Comparison of Metaheuristics

John Silberholz and Bruce Golden

1 Introduction

Metaheuristics are truly diverse in nature — under the awhiag theme of per-
forming operations to escape local optima (we assume miimirtias chapter with-
out loss of generality), algorithms as different as ant egloptimization ([12]),
tabu search ([16]), and genetic algorithms ([23]) have ge@rDue to the unique
functionality of each type of metaheuristic, comparisometaheuristics is in many
ways more difficult than other algorithmic comparisons.

In this chapter, we discuss techniques for meaningful coisgaof metaheuris-
tics. In Section 2, we discuss how to create and classifpirtgs in a new testbed
and how to make sure other researchers have access to thenpsdbr future meta-
heuristic comparisons. In Section 3, we discuss the disdadgas of large parameter
sets and how to measure complicating parameter interadti@ametaheuristic’s pa-
rameter space. Last, in Sections 4 and 5, we discuss how tpazermetaheuristics
in terms of both solution quality and runtime.

2 The Testbed

It seems natural that one of the most important parts of a egisgn among heuris-
tics is the testbed on which the heuristics are tested. Asudtréhe testbed should
be the first consideration when comparing two metaheusistic

John Silberholz
Center for Scientific Computing and Mathematical Modelibigiversity of Maryland, College
Park, MD 20740 e-mail: josilber@umd.edu

Bruce Golden
R.H. Smith School of Business, University of Maryland, @gk Park, MD 20740 e-mail:
bgolden@rhsmith.umd.edu

2 John Silberholz and Bruce Golden

2.1 Using Existing Testbeds

When comparing a new metaheuristic to existing ones, itvaahgeous to test on
the problem instances already tested by previous papees., Tésults will be com-

parable on a by-instance basis, allowing relative gap tatioms between the two
heuristics. Additionally, trends with regards to specifipgs of problem instances
in the testbed can be made, making analysis of the new metatiegimpler.

2.2 Developing New Testbeds

While ideally testing on an existing testbed would be sudfitj there are many
cases when this is either insufficient or not possible. Fstaimce, when writing a
metaheuristic for a new problem, there will be no testbedtiiat problem, so a
new one will need to be developed. In addition, even on ejsproblems where
heuristic solutions were tested on non-published, oftedeenly generated problem
instances, such as those presented in [15, 25], a differstiigd will need to be used.
Last, if the existing testbed is insufficient (often due tinlggoo small to effectively
test a heuristic), a new one will need to be developed.

2.2.1 Goalsin Creating the Testbed

The goals of a problem suite include mimicking real-worldigem instances while
providing test cases that are of various types and diffidaltgls.

One key requirement of the testbed that is especially inapoit the testing of
metaheuristics is that large problem instances must bedeBbr small instances,
optimal solution techniques often run in reasonable ruesinvhile giving the ad-
vantage of a guaranteed optimal solution. It is, therefonical that metaheuristic
testing occurs on the large problems for which optimal sohscould not be calcu-
lated in reasonable runtimes. As discussed in [19], it issmatugh to test on small
problem instances and extrapolate the results for larggamees; algorithms can
perform differently in both runtime and solution quality lamge problem instances.

While it is desirable that the new testbed be based on probistances found
in industrial applications of the problem being testedqlike TSPLIB, [28]), it is
typically time intensive to do this sort of data collecti@ften real-world data is
proprietary and, therefore, difficult to obtain. Furthemnahe problem instances
generated will typically be small in number and size. Fotanse, real-world prob-
lem instances used for testing on the Generalized Trav8ladgsman Problem pro-
posed in [13] all had fewer than 50 nodes. In addition, theeeevonly two real-
world problem instances proposed; nearly all of the prohilestances used in that
paper did not come from real-world data, and all of the lafg®blem instances
were artificial.

Comparison of Metaheuristics 3

As a result, it is generally more reasonable to create adddibsed on existing
well-known problem instances than it is to create one fromtsb. For instance,
many testbeds have been successfully made based off thelB.SRlthe case of
the Generalized Traveling Salesman Problem, [13] estaddis well-used testbed
based on a simple extension to TSPLIB problem instancesh&nexample of such
an extension can be found in [2], in which the authors testedral different mod-
ified versions of 10 benchmark VRP problems and reported ctettipnal results
on each variation.

