR,10, cs,1.83105 m/s. Alcator C-MOD:
R.68 cm, n,1.531014 cm−3, mi =2mp, Te,Ti ,250 eV,
B,5.3 T, be,5.4310−4, rse,0.043 cm, de,0.043 cm,
di ,2.6 cm,ŝ,2, q,3.5, lmfp/qR,2, cs,1.53105 m/s.

As noted earlier, comparisons to the GS2 code will uti-
lize the normalization given by Eqs.s15d and s16d. In this
normalization, the orderingVE,V*e discussed in the Intro-
duction is equivalent tof,R/rse, or in either of the two
cases given above,f,1.53103. Given thatVE=f8,f /d
whered,5 s=5rsed is a “typical” pedestal half width in ei-
ther case, one obtainsVE,−V* i ,300 in normalized units.
The magnetic shear model in the GS2 simulations is given
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by Eq. s21d with Ls=qR/ ŝ. Due to the radially periodic
boundary conditions in the GS2 code, the simulations we
present are based on a simple periodic slab geometry with no
curvature,

f08 = VE cosskxxd,

tn08 = Vpin cosskxxd,

tTi08 = VpiT cosskxxd,

tpi08 = Vpi cosskxxd, Vpi = Vpin + VpiT. s43d

As noted earlier, hereTi08 =Ti0'8 , pi08 =pi0'8 ; for simplicity we
takeTi0i8 =pi0i8 =0. A typical example is shown in Fig. 1. Be-
cause the tertiary and drift wave eigenmodes are spatially
localized to the regions where the plasma gradients are steep-
est, these modes depend on the structure of the profiles only
in a small region, and are not sensitive, for example, to the
periodic or nonperiodic nature of the profiles or boundary
conditions away from the peak-gradient region. It is less ob-
vious that this insensitivity would apply to the Kelvin–
Helmholtz mode, which has a more global mode structure.
However, we present analytic calculations of both periodic
and nonperiodic profiles for this mode as well and show that
the results are indeed qualitatively similar.

V. KELVIN–HELMHOLTZ INSTABILITY

The standard Kelvin–Helmholtz instability, modified by
diamagnetic and electromagnetic effects, may be conve-
niently obtained from Eq.s41d in the limit that the nonideal
terms on the right-hand side of Ohm’s law proportional tom,
n, l are neglected and we considerk'

2 rs
2!1. Dropping terms

of Osk'
2 rs

2d compared to unity in Eq.s42d, Fi reduces toFi

.¹iJ. Then using the expression for¹iJ given by Eq.s30d
in Eq. s41d, one obtains

]xFSḡḡi +
ki

2

a
D]xjG = ky

2Sḡḡi +
ki

2

a
Dj, s44d

where

j̃ =
f̃e

ḡe

.
f̃i

ḡi

.
f̃

ḡ
sk'

2 rs
2 ! 1d. s45d

The Kelvin–Helmholtz instability described by Eq.s44d
can be stabilized by either ion diamagnetic effects or mag-
netic shearsline bendingd. To illustrate this, we now consider
two simple models, one periodic and one nonperiodic. In the
periodic case, an analytic form of the dispersion ration may
be obtained in the long-wavelength limitky

2L2!1, whereL is
typical scale length of the equilibrium variation, for example,
L2,uf08 /f0-u. Given ky

2L2!1, the terms on the right-hand
side of Eq.s44d are small, and the leading-order solution is
j.const. The leading order dispersion relation may then be
obtained by integrating Eq.s44d over one period inx, which
annihilates the left-hand side. The result, givenj.const, is
the dispersion relation

Kḡḡi +
ki

2

a
L = 0, s46d

where k¯l denotes the integral over one period. As an ex-
ample, consider

f08 = VE cosskxxd, s47d

tpi08 = Vpi cosskxxd, s48d

x08 = By cosskxxd, s49d

ḡ = g + ikyVE cosskxxd, s50d

ḡi = g + ikyVpi0 + ikysVE + Vpidcosskxxd, s51d

ki = kz + akyBy cosskxxd, s52d

which leads to the dispersion relationsfor ky
2!kx

2d

gsg + ikyVpi0d =
1

2
ky

2fVEsVE + Vpid − aBy
2g −

kz
2

a
. s53d

The exact numerical solution of Eq.s44d in the case with
ki=0 and V* i =V* i0=0, along with the corresponding GS2
simulation values, is shown in Fig. 2, where we plot
g / skxVEd versusky/kx sother parameters in the GS2 simula-
tions arekyri =0.2, Ti =Te, ŝ=0, be=10−4d. Consistent with

FIG. 1. Typical GS2 simulation profiles, corresponding to a “periodic
barrier.”

FIG. 2. KH modeg vs ky/kx.
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Eq. s53d, g.kyVE/Î2 at ky!kx. The maximum growth rate
is g.0.27kxVE for ky.0.59kx. The frequencyfImsgdg in this
case is zero.