2.2.2 Accessibility of New Test Instances

When creating a new testbed, the focus should be on providtingrs access to
the problem instances. This will allow other researcheradoe easily make com-
parisons, ensuring the problem instances are widely used.v@y to ensure this
would be to create a simple generating function for the mnobinstances. For in-
stance, the clustering algorithm proposed in [13] that eoted TSPLIB instances
into clustered instances for the Generalized Travelings$aan Problem was sim-
ple, making it easy for others to create identical problestances. Additionally,

publishing the problem instances tested is another effegtay to make them ac-
cessible. This was an effective technique used, for instand7, 31].

In developing a new testbed, capturing real aspects of agmols important.
For instance, in the problem instances found in [13], thetelting algorithm placed
nodes in close proximity to each other in the same clustetucimg real-life char-
acteristics of this problem.

2.2.3 Geometrically Constructed Problem Instances

One problem in the analysis of metaheuristics, as discussenbre detail in Sec-

tion 4 is finding errors for the algorithms. Even when usingaatted techniques,
it is typically difficult to determine optimal solutions féarge problem instances.
A way to minimize the difficulty in this step is to use geomesitly constructed

solutions for which optimal or near-optimal solutions apparent. This removes
the burden on the metaheuristics designer to also impleareexact approach, re-
laxation results, or a tight lower bound. Instead, the dexigan use the specially
designed problem instances and provide a good estimate efthr of each meta-
heuristic tested.

A number of papers in the literature have used this apprdaahinstance, in
[6], problem instances for the split delivery vehicle ragtproblem were generated
with customers in concentric circles around the depot, ngakstimation of optimal
solutions possible visually. Other examples of this apgaae found in [5, 20, 21,
22].

4 John Silberholz and Bruce Golden

2.3 Problem Instance Classification

Regardless of whether an existing or new testbed is useskifyleng the problem
instances being tested is critical to the proper analysiedafistics. Differentiating
factors between problem instances should be noted prionycegperimentation,
and heuristic performance on each type of problem instahoeld be discussed.
A good example of such analysis is found in [17], an experi@egvaluation of
heuristics for the resource-constrained project schedyioblem. That paper split
problem instances by three key problem instance param#iersetwork complex-
ity, resource factor, and resource strength, analyzingfieets of each on the per-
formance of the heuristics. Especially in testbeds basedalrworld data, this clas-
sification of problem instances and subsequent analyslid belp algorithm writers
in industry with a certain type of dataset to determine whietthod will work the
best for them.

3 Parameters

Though deciding upon a quality testbed is critical when carimg solution qual-
ities and runtimes, it is also important to compare the ddlgorithms. This can
be accomplished in part by considering the complexity ofdlgorithms; if two
algorithms produce similar results but one is significastimpler than the other,
then the simpler of the two is a superior algorithm. Algamthwith a low degree of
complexity have a number of advantages, including beingkno implement in
an industrial setting, being simple to reimplement by resears, and being simpler
to explain and analyze.

A number of measures of simplicity exist. Reasonable netiriclude the num-
ber of steps of pseudocode needed to describe the algorittime aumber of lines
of code needed to implement the algorithm. However, thedeica@re not partic-
ularly useful, as they vary based on programming languadesspte in the case of
the lines of code metric and pseudocode level of detail icése of the pseudocode
length metric. A more meaningful metric for algorithmic cplexity is the number
of parameters used in the algorithm.

Parameters are the configurable components of an algotitincan be changed
to alter the performance of that algorithm. Parameters @therebe set statically
(for instance, creating a genetic algorithm with a popolasize of 50) or based on
the problem instance (for instance, creating a geneticriifigo with a population
size of 5/n, where n is the number of nodes in the problem instance) tiheeof
these cases, the constant value of the parameter or thédfiunéproblem instance
attributes used to generate the parameter must be predeteriyy the algorithm
designer.

Each major type of metaheuristic has a number of paramétatsriust be set
before algorithm execution. Consider Table 1, which listsib parameters required
for major types of metaheuristics. Though these are guidslfor the minimum

Comparison of Metaheuristics 5

Table 1 Popular metaheuristics and their standard parameters

Name Parameters

Ant Colony Optimization Pheromone evaporation parameter
Pheromone weighting parameter

Genetic Algorithm Crossover Probability
Mutation Probability
Population size

Harmony Search Distance Bandwidth
Memory Size
Pitch Adjustment Rate
Rate of Choosing from Memaory

Simulated Annealing Annealing rate

Initial temperature
Tabu Search Tabu list length
Variable Neighborhood Search None

number of parameters typical in different types of algan#fy in practice, most
metaheuristics have more parameters. For instance, atahsicearch procedure
can have just one parameter, the tabu list length. Howewere pprocedures have
many more than that one parameter. The tabu search for theeseduting problem
presented in [33] uses 32 parameters. Likewise, algoritanshave fewer than the
“minimum” number of parameters by combining parameter$ wie same value.
For instance, the genetic algorithm for the minimum labelrspng tree problem
in [32] uses just one parameter, which functions to bothrabttie population size
and to serve as a termination criterion.

3.1 Parameter Space Visualization and Tuning

Metaheuristics using many parameters are more complexpiteedures with few
parameters for a number of reasons. First, the effort neexache or understand
these parameters is far greater as the number of parametezases. A brute-force
technique for parameter tuning involves testmgparameter values for each of the
n parameters, a procedure that should t&tonfigurations over a subset of the
problem instances. Assuming we choose to test just 3 vatuesath parameter, we
must test 9 configurations for an algorithm with 2 parametads2,187 values for an
algorithm with 7 parameters. While this number of configiarad is likely quite rea-
sonable, the number needed for a 32-parameter algoritl®$3,020,188,851,841,
is clearly not reasonable. The size of the parameter spa@nfalgorithm with a
large number of parameters expands in an exponential mamag&mng the search
for a good set of parameters much more difficult as the numbpa@meters in-

6 John Silberholz and Bruce Golden

Fig. 1 Depiction of solution
quality of a metaheuristic

for the generalized orien-
teering problem over its 2-
dimensional parameter space.
The x-axis is the parameter
at 3 separate values and the
y-axis is the parametérover

a large range of values. The
widths in the figure represent
error of the algorithm; a small
width represents a small error.

i nqlllﬁnmhuuu (D0 | e o 0 |1||||-n|m||
||11i||||||||ﬂl|||||ﬂ-l|| IR TR O TN T

creases. While, of course, there are far better ways to Iséarggood parameter
combinations than brute-force search, the size of the keg@ce still increases ex-
ponentially with the number of parameters, meaning a latgeber of parameters
makes this search much more difficult.

Larger numbers of parameters also make the parameter spade hmarder to
visualize or understand. As a motivating example, condiderrelative ease with
which the parameter space of an algorithm with two pararmetar be analyzed. We
analyzed the 2-parameter metaheuristic due to [30] foiirsglthe Generalized Ori-
enteering Problem on a few random problems from the TSPla&et large-scale
Orienteering Problem dataset considered in that papernatyze this algorithm,
we chose a number of parameter configurations in which eaemder value was
close to the parameter values used in that paper. For eaamptar set, the algo-
rithm was run 20 times on each of five randomly selected prolitestances from
all the TSPLIB-based instances used. The optimal soluaoaknown for each of
the five problem instances tested.

The resulting image, shown in Figure 1, is a testament toithpliity of anal-
ysis of an algorithm with just 2 parameters. In this figurdfedent values of the
parametei are shown on the x-axis, while different values of the patanteare
shown on the y-axis. Parameies an integral parameter with small values, so re-
sults are plotted in three columns representing the thrieesgested for that param-
eter: 3, 4, and 5. For each parameter set (a paiandit), a horizontal line is plotted
with width normalized by the average error of the algorithmerothe 20 runs for
each of the five problem instances tested. A narrow widthesponds to an average
error near the best performance of the testing, which58%, while a wide width
corresponds to an average error near the worst performéiice testing, which is
4.08%. In a dense parameter space, the same sort of visuatizatild be gleaned
by coloring dots with colors relating to the error or by pretieg a 3-dimensional
depiction, where the z-coordinate is the error.

Comparison of Metaheuristics 7

Itis immediately clear that the two lower values tested f8rand 4, are superior
to the higher value of 5 on the problem instances testedh&uyrit appears that
higher values ot are preferred over lower ones for all of the values ¢dsted,
ignoring a single outlier with higher error for loinand hight.

This sort of simplistic visual analysis becomes more diffias the dimension-
ality of the parameter space increases. It is certainly iples$o visualize a 3-
dimensional parameter space in which the color at each Epnesents the solution
quality of the algorithm with that parameter set, though thichnique suffers from
difficulties in viewing the interior points in a cubic parateespace with the exte-
rior points in the way. Though visualizations of 4-dimemsibspaces do exist (see,
for instance, [18]), the visualizations do not provide imf@tion that is nearly as
intuitive, decreasing the simplicity with which the paraserespace can be visual-
ized. Certainly no simple visualizations are available¥2rdimensional parameter
spaces.