Returning to Eq.s46d it is clear that finiteki sthat is,
finite By and/orkzd is stabilizing. The threshold for stabiliza-
tion is ki ,ÎagKH ,ÎaVE/L or in physical units,

ki,phys,
VE

cAL
. s54d

Assumingki,phys,kyx/Ls,1/Ls, this gives

Ls ,
cAL

VE
,

cA

VE,max8
. s55d

Figure 3sad shows the comparison of this condition with
GS2 simulations for the case of a sinusoidalE3B flow pro-
file and constant magnetic shearfsee Eqs.s21d ands22dg. As
in a tokamak, we parametrize the shear lengthLs in terms of
the parameterŝ as Ls=qR/ ŝ, and g0 is the growth rate for
ŝ=0. The other GS2 simulation parameters arekxri =0.2, Ti

=Te, f0=23103, and be=10−4. Motivated by Eq.s55d, on
the lower axis we plot the data as a function of the dimen-
sionless parameter,

cA

LsVE,max8
;

ŝ

ŝ0

, ŝ0 =
qRVE,max8

cA
s56d

sor in the GS2 units discussed earlierŝ0=qkx
2Îbe/2f0d. As a

demonstration of the predictedŝ0 scaling, we show the re-
sults for two differentq values:q=4 andq=8. Stability is
reached atŝ=0.51ŝ0, or evaluatingŝ0 with the parameters of
Sec. IV sone finds ŝ0=4.0 for DIII-D and ŝ0=3.5 for
C-MODd, ŝ.2. Stabilization of the KH mode due to shear in
this simple model is therefore reached at a value ofŝ that is
typical of the edge. A similar finding is obtained below in the
case of a more realistic nonperiodic velocity shear profile.

Turning now to the role of ion diamagnetic effects, one
can see from Eq.s53d that either a spatially constant or spa-
tially varying ion diamagnetic flowsrepresented byV* i0 and
V* i, respectivelyd can also stabilize the mode. Denoting the
right-hand side of Eq.s53d by G0

2 sG0 therefore being the
growth rate of the mode whenV* i0=0d, one finds that insta-
bility requires

G0 . ukyVpi0u/2. s57d

One can also see from Eq.s53d that

VEsVE + Vpid . 0 s58d

is a necessary condition for instability. This condition may
also be obtained in the general periodic or nonperiodic case
by multiplying Eq.s44d by j* , integrating over the domain of
the mode, integrating the left-hand side by parts, and solving
for g. One finds that Eq.s58d swith V* i interpreted as the
total ion diamagnetic velocityd must be satisfiedsomewhere
within the envelope of the mode in order for instability to be
possible. In the most unstable case ofki=0, therefore, the
mode will be stable ifV* i is in the opposite direction toVE

and at least equal in magnitude. Consistent with this, the
numerical solution of Eq.s44d as well as the GS2 simulations
both predict stability of the Kelvin–Helmholtz mode when
Eq. s58d is not satisfied. This is demonstrated in Fig. 3sbd,
which showsg /g0 sthe growth rate normalized to its value
with V* i =0d versuss1+V* i /VEd fEq. s58d divided byVE

2g in
the case ofŝ=0 andV* i0=0. Since one expectsV* i /VE,−1
for the H-mode pedestal as discussed earlier, it would seem
that diamagnetic effects, like magnetic shear, may also sta-
bilize or nearly stabilize the Kelvin–Helmholtz mode for
typical edge conditions.

To illustrate the effects of magnetic shear in a more re-
alistic velocity profile, we now consider a simple nonperi-
odic pedestal model with a constant magnetic shearfsee Eqs.
s21d ands22dg and, for simplicity, no ion diamagnetic effects,

f0 = VEd tanhsx/dd, s59d

f08 = Vy = VEh1 − ftanhsx/ddg2j, s60d

pi = 0; s61d

or choosing the normalizationL'=d, t0=d /VE, Li=Ls,

f0 = tanhsxd, s62d

f08 = Vy = 1 − ftanhsxdg2, s63d

pi = 0, s64d

ki = kz,physLs + kyx, s65d

a = SVELs

cAd
D2

. s66d

For a→`, the fastest growing mode hasgphys=s0.16,
−0.41dVE/d for ky,physd=0.9. Overall stability is reached at
a.2 swhere the marginally stable mode hasky,physd.1.4,
kz,physLs.0.7d. Note that the conditiona,2, given Eq.s66d,
and d,L is consistent with Eq.s55d. Upon taking Ls

=qR/ ŝ as in a tokamak, and defining a normalizedE3B
flow velocity VE,N;sVE/vthidsd /rid sso that VE,N,1d one
finds

a = SVELs

cAd
D2

= Sri
2

d2

qR

diŝ
VE,ND2

, s67d

wheredi =c/vpi is the ion skin depth. Thus, the condition for
stability a&2 gives

FIG. 3. KH modeg vs sad ŝ/ ŝ0 and sbd V* .
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d * 0.8riSqR

diŝ
VE,ND1/2

. s68d

For a fixed level ofVE and magnetic shear, the mode there-
fore becomes unstable when the pedestal is sufficiently nar-
row. Including ion diamagnetic effects, one obtains a similar
estimate with the replacementVE→ÎVEsVE+V* id.

Evaluating Eq.s68d for the sampleH-mode edge param-
eters given in Sec. IV, and assumingVE,N,1, we obtain a
marginally stable value ofd,5ri for either DIII-D or Alca-
tor C-Mod. Given thatd here is the characteristic pedestal
scale length and is thus about half the total pedestal width,
this estimate is close to the value observed in the experi-
ments. An accurate assessment of the importance of this
mode in theH-mode edge therefore requires a careful ac-
count of both magnetic shear and ion diamagnetic effects.
With respect to internal transport barriers, which are charac-
terized by strong sheared flows and very weak magnetic
shear, the general absence of the KH mode is likely due in
part to diamagnetic stabilization.

VI. TERTIARY MODE

In contrast to the Kelvin–Helmholtz mode, which is
most unstable forki→0, the tertiary mode2 may be obtained
from Eq.s41d by considering the limit of highki in which the
adiabatic approximation given by Eqs.s26d and s27d be-
comes valid:f̃e=0 andrs

2¹iJ= ḡef̃. Applying these to Eq.
s41d, one obtains

]xFḡsḡi + tḡed]xS f̃

ḡ
D + tḡe8f̃G = F ḡe

rs
2 + ky

2sḡi + tḡedGf̃.

s69d

The tertiary instability is an eigenmode of this equation
which is driven by the ion temperature gradientTi08 and is
spatially localized by theE3B shear profile. As is the case
in the edge pedestal, we assume thatf08~VE takes on some
positive maximum value at a location whereT08,0, so that

T08f0- . 0. s70d

To make further analytic progress with Eq.s69d, we will
assume that the temperature gradient satisfies the ordering
tTi08 ,f08, or in physical units,V* i,T,riVthi /LT,VE, where
LT,Ti0/Ti08 is the ion temperature scale length. We also as-
sume, for reasons explained later, thatLT,Ln where Ln

,n0/n08, so thathi =Ln/LT.1. Finally, we utilize the fact
that L2@rs

2 where L is the equilibrium scale. With these
assumptions, the tertiary mode turns out to have anx-scale
lengthDt,ÎLrs that is large compared tors but small com-
pared toL. This allows us to expandf08 about its maximum,
taken to be atx=0:

f08sxd . f08s0d + f0-s0dx2/2 + ¯ . s71d

fThe quantitiesn08 and T08 can be similarly expanded, but
given the assumptions just outlined, the higher order contri-
butions to these quantities do not enter the final result, so that
one can taken08.n08s0d and Ti08 .Ti08 s0d.g Expanding the

equilibrium quantities in Eq.s69d as in Eq.s71d, introducing
the normalized variables

x̂ =
x

Dt
, k̂y = kyDt, G = ĝ − ik̂yx̂

2, s72d

ĝ =
g + ikyf08s0d

g0
, g0 = 1

2Dtuf0-s0du, s73d

Dt = S2trs
2Ti08 s0d

f0-s0d
D1/4

, ÎLrs, s74d

and assumingky
2rs

2!1, one obtains the leading order terms

]x̂FG]x̂S f̃

G
DG = S iG

k̂y

+ k̂y
2 − CnDf̃, s75d

Cn =
Dt

2n08s0d
trs

2Ti08 s0d
. s76d

We begin the analysis of Eq.s75d by considering the

case ofCn~n08=0. In this case, a unique result forĝsk̂yd may
be obtained by solving Eq.s75d numerically. The result for

ĝr =Resĝd=Resgd /g0 versusk̂y is shown in Fig. 4sad sdashed
lined, and is seen to agree well with the GS2 resultsssquares,
obtained withkxri =0.2, Ti =Ted. The fastest growing mode

occurs for k̂ys=kyDtd=0.96 and hasĝ.0.56+1.44i. For k̂y

!1, ĝ.s0.80+0.84idk̂y. Thus

Resgd , g0 =
1

2
Dtuf0-s0du ,Îrs

L

VE

L
, s77d

Imsgd . − kyf08s0dF1 + OSÎrs

L
DG . − kyVE. s78d

The mode is seen to drift with the localE3B velocity and
have a growth rate that is weaker than the typical Kelvin–
Helmholtz valuegKH ,VE/L by a factor ofÎrs/L sonly a
modest reduction for typical pedestals, in whichÎrs/L
,1/3−1/2d.