3.2 Parameter Interactions

This is not the only downside of metaheuristics with a largmher of parameters.
Another shortcoming is apparent in the susceptibility ohegé parameter set to
exhibit complex parameter interactions. These complestautions might lead to,
for instance, multiple locally optimal solutions in the pareter space in terms of
solution quality. In a more practical optimization sensgs toncept of parameter
interaction implies that optimizing parameters indivitlypar in small groups will
become increasingly ineffective as the total number of patars increases.

Parameter interaction is a topic that has been documengedaniety of works.
For instance, in [10] the authors observe non-trivial patminteractions in genetic
algorithms with just three parameters. These authors hatdhie effectiveness of a
given parameter mix is often highly based on the set of probitestances consid-
ered and the function being optimized, further noting therslependent nature of
the parameters. To a certain extent, it is often very diffimuavoid parameter inter-
actions such as these. In the case of genetic algorithmg)dtance, a population
size parameter, crossover probability parameter, andtimntprobability parame-
ter are typically used, meaning these algorithms will talichave at least the three
parameters considered by Deb and Agrawal. However, thereldeen genetic algo-
rithms developed that operate using only one parametergi3@bne [29], actually
eliminating the possibility of parameter interactions.

Though to some degree there is parameter interaction imitdges with a small
number of parameters, we believe that the level of intevadticreases dramatically
with the number of parameters. To our knowledge, no resdasibeen done on the
effects of the number of parameters in a metaheuristic or$teuon the parameter
interactions for that algorithm. However, we propose a &&ngxperiment to test
this hypothesis.

8 John Silberholz and Bruce Golden

First, the experimenter should select a combinatoriaihoigttion problem for
which a large number of metaheuristics have been develdpeasonable choices
might be the Traveling Salesman Problem or the Vehicle RgwRroblem. Next, the
experimenter should obtain implementations of a numbehaoge metaheuristics,
preferably of different types (genetic algorithm, taburskasimulated annealing,
ant colony optimization, etc.) and necessarily with a rasfgeumber of parameters.

The next step would be to test the parameter interactiong umsethods designed
for this purpose on a representative set of problem instafarethe problem con-
sidered. One method that could capture parameter interactif any order would
be a full factorial design, in which a reasonable maximum @i@imum value is
selected for each parameter and each combination of highoandalues for each
parameter is tested. However, the number of configuratested with this method
is exponential; a 32-parameter algorithm would requiré4,267,296 configura-
tions to be tested, which is almost certainly not reasondblen a 10-parameter
algorithm, which is not uncommon in metaheuristics todayyld require tests on
over 1,000 configurations, likely a computational burden.

Thus, a better design might be the Plackett-Burman methgghjithich requires
a number of configurations that is linear in the number of patars considered.
Though this method is limited in that it can only show seconder parameter in-
teractions (the interactions between pairs of paramettris)is not an enormous
concern as most parameter interactions are of the secordadety [24].

In either of these two designs, the number and magnituderafypeter interac-
tions will be measured for each of the algorithms, and a coispaof the intensity
of the interactions will be possible. We believe that notyonlll the number and
magnitude of second-order interactions increase as the$ithe parameter set in-
creases, but the same will be true for the higher-orderactems measured through
the full-factorial design (if it is possible to use this dgs).

3.3 Fair Testing Involving Parameters

Though the effect of parameters on algorithmic simpliGtgmn important considera-
tion, itis not the only area of interest in parameters whilmparing metaheuristics.
The other major concern is one of fairness in parameter ¢uiif one algorithmis
tuned very carefully to the particular set of problem ins&sion which it is tested,
this can make comparisons on these instances unfair. thstéaning parameters on
all the problem instances used for testing, a fairer metloydor parameter setting
involves choosing a representative subset of the problstarices to train param-
eters on, to avoid overtraining the data. The complemestalpget can be used for
testing and comparing metaheuristics. A full descriptibome such methodology
can be found in [9].

Comparison of Metaheuristics 9

4 Solution Quality Comparisons

While it is important to gather a meaningful testbed and tmgare the metaheuris-
tics in terms of simplicity by considering their number ofrpmeters, one of the
most important comparisons involves solution quality. deturistics are designed
to give solutions of good quality in runtimes better thansthof exact approaches.
To be meaningful, a metaheuristic must give acceptabldienk) for some defini-
tion of acceptable.

Depending on the application, the amount of permissibléadiew from the opti-
mal solution varies. For instance, in many long-term plagrpplications or appli-
cations critical to a company'’s business plan the amourgwhgssible error is much
lower than in optimization problems used for short-terrmpiag or for which the
solution is tangential to a company’s business plans. Ewethé same problem, the
amount of permissible error can differ dramatically. Fa@tamce, a parcel company
planning its daily routes to be used for the next year usimgcpacitated vehi-
cle routing problem would likely have much less error tote@than a planning
committee using the capacitated vehicle routing problepiaa the distribution of
voting materials in the week leading up to Election Day.