Turning to the case with finiten08 sCnÞ0d, the growth
ratefResĝdg for the valueCn=3.8 is shown in Fig. 4sad. The
solid line is the solution of Eq.s75d and the triangles are the
GS2 values obtained withkxri =0.2, Ti =Te. sThe agreement

FIG. 4. Tertiary modeg vs sad ky for hi =` ssquaresd, hi =3.8strianglesd, and
sbd Dt.
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between the two is not as good for these parameters due to
the stabilizing contribution of FLR effects in the GS2 simu-
lations.d As is the case for anyCn*1, the maximum growth

rate occurs at the wave numberk̂y.ÎCn where the last two
terms on the right-hand side of Eq.s75d almost cancel. Drop-
ping these terms, the form of Eq.s75d becomes identical to

the previousCn=0 case in the limitk̂y!1, in which ĝ

.s0.80+0.84idk̂y. Thus, forCn*1, the peak growth rate has

k̂y.ÎCn and ĝ.s0.80+0.84idÎCn. In physical units, the

condition k̂y.ÎCn is equivalent to

ky
2ri

2 . Sn08Ti0

n0Ti08
D

x=0

;
1

hi
, s79d

which is consistent with the restrictionky
2ri

2!1 if hi .1, as
assumed earlier. In addition, the growth rate can be written
as

Resgd . 0.80kyDtg0 . 0.80În08s0df0-s0d/2. s80d

Thus, despite theTi08 dependence ofky, the peak growth rate
does not depend on the temperature gradient in this case.

As noted in the Introduction, according to the GS2 simu-
lations, the tertiary mode can be stabilized by finite Larmor
radius effects when the pedestal scale length becomes suffi-
ciently narrow. This is shown in Fig. 4sbd, which is a plot of
the growth rate of the mode versus the radial mode width
Dt /ri. Stabilizing FLR contributions lead to a significant re-
duction of the GS2 growth rate relative to the lowest order
theory in this case whenDt&3ri, which sfor the parameters
of the simulationd corresponds to equilibrium profiles scales
kxri *0.2. This suggests that FLR effects become important
for the tertiary mode at pedestal widths comparable to ex-
perimental values.

VII. DRIFT WAVE INSTABILITY

The electron drift wave instability can be obtained from
Eq. s41d in the case that any or all of the terms proportional
to m, n, or l in Ohm’s lawfEqs.s3d or s28dg are retained. In
the general case of spatially varying profiles off08, n08, etc.,
Eq. s28d can be used to eliminatef̃e from Eq.s41d, resulting
in a single fourth-order eigenvalue equation forx̃. We have
solved this equation numerically for pedestal-like equilib-
rium profiles, and have found results that agree well with the
GS2 simulations discussed later in this section. Even in the
presence of significant values of the magnetic shear, both
analyses predict the existence of well-localized eigenmodes
with maximum growth rates that can approachv*e. In the
limit of kyL.1, whereL is the scale of the equilibrium pro-
files, the growth rates and frequencies obtained from both
numerical studies are close to the values predicted by a
simple cubic dispersion relation from local theory. Dropping
the magnetic shearsjustified in Appendix Cd we demonstrate
this result analytically by showing that fourth-order eigen-
value problem forkyL.1 may be reduced to a second-order
harmonic oscillator equation with a simple Gaussian solu-
tion. The resulting dispersion relation, to leading order, is
equivalent to that of local theory.

Turning first to the case in which some analytic progress
can be made, we considerkyL.1 whereL2,uF0/F09u andF0

is any of the equilibrium quantitiesn08, f08, T08. Thex scale of
the modeDd will turn out to be smaller thanL by a factor of
1/ÎkyL,

Dd ,Î L

ky
, L, s81d

which allows for several simplifications. First, the left-hand
side of Eq.s41d can be written as

]xFḡḡi]xS f̃e

ḡe
DG − ky

2ḡḡi
f̃e

ḡe

. ḡḡi¹
2f̃e

ḡe

+ ¯ s82d

or eliminatingf̃e with Eq. s28d and collecting terms

BsxdJ̃9 = fAsxd + ky
2BsxdgJ̃, J̃ = ¹'

2 x̃, s83d

whereJ̃9=]x
2J̃ and

Asxd = ḡesaḡḡi + ki
2d, s84d

Bsxd = ḡḡismḡ + n + lukiud + ki
2rs

2sḡi + tḡed. s85d

In addition, givenDd,L, the equilibrium quantitiesn08, f08,
Ti08 can be Taylor-expanded about the point where the mode
is localized. We assume for simplicity that these quantities
all have maxima at the same spatial locationx=0, and we
neglect the magnetic shear, so thatki=const.fAll of the equi-
librium profiles need not vary spatially, however. For ex-
ample, we find that a spatial well in either theE3B velocity
profile sf0-Þ0d, or the plasma gradientsse.g., n0-Þ0d, or
both yield a well-localized solution with a growth rate close
to that of local theory.g We therefore write