As a result, determining a target solution quality for a comatorial optimiza-
tion problem is often difficult or impossible. Thus, when quaning metaheuristics
it is not sufficient to determine if each heuristic meets aunegyl solution quality
threshold; comparison among the heuristics is necessary.

4.1 Solution Quality Metrics

To compare two algorithms in terms of solution quality, anieceb represent the so-
lution quality is needed. In this discussion of the potdmiatrics to be selected, we
assume that solution quality comparisons are being maddtoyeame problem in-
stances. Comparisons over different instances are ggneesdker, as the instances
being compared often have different structures and alnestialy have different
optimal values and difficulties.

Of course, the best metric to use in solution quality congearis the deviation
of the solutions returned by the algorithms from optimalkinding the average
percentage error over all problems is common practice,iasttategy gives equal
weight to each problem instance (instead of, for instanemgpreference to prob-
lem instances with larger optimal solution values).

However, using this metric requires knowledge of the opltisnéution for every
problem instance tested. However, this is a presupposhitrikely cannot always
be made. If optimal solutions are available for every probiestance tested upon,
the problem instances being considered are likely not largrigh, since exact al-
gorithms can provide solutions in reasonable runtimes.

This introduces the need for new metrics that can providenmegéul informa-
tion without access to the optimal solution for all (or pdtalty any) problem in-

10 John Silberholz and Bruce Golden

stances. Two popular metrics that fit this description akeatien from best-known
solutions for a problem and deviation between the algostheing compared.

Deviation from best-known solution or tightest lower bowaah be used on prob-
lems for which an optimal solution was sought but optimalsohs were not ob-
tained for some problem instances within a predetermimee limit. In these cases,
deviation from best-known solution or tightest relaxatiomeaningful because for
most problem instances the best-known solution or tightdaiation will be an
optimal solution. An example of the successful applicatbthis approach can be
found in [14]. In that paper, a metaheuristic, optimal Solutand relaxation of that
optimal solution are all created. Though the optimal solutivas not run on the
largest problem instances due to the excessive runtiméreeljthe low error of the
metaheuristic from the optimal solution on the smaller peots (025%) reinforces
moderate deviations from the relaxed solutions over abjem instances (69%).

The metric can also be used for problems for which no optimlat®n has been
published, though the resulting deviations are less megauinlt is unclear to a
reader how well the algorithm performs without an undeditagn of how close the
best-known solutions or tight lower bounds are to optiméaitsons.

Though it also addresses the issue of not having accessitoab@olutions, a
metric of deviation between the algorithms being compaptates differently —
any evaluation of solution quality is done in relation to diker algorithm(s) being
considered. This method has the advantage of making thearisop between the
algorithms very explicit — all evaluations, in fact, compdhe two or more algo-
rithms. However, these comparisons lack any sense of thialaatror of solutions.
Regardless of how an algorithm fares against another #itgorits actual error as
compared to the optimal solution is unavailable using thesrim. Therefore, using a
metric of deviation from another algorithm loses much ofiisaningfulness unless
accompanied by additional information, such as optimaltsmhs for some of the
problem instances, relaxation results for the problemaimsts, or deviation from
tight lower bounds (to give a sense of the global optimalitthe algorithms).

4.2 Multi-objective Solution Quality Comparisons

Though this section has focused on solution quality conspas of single-objective
heuristics, much work has also been done on the comparisbeurfstics seeking
to optimize multiple objective functions. For a detaileaceoxiew of multi-objective

optimization and some of the difficulties encountered in paring multi-objective

metaheuristics, see [8]. For an example of the applicationeiaheuristics to mul-
tiobjective optimization problems, see [26].

Comparison of Metaheuristics 11

5 Runtime Comparisons

While it is necessary that a metaheuristic demonstrate gohdion quality to be
considered viable, having a fast runtime is another cfitiegessity. If metaheuris-
tics did not run quickly, there would be no reason to choossetapproaches over
exact algorithms.

At the same time, runtime comparisons are some of the mdgtulifcompar-
isons to make. This is fueled by difficulties in comparingtimnes of algorithms that
compiled with different compilers (using different congiibn flags) and executed
on different computers, potentially on different testheds

5.1 The Best Runtime Comparison Solution

The best solution is, of course, to get the source code foaltierithm, compile it
on the same computer with the same compilation flags as yonrcode, and run
both algorithms on the same computer. This is certainly #st bolution in terms
of runtime comparison, as the runtimes for a given problearttaen directly com-
parable. Further, assuming the code can be obtained, thisiatively simple way
to compare the solution qualities. However, this technigueomparing algorithm
runtimes is often not possible.

One case in which it is not possible is if the algorithms weggpammed in dif-
ferent languages. This implies that their runtimes are eotnsarily directly com-
parable. Though attempts have been made to benchmark progng languages in
terms of solution qualities (see, for instance, [4]), thesechmarks are susceptible
to the type of program being run, again rendering any presmseparison difficult.
Further invariants in these comparisons include compitingzations. The pop-
ular C compiler gcc has over 100 optimization flags that casdieto fine-tune
the performance of a C program. As most papers do not reporpider optimiza-
tion flags along with computational results, it would be difft to obtain the exact
scalar multiplier for a C program without additional infaation. Therefore, while
the technique of obtaining a scalar multiplier between progning languages will
almost certainly allow comparisons accurate to within amheorof magnitude be-
tween algorithms coded in different programming languatiese methods cannot
provide precise comparisons.

5.2 Other Comparison Methods

It is sometimes not possible to obtain the source code foalfperithm to which
we compare. The source code may have been lost (especidhg icase of older
projects) or the authors may be unwilling to share their sewwode. While this
does make runtime comparison harder, it does not excuserattbm performing

12 John Silberholz and Bruce Golden

these computations — they are critical to the comparisomvofalgorithms. Two
major approaches remain for a researcher to compare runtiesveen the two
algorithms, each with advantages and disadvantages.

The firstis to reimplement another researcher’s code ingheedanguage as your
code, running it on the same computer on the same probleanicess. This has the
advantage of actually running the same algorithm on the daamdware with the
same compiler on the same computer, all positive attribeftescomparison. How-
ever, this approach suffers from two major weaknesseg, Bome algorithms are
not clear on certain details of the approach, making an eratiplementation dif-
ficult. While statistical tests can be used to prove thattgmigualities returned by
the two algorithms are not statistically significantly diént between the two im-
plementations, this makes direct comparison of the resubte difficult. Second,
there is no guarantee that the approach used to reimplemetitea researcher’s
code is really similar to their original code. For instanites other researcher may
have used a clever data structure or algorithm to optimizéieat part of the code,
yielding better runtime efficiency. As there is little inc¢e for a researcher to per-
form the hard work of optimizing the code to compare agaimst,much incentive
to optimize one’s own code, we believe it is fair to say thahmementations typ-
ically overstate the runtime performance of a new algorithrer an existing one
(see [3] for a humorous view of issues such as these).

The other approach does not suffer from these weaknessdésislapproach,
published results of an algorithm over a publicly availatd¢aset are compared to
a new algorithm’s results on the same dataset. While theselelteeing tested is the
same and the algorithms being compared are the algorithimgpésmented by their
developers, the computer used to test these instance$dredif, and the compiler
and compiler flags used are likely also not the same. Thisoagprhas the advan-
tage of simplicity for the researcher — no reimplementatibother algorithms is
needed. Further, the implementations of each algorithntharenplementations of
their authors, meaning there are no questions about impietien as there were
in the reimplementation approach. However, the problem teenains to provide
a meaningful comparison between the two runtimes. Reseexdipically solve
this issue by using computer runtime comparison tables aadhe one found in
[11] to derive conservative runtime multipliers betweeea to algorithms. These
comparison tables are built by running a benchmarking #lyar(in the case of
[11], this algorithm is a system of linear equations solvethg LINPACK) and
comparing the time to completion for the algorithm. Howeitds well known that
these sorts of comparisons are imprecise and highly depéndehe program be-
ing benchmarked, and the very first paragraph of the bendtintapaper makes
sure to mention the limitations of this sort of benchmarkifighe timing informa-
tion presented here should in no way be used to judge thelbperformance of a
computer system. The results only reflect one problem aodang dense systems
of equations.” Hence, the multipliers gathered in this way only provide a rough
idea of runtime performance, clearly a downside of the aggino

Comparison of Metaheuristics 13

5.3 Runtime Growth Rate

Regardless of the comparison method used to compare algatiruntimes, the
runtime growth rate can be used as a universal languagedamotimparison of run-
time behaviors of two algorithms. While upper bounds onimatgrowth play an
important role in the discussion of heuristic runtimes, aheuristic analysis often
does not benefit from these sorts of metrics. Consider, f&tairce, a genetic al-
gorithm that terminates after a fixed number of iterationtheut improvement in
the solution quality of the best solution to date. No meafuihgorst-case analysis
can be performed, as there could be many intermediate blesibss encountered
during the metaheuristic’s execution. Even in metahdasisthere such analysis is
possible (for instance, a genetic algorithm with a fixed nendf generations be-
fore termination), the worst-case runtime will often notrepresentative of how
the algorithm will actually perform on problem instancescikasing its value. As a
result, the worst-case runtime is a bad choice for asyngaoialysis.