n08sxd . n08s0d + n0-s0dx2/2 + ¯ , s86d

f08sxd . f08s0d + f0-s0dx2/2 + ¯ , s87d

Ti08 sxd . Ti08 s0d + Ti0-s0dx2/2 + ¯ , s88d

Asxd . As0d + A9s0dx2/2 + ¯ , s89d

Bsxd . Bs0d + B9s0dx2/2 + ¯ . s90d

Substituting these into Eq.s83d, and ordering

As0d , ky
2Bs0d,

1

L2 !
]x

2J̃

J̃
,

1

Dd
2 ,

ky

L
! ky

2, s91d

one finds that the only way that Eq.s83d can be satisfied is if

As0d + ky
2Bs0d . 0 + ¯ s92d

or using Eqs.s84d and s85d sevaluated atx=0d,

ḡḡi = −
ki

2fḡe + ky
2rs

2sḡi + tḡedg
aḡe + smḡ + n + lukiudky

2 . s93d

This result, a cubic polynomial to be solved forg, is the local
dispersion relation mentioned earlier. As a result of Eq.s92d,
it is necessary to keep the next-order terms in the Taylor
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expansion ofA andB only on the right-hand side of Eq.s83d,
yielding

J̃9 = sc2 + c1x
2dJ̃, s94d

where

c2 =
As0d + ky

2Bs0d
Bs0d

, c1 =
A9s0d + ky

2B9s0d
2Bs0d

. s95d

Equations94d is the harmonic oscillator equation, with the
lowest order solution

J̃ ~ e−Îc1x2/2, s96d

wherec1 andc2 must be related by

c2 = − Îc1. s97d

The consistency of Eq.s97d with Eq. s92d can be seen by
noting thatÎc1,ky/L is much smaller than the natural scale
of the terms inc2,ky

2. To leading order Eq.s97d therefore
reduces toc2.0, which is equivalent to Eq.s92d. One can
also verify that the ordering given in Eq.s91d is consistent

with Eq. s94d. Estimating J̃9,s1/Dd
2dJ̃,sky/LdJ̃, x2,Dd

2,
c1,ky

2/L2, andc2=−Îc1,ky/L, all the terms in Eq.s94d are
found to be of the same order, as one would expect. Finally,
consistent with Eq.s81d, one sees from Eq.s96d that thex
scale of the mode isDd,c1

−1/4,ÎL /ky as claimed.
The spatial localization of the eigenfunction in Eq.s96d

requires that ResÎc1d.0. When calculatingÎc1 from c1

given in Eq. s95d, however, the overall sign ofÎc1 is not
determined. Provided that ResÎc1dÞ0, therefore, it is always
possible to choose this sign so that ResÎc1d.0. The excep-
tional case of ResÎc1d=0, which is obtained whenc1 is real
and negative, cannot arise provided that the local dispersion
relationfEq. s92dg predicts instability for the parameters un-
der consideration. To see this, note thatc1 can be determined
to leading order by solving the local dispersion relationfEq.
s92dg for g, and substituting the result into the expression for
c1 given by Eq.s95d. Inspection ofc1 then shows that it will
always be complex provided that ResgdÞ0.

We now turn to a comparison of the analytic results to
GS2 simulations and numerical solutions of Eq.s41d. The
GS2 simulations are based on the simple periodic slab geom-
etry discussed in Sec. IV. Our procedure is to allow the simu-
lations to settle into an equilibrium withky=0, and then look
at the stability of this state to a spectrum of small finite-ky

perturbations. We first consider the parametersVE=114,
V*en=−V* in /t=−240, V* iT=0, t=0.05, be=0, me/mi =2.7
310−4, kx=0.05, and ki=7.5. Plots of Resgd and v
=−Imsgd as a function ofky are shown in Fig. 5, where the
normalizing factor in physical units isg0;cse/Ln sin the
nonlocal case,Ln is evaluated at point of steepest gradientd.
The growth rates in the figure, made at fixedki=7.5, are
about a factor of 2 smaller than the maximal values for the
mode at these parameterssnot shownd, which arise at smaller
ki ,2. The solid lines are the localscubicd dispersion relation
fEq. s92d or Eq.s93dg. The full numerical solution of Eq.s41d
as well as the next-order dispersion relationfEq. s97dg snot
shownd yield similar results. The triangles represent the non-

local GS2 growth rate, without magnetic shear. The dashed
lines indicate the GS2 results in the local limit with no mag-
netic shear, in which the gradients are spatially constant
sequal to the maximum values at the “center” of the pedestal
in the nonlocal cased. It is evident that the theory correctly
predicts the growth rate of the drift wave instability with or
without radially varyingE3B shear.20 Finally, we have also
numerically verified the theoretical results regarding the im-
pact of magnetic shear, i.e., for typical barrier configurations
considered elsewhere in this paper, the magnetic shear has no
significant effect on the growth rate of the drift wave for
0, ŝ,3. This numerically verified insensitivity toŝ is con-
sistent with estimates described in Appendix Cffor example,
Eq. sC4dg.

According to the analytic dispersion relation and consis-
tent with the simulations, the most unstable mode at typical
H-mode pedestal parameters has a growth rate that is signifi-
cantly reduced due to electromagnetic effectssfinite bed and
is driven almost entirely by electron Landau damping. These
points are demonstrated in Fig. 6. The left plot showsg
obtained from GS2 for variousbe values, using the same
parameters as before, except withki=1.5. On the right we
show growth rates maximized overki, at fixed kyrs=0.6.
This figure shows that electron Landau damping, while sta-
bilizing at lowerbe values, can be the main driver of insta-
bility at largerbe se.g., those typical of experimentsd.