A much better approach for asymptotic analysis is fitting veuo the run-
times measured for each of the algorithms. Regression sinal/a well-known
technique that matches functions to a set of measurememntsponinimizing the
sum-of-squares error of the matching. These asymptotidtselselp indicate how
an algorithm might perform as the problem size increasesugh there is no guar-
antee that trends will continue past the endpoint of the samfmotivating testing
on large problem instances), asymptotic runtime trendkey¢o runtime analyses.
Even if one algorithm runs slower than another on small- odionma-sized problem
instances, a favorable asymptotic runtime suggests tloeitdgy may well perform
better on large-sized problem instances, where metalieatdse most helpful.

5.4 An Alternative to Runtime Comparisons

Though the focus thus far has been on runtime comparisars, #ine other forms of
computational complexity comparison that do not rely ortirmas. One of the most
intriguing, counting the number of representative operetithe algorithm uses, is
discussed in [1]. In this scheme, the number of a selecteaf bettleneck operations
is compared without any regard for the total execution tiffide algorithms being
compared.

There are several clear advantages to this approach oviameucomparisons.
As described in [1], it removes the invariants of compileoick, programmer sKill,
and power of computation platform, providing complexityasares that are easier
to replicate by other researchers. However, this approaféérs from the fact that
it is often difficult to identify good operations that eaclg@lithm being compared
will implement. The only function sure to be implemented wery procedure is
the evaluation of the function being optimized. As a resudimparisons of this type
often only compare on the optimization function, losingoimhation about other
operations, which could potentially be more expensive oremfiequently used. As

14 John Silberholz and Bruce Golden

a result, in the context of metaheuristic comparison thitinigque is best if used
along with more traditional runtime comparisons.

6 Conclusion

We believe following the procedures described in this papkincrease the qual-
ity of metaheuristic comparisons. In particular, choosingppropriate testbed and
distributing it so other researchers can access it willlt@smore high-quality com-
parisons of metaheuristics, as researchers will test osahee problem instances.
In addition, expanding the practice of creating geometrabfem instances with
easy-to-visualize optimal or near-optimal solutions wiltrease understanding of
how metaheuristics perform in a global optimization sense.

Furthermore, it is important to recognize that the numbealgbrithm param-
eters has a direct effect on the complexity of the algoritma an the number of
parameter interactions, which complicates analysis.dfrttmber of parameters is
considered in the analysis of metaheuristics, this willoemage simpler, easier-to-
analyze procedures.

Finally, good techniques in solution quality and runtimenparisons will ensure
fair and meaningful comparisons are carried out betweeameeitristics, producing
the most meaningful and unbiased results possible.

References

1. Ahuja, R., Orlin, J.: Use of representative operationnt®in computational testing of algo-
rithms. INFORMS Journal on Compultirgf3), 318—330 (1996)

2. Archetti, C., Feillet, D., Hertz, A., Speranza, M.G.: Ttepacitated team orienteering and
profitable tour problems (2009). Accepted for publicatindaurnal of the Operational Re-
search Society

3. Bailey, D.: Twelve ways to fool the masses when giving @enance results on parallel com-
puters. Supercomputing revie#(8), 54-55 (1991)

4. Bull, M., Smith, L., Pottage, L., Freeman, R.: Benchmagklava against C and Fortran for
scientific applications. In: ACM 2001 Java Grande/ISCOPEBf€ence, pp. 97-105 (2001)

5. Chao, I.M.: Algorithms and solutions to multi-level vela routing problems. Ph.D. thesis,
University of Maryland, College Park, MD (1993)

6. Chen, S., Golden, B., Wasil, E.: The split delivery vehiobuting problem: Applications,
algorithms, test problems, and computational resultswhieds 49, 318—-329 (2007)

7. Christofides, N., Eilon, S.: An algorithm for the vehiclesghtching problem. Operational
Research Quarterl80(3), 309-318 (1969)

8. Coello, C.: Evolutionary multi-objective optimizatioA historical view of the field. IEEE
Computational Intelligence Magazii€l), 28—-36 (2006)