In addition, as one would expect given the radially lo-
calized nature of the mode, the instability is only weakly
sensitive to the detailed form of the profiles. For example, in

FIG. 5. Drift wave modeg vs ky.

FIG. 6. Drift wave growth rateg vs sad ky and sbd be.
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the numerical study of Eq.s41d, we have analyzed both the
periodic profiles of Eq.s43d as well a hyperbolic-tangent
model-like Eq.s59d, and find that the difference between the
two ffor fixed values off0-s0d, n0-s0d, T0-s0dg is negligible.

Lastly, it should be noted that although the presence of
magnetic shear appears to eliminate the presence of linearly
unstable eigenmodes in the local GS2 simulationssas one
would expectd, substantial transient growthse.g., due to con-
vective modesd in this case is still observed. Indeed, for typi-
cal H-mode edge parameters, the amplification factor ob-
served in the GS2 simulations of small initial perturbations
can be quite large. Further work that also includes nonlinear
simulations is in progress to determine the role of such con-
vective modes.

VIII. SUMMARY OF MAIN RESULTS

We have analyzed the linear stability of a slab geometry
containing spatially varyingE3B and diamagnetic flows in
a sheared magnetic field, similar to the profiles found in the
edge region of high temperaturesH moded magnetically con-
fined plasmas. Strong parallel flows, though sometimes
present in experiments, were not addressed. We have pre-
sented the results of gyrokinetic simulations using the GS2
code, as well as analytic calculations based on the Braginskii
and gyrofluid models. The analytic calculations are limited to
the regime ofk'

2 ri
2!1. In this regime, the Braginskii and

gyrofluid models yield equivalent results, and show good
overall agreement with the simulations. Some other assump-
tions and limitations of the study are outlined in the Intro-
duction.

We find at least three linear modes of potential impor-
tance in such systems: the Kelvin–Helmholtz instability, the
tertiary mode, and a nonlocal drift wave instability. All three
modes are unstable only in presence of nontrivial spatial
variations in either theE3B flow and/or the plasma gradi-
ents. Our main results in each case are as follows.

A. Kelvin–Helmholtz instability

This instability is driven by the spatial variations in the
E3B velocity VE. In the absence of magnetic shear and ion
diamagnetic effects, the most unstable eigenmode has a typi-
cal growth rateg,VE/L, where L is the scale of spatial
variations inVE, a wave numberky,1/L in the direction of
VE, a width D,L in the direction of variationse.g., radial
direction in a tokamakd, and ki=0. It can be stabilized by
magnetic shear if the profile widthss,Ld are sufficiently
wide fsee Eq.s68d, for exampleg. It can also be stabilized by
ion diamagnetic effects if the ion diamagnetic velocityV* i is
at least comparable in magnitude toVE and in the opposite
direction over the envelope of the mode, such thatVEsVE

+V* id,0. The assumption of an adiabatic electron response,
sometimes made in simulations of small-scale turbulence,
completely suppresses this instability. This may account for
why the KH mode has thus far not been greatly emphasized
by the microscale simulation community. According to our
rough estimates, it is near marginal stability under typical
H-mode edge conditions, and thus a more detailed study
based on a realistic magnetic geometry is necessary to assess

its true role. The possible role of KH modes in ITBs depends
critically upon the details of the velocity profile, which are
not well known. It is likely, however, that KH instabilities
play some role in ITB phenomenology.

B. Tertiary mode

This is an adiabatic electron, electrostatic mode arising
at higherki that is driven by the ion temperature gradient. It
also has a complex dependence on the density gradient. As-
suming theE3B velocity VE and the ion diamagnetic veloc-
ity V* i are comparable in magnitude, it has a typical width
D,ÎrsL in the direction of profile variation and a growth
rate that is smaller than that of the Kelvin–Helmholtz mode
by a factor of,Îrs/L sonly a modest reduction for typical
H-mode pedestalsd. According to the GS2 simulations, the
mode is stabilized by finite Larmor radius effects for pedestal
scale lengths that approach experimentally observed values.
Put another way, for narrow pedestals, the tertiary instability
growth rate increasesas the pedestal widens. Like the
Kelvin–Helmholtz mode, further nonlinear simulations are
needed to determine its true importance in the tokamak edge.

C. Nonlocal drift wave mode

This mode is driven by either electron inertia, electron-
ion collisionality, or electron Landau damping and, like the
previous case, also has finiteki. It is robustly unstable in the
presence of magnetic andE3B shear at typical H-mode
edge discharge levels. The eigenmode is spatially localized
by extrema in either theE3B velocity or the density gradi-
ent, and at higher wave numbers at which a local treatment
becomes validse.g.,kyL.1d has a growth rate given by Eq.
s93d. The most unstable mode has a frequency that is com-
parable tov*e in a frame that rotates with the localE3B
velocity. Under typical H-mode conditions, its growth rate is
significantly reduced by electromagnetic effects, which be-
come important at finite plasmab, and electron Landau
damping plays an essential destabilizing role. An accurate
description of this mode therefore requires a model that in-
cludes electron Landau damping effects, as well as electro-
magnetic effects and nonlocal profile variations. This mode
seems to be a good candidate for driving particle and heat
transport in the H-mode edge, in which curvature-driven
modes are known to become weak due to diamagnetic stabi-
lization, or in the edge of linear devices.
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APPENDIX A: VALIDITY OF THE ADIABATIC
APPROXIMATION

To see when the adiabatic approximation is valid, con-
sider using Eq.s27d to estimatex̃ in the adiabatic limit:
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x̃ ,
iḡe

kik'
2 rs

2f̃. sA1d

The magnitude of the nonadiabatic responsef̃e can now be
estimated from Ohm’s lawfEq. s28dg as

f̃e ,
aḡe

2 + ḡesmḡ + n + lukiudk'
2

ki
2k'

2 rs
2 f̃. sA2d

Thus,f̃e!f̃ will be valid when

aḡe
2 + ḡesmḡ + n + lukiudk'

2 ! ki
2k'

2 rs
2 sA3d

or in physicalsnon-normalizedd units,

ḡe
2 + ḡeSḡ + nei +Îp

2
vtheukiuDk'

2 de
2 ! ki

2cA
2k'

2 rse
2 . sA4d

APPENDIX B: BRAGINSKII VERSUS GYROFLUID
MODELS

In this appendix, we show how Eq.s41d can be recov-
ered in the gyrofluid formalism. In the first section, we re-
write Eq. s41d in terms of the guiding center potentialc. In
the second section, we explain how this same result can be
obtained from the gyrofluid model. In the third section, we
give a more general proof of the equivalence of the two
models to the order ofk'

2 ri
2 that we are working.

1. Equation „41… in gyrofluid notation

To make contact with the gyrofluid model, we first in-
troduce some new notations,

F̃ =
rs

2¹iJ

ḡe

, sB1d

C̃ = G0
1/2F̃s1 + 1

2trs
2¹'

2 + ¯ dF̃, sB2d

c = G0
1/2f = s1 + 1

2trs
2¹'

2 + ¯ df, sB3d

ḡe,c = G0
1/2ḡe sB4d

=g + ikysc08 − G0
1/2n08d sB5d

=g + ikysc08 − n08d − 1
2ikytrs

2n09 + ¯ . sB6d

Here, c is the guiding center potential, andG0= I0sbde−b

where b=trs
2¹'

2 and I0sbd=J0sibd is the modified Bessel
function. Recall from Eq.s27d that in the adiabatic limit

F̃→ f̃, so thatC̃→ c̃. Operating on Eq.s41d with G0
1/2, ig-

noring thek'
2 ri

2 corrections to the left-hand side, and noting
that

G0
1/2F¹iJ − ]xStḡe8

rs
2¹iJ

ḡe
DG = S ḡe,c

rs
2 − tḡe9DC̃ + ¯ ,

sB7d

Eq. s41d can be written as

]xFḡḡi]xS f̃e

ḡe
DG − ky

2ḡḡi
f̃e

ḡe

= Fi, sB8d

Fi = − ]xFḡsḡi + tḡed]xS C̃

ḡ
DG + F ḡe,c

rs
2 − tḡe9 + ky

2sḡi

+ tḡedGC̃. sB9d

Note that all theḡ’s here except theḡe,c term depend onf0

rather than onc0s=f0+trs
2f09 /2+¯ d. To the order that we

are working here, however, the difference between these is
negligible. The only exception where this would not be the
case is theḡe,c term, which is formally a factor of 1/sk'rsd2

larger than the other terms.
Finally, in the adiabatic limitsf̃e→0,C→cd and con-

sideringn08=0, note this is the same as Eq.s6d of Ref. 2, in
which the tertiary mode was first discussed.

2. Gyrofluid ion model

Dropping terms of ordersk'rid4 compared to unity, the
gyrofluid model we consider is given by21,22

dtng + 1
2ftrs

2¹'
2 c,T'g = 0, sB10d

dtT' = 0, sB11d

ng = n − rs
2¹'

2 fc + tsn + T'd/2g, sB12d

dt = ]t + fc, · g, fa,bg = ẑ ·¹'a 3 ¹'b. sB13d

To make contact with Eq.sB8d we need to express every-

thing in terms ofC̃ and f̃e. First consider the electron den-
sity n. Writing n=n0+ ñ and using Eqs.s24d and sB2d one
obtains

ñ = ikyn08
f̃e

ḡe

+ G0
−1/2C̃

= ikyn08
f̃e

ḡe

+ S1 −
1

2
trs

2¹'
2 + ¯ DC̃. sB14d

In this section, as in Eq.sB8d we will retain the non-
adiabatic terms only to leading order ink'