9. Coy, S., Golden, B., Runger, G., Wasil, E.: Using expenitakedesign to find effective param-
eter settings for heuristics. Journal of Heurist@¢s$), 77-97 (2001)

10. Deb, K., Agarwal, S.: Understanding interactions amgegetic algorithm parameters. In:
Foundations of Genetic Algorithms, pp. 265-286. Morganfkaan, San Mateo, CA (1998)

Comparison of Metaheuristics 15

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Dongarra, J.: Performance of various computers usiaigdatd linear equations software.
Tech. rep., University of Tennessee (2009)

Dorigo, M., Stutzle, T.: Ant Colony Optimization. MITr&ss (2004)

Fischetti, M., Salazar Gonzalez, J.J., Toth, P.: A dneand-cut algorithm for the symmetric
generalized traveling salesman problem. Operations Resé3(3), 378-394 (1997)
Gamvros, |., Golden, B., Raghavan, S.: The multilevelaci#ated minimum spanning tree
problem. INFORMS Journal on Computiig(3), 348-365 (2006)

Gendreau, M., Laporte, G., Semet, F.: A tabu search sieufor the undirected selective
travelling salesman problem. European Journal of OperaltiBesearctiO6(2—3), 539-545
(1998)

Glover, F.: Tabu search: A tutorial. Interfac8§4), 74-94 (1990)

Hartmann, S., Kolisch, R.: Experimental evaluation tftesof-the-art heuristics for the
resource-constrained project scheduling problem. E@mgeurnal of Operational Research
127(2), 394—-407 (2000)

Hollasch, S.: Four-space visualization of 4d objects.DPthesis, Arizona State University,
Tempe, Arizona (1991)

Jans, R., Degraeve, Z.: Meta-heuristics for dynamisilohg: A review and comparison of
solution approaches. European Journal of OperationaldResEr7(3), 1855-1875 (2007)

Li, F., Golden, B., Wasil, E.: Very large-scale vehiabeting: New test problems, algorithms,
and results. Computers & Operations Rese&&{b), 1165-1179 (2005)

Li, F., Golden, B., Wasil, E.: The open vehicle routinglgem: Algorithms, large-scale test
problems, and computational results. Computers & OperatiResearci34(10), 2918—-2930
(2007)

Li, F., Golden, B., Wasil, E.: A record-to-record traségorithm for solving the heterogeneous
fleet vehicle routing problem. Computers & Operations Re$e34(9), 2734—2742 (2007)
Michalewicz, Z.: Genetic Algorithms + Data Structure€Ewolution Programs. Springer
(1996)

Montgomery, D.: Design and Analysis of Experiments.nJdliley & Sons (2006)

Nummela, J., Julstrom, B.: An effective genetic aldomtfor the minimum-label spanning
tree problem. In: Proceedings of the 8th Annual Conferent&enetic and Evolutionary
Computation, pp. 553-557. ACM (2006)

Paquete, L., Stutzle, T.: Design and analysis of s&ithibcal search for the multiobjective
traveling salesman problem. Computers & Operations Rels@&(9), 2619-2631 (2009)
Plackett, R., Burman, J.: The design of optimum multdeal experiments. Biometrika3s,
305-325 (1946)

Reinelt, G.: TSPLIB—a traveling salesman problem iaraORSA Journal on Computing
3(4), 376—384 (1991)

Sawai, H., Kizu, S.: Parameter-free genetic algorithspired by “disparity theory of evolu-
tion”. In: A. Eiben, T. Back, M. Schoenauer, H.P. Schwefsdg.) Parallel Problem Solving
from Nature — PPSN M.NCS vol. 1498, pp. 702—711. Springer Berlin / Heidelberg (1998
Silberholz, J., Golden, B.: The effective applicatidnaonew approach to the generalized
orienteering problem (2009). Accepted for publicatiodaonrnal of Heuristics

Wang, Q., Sun, X., Golden, B.L.: Using artificial neuratworks to solve generalized orien-
teering problems. In: C. Dagli, M. Akay, C. Chen, B. Fernémd]. Ghosh (eds.) Intelligent
Engineering Systems Through Artificial Neural NetworkslWwoe 6, pp. 1063-1068. ASME
Press, New York (1996)

Xiong, Y., Golden, B., Wasil, E.: A one-parameter genatgorithm for the minimum labeling
spanning tree problem. IEEE Transactions on Evolutionam@utation9(1), 55-60 (2005)
Xu, J., Kelly, J.: A network flow-based tabu search héigrfsr the vehicle routing problem.
Transportation Sciencgd(4), 379-393 (1996)