2 ri
2 sbut treating

f,tpid, so we do not need to worry about the difference

betweenf0 and c0 in ḡe here. Next, writingc=c0+c̃, and
using the definitions ofc andfes=f−nd and Eq.sB14d, one
finds

c̃ = G0
1/2f̃ = G0

1/2sf̃e + ñd = C̃ + G0
1/2Sḡ

f̃e

ḡe
D . sB15d

Likewise, writingT'=T'0+T̃' one obtains from Eq.sB11d,

T̃' = ikyT'08
c̃

ḡ
= ikyT'08 S C̃

ḡ
+

f̃e

ḡe

+ ¯ D . sB16d

Here, again, we only needT' to leading order ink'ri. Note
that this also allows us to ignore the difference between the
guiding centerT' and the usual fluidT'. Finally, writing
ng=ng0+ ñg, and definingpi0=n0+T'0, one can substitute
Eqs.sB14d, sB15d, andsB16d into Eq. sB12d to obtain
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ng0 = n0 − rs
2fc09 + tpi09 /2g, sB17d

ñg = C̃ + ikyn08
f̃e

ḡe

− rs
2¹'

2 Hsḡ + ikytpi08 /2d
f̃e

ḡe
J

− rs
2¹'

2Hfs1 + tdḡ + ikytT'08 /2g
C̃

ḡ
J + ¯ . sB18d

To obtain Eq.sB8d, substitute these results forng, c, andT'

into Eq. sB10d and collect terms.

3. General proof of equivalence

Given Eq.sB2d which relatesc andf, Eqs.sB10d–sB13d
may be written as21,22

dtng + 1
2frs

2¹'
2 f,tpg'g = 0, pg' = ng + Tg', sB19d

n = ng + rs
2¹'

2 sf + 1
2tpg'd + ¯ , sB20d

dt = ]t + ff, · g, fa,bg = ẑ ·¹'a 3 ¹'b, sB21d

wherepg' is the guiding center ionsperpendiculard pressure.
Operating on Eq.sB20d with dt and using Eq.sB19d gives

dtn = dtfrs
2¹'

2 sf + 1
2tpg'dg − 1

2frs
2¹'

2 f,tpg'g. sB22d

One can now use the identity

dt¹'
2 f = ¹'

2 dtf − 2f¹'f;¹'fg − f¹'
2 f, fg, sB23d

wherefa;bg=fax,bxg+fay,byg to write Eq.sB22d as

dtn = rs
2¹' ·dt¹'sf + tpg'd − 1

2rs
2¹'

2 dttpg'. sB24d

To obtain agreement with the Braginskii model, it is neces-
sary to retain thetpg' terms sthat is, the ion diamagnetic
termsd only to leading order ink'

2 ri
2. sNo assumption will be

made here regarding the smallness ofk'
2 rs

2, however.d Not-
ing thatpg' obeys the equation21,22

dtpg' + fri
2¹'

2 f,pg' + Tg'g = 0, sB25d

whereri
2=trs

2, and thatpg' is related to the usual fluidp'

by21,22

tp' = tpg' + 3ri
2¹'

2 tpg' + 3
2ri

2¹2f + ¯ , sB26d

one sees that the last term on the right side of Eq.sB24d can
be neglected to the order we are working, as can the differ-
ence betweenpg' andp' in the first term. As a result, given
Eq. s1d, Eq. sB24d reduces Eq.s31d.

APPENDIX C: IMPACT OF MAGNETIC SHEAR
ON DRIFT WAVE INSTABILITY

In the case in which equilibrium variation and magnetic
shear are both included, it is possible to estimate the point at
which magnetic shear effects become significant within the
envelope of the drift wave instability,x&Dd. Balancing the
two terms in theki model of Eq.s22d for x,Dd,ÎL /ky

gives

Ls , ÎkyL/kz,phys. sC1d

A reasonably accurate description of the fastest growing
mode for the parameters discussed in the text may be ob-
tained by writing Eq.s93d as a cubic inḡe, and then neglect-
ing the highest order terms~ḡe

3d. An analysis of the resulting
quadratic then yields the estimate forkz of the fastest grow-
ing mode sat fixed ky, assumingky

2rse
2 !1, and neglecting

neid,

kz
2 , sa + mky

2dky
2n08sn08 + tpi08 d sC2d

or in physical unitssassumingLn,Lpi,Ld

kz,phys,Îb

2

kyrse

L
s1 + ky

2de
2d1/2 ,Îb

2

kyrse

L
. sC3d

Substituting this into Eq.sC1d and assumingLs=qR/ ŝ yield
the threshold condition for magnetic shear to become impor-
tant,

ŝ, q
Rrse

L2 Îb

2
ÎkyL , q

Rrse

L2
Îb. sC4d

Taking L,5rse and evaluating the right-hand side for the
reference edge parameters discussed in the text yieldŝ,7
sDIII-D or C-MODd, which implies that magnetic shear is
unlikely to play a significant role for this mode.
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