
Comparison of Metaheuristics

John Silberholz and Bruce Golden

1 Introduction

Metaheuristics are truly diverse in nature — under the overarching theme of per-
forming operations to escape local optima (we assume minimain this chapter with-
out loss of generality), algorithms as different as ant colony optimization ([12]),
tabu search ([16]), and genetic algorithms ([23]) have emerged. Due to the unique
functionality of each type of metaheuristic, comparison ofmetaheuristics is in many
ways more difficult than other algorithmic comparisons.

In this chapter, we discuss techniques for meaningful comparison of metaheuris-
tics. In Section 2, we discuss how to create and classify instances in a new testbed
and how to make sure other researchers have access to the problems for future meta-
heuristic comparisons. In Section 3, we discuss the disadvantages of large parameter
sets and how to measure complicating parameter interactions in a metaheuristic’s pa-
rameter space. Last, in Sections 4 and 5, we discuss how to compare metaheuristics
in terms of both solution quality and runtime.

2 The Testbed

It seems natural that one of the most important parts of a comparison among heuris-
tics is the testbed on which the heuristics are tested. As a result, the testbed should
be the first consideration when comparing two metaheuristics.

John Silberholz
Center for Scientific Computing and Mathematical Modeling,University of Maryland, College
Park, MD 20740 e-mail: josilber@umd.edu

Bruce Golden
R.H. Smith School of Business, University of Maryland, College Park, MD 20740 e-mail:
bgolden@rhsmith.umd.edu

1



2 John Silberholz and Bruce Golden

2.1 Using Existing Testbeds

When comparing a new metaheuristic to existing ones, it is advantageous to test on
the problem instances already tested by previous papers. Then, results will be com-
parable on a by-instance basis, allowing relative gap calculations between the two
heuristics. Additionally, trends with regards to specific types of problem instances
in the testbed can be made, making analysis of the new metaheuristic simpler.

2.2 Developing New Testbeds

While ideally testing on an existing testbed would be sufficient, there are many
cases when this is either insufficient or not possible. For instance, when writing a
metaheuristic for a new problem, there will be no testbed forthat problem, so a
new one will need to be developed. In addition, even on existing problems where
heuristic solutions were tested on non-published, often randomly generated problem
instances, such as those presented in [15, 25], a different testbed will need to be used.
Last, if the existing testbed is insufficient (often due to being too small to effectively
test a heuristic), a new one will need to be developed.

2.2.1 Goals in Creating the Testbed

The goals of a problem suite include mimicking real-world problem instances while
providing test cases that are of various types and difficultylevels.

One key requirement of the testbed that is especially important in the testing of
metaheuristics is that large problem instances must be tested. For small instances,
optimal solution techniques often run in reasonable runtimes while giving the ad-
vantage of a guaranteed optimal solution. It is, therefore,critical that metaheuristic
testing occurs on the large problems for which optimal solutions could not be calcu-
lated in reasonable runtimes. As discussed in [19], it is notenough to test on small
problem instances and extrapolate the results for larger instances; algorithms can
perform differently in both runtime and solution quality onlarge problem instances.

While it is desirable that the new testbed be based on probleminstances found
in industrial applications of the problem being tested (like the TSPLIB, [28]), it is
typically time intensive to do this sort of data collection.Often real-world data is
proprietary and, therefore, difficult to obtain. Furthermore, the problem instances
generated will typically be small in number and size. For instance, real-world prob-
lem instances used for testing on the Generalized TravelingSalesman Problem pro-
posed in [13] all had fewer than 50 nodes. In addition, there were only two real-
world problem instances proposed; nearly all of the probleminstances used in that
paper did not come from real-world data, and all of the largerproblem instances
were artificial.



Comparison of Metaheuristics 3

As a result, it is generally more reasonable to create a testbed based on existing
well-known problem instances than it is to create one from scratch. For instance,
many testbeds have been successfully made based off the TSPLIB. In the case of
the Generalized Traveling Salesman Problem, [13] established a well-used testbed
based on a simple extension to TSPLIB problem instances. Another example of such
an extension can be found in [2], in which the authors tested several different mod-
ified versions of 10 benchmark VRP problems and reported computational results
on each variation.

2.2.2 Accessibility of New Test Instances

When creating a new testbed, the focus should be on providingothers access to
the problem instances. This will allow other researchers tomore easily make com-
parisons, ensuring the problem instances are widely used. One way to ensure this
would be to create a simple generating function for the problem instances. For in-
stance, the clustering algorithm proposed in [13] that converted TSPLIB instances
into clustered instances for the Generalized Traveling Salesman Problem was sim-
ple, making it easy for others to create identical problem instances. Additionally,
publishing the problem instances tested is another effective way to make them ac-
cessible. This was an effective technique used, for instance, in [7, 31].

In developing a new testbed, capturing real aspects of a problem is important.
For instance, in the problem instances found in [13], the clustering algorithm placed
nodes in close proximity to each other in the same cluster, capturing real-life char-
acteristics of this problem.

2.2.3 Geometrically Constructed Problem Instances

One problem in the analysis of metaheuristics, as discussedin more detail in Sec-
tion 4 is finding errors for the algorithms. Even when using advanced techniques,
it is typically difficult to determine optimal solutions forlarge problem instances.
A way to minimize the difficulty in this step is to use geometrically constructed
solutions for which optimal or near-optimal solutions are apparent. This removes
the burden on the metaheuristics designer to also implementan exact approach, re-
laxation results, or a tight lower bound. Instead, the designer can use the specially
designed problem instances and provide a good estimate of the error of each meta-
heuristic tested.

A number of papers in the literature have used this approach.For instance, in
[6], problem instances for the split delivery vehicle routing problem were generated
with customers in concentric circles around the depot, making estimation of optimal
solutions possible visually. Other examples of this approach are found in [5, 20, 21,
22].



4 John Silberholz and Bruce Golden

2.3 Problem Instance Classification

Regardless of whether an existing or new testbed is used, classifying the problem
instances being tested is critical to the proper analysis ofheuristics. Differentiating
factors between problem instances should be noted prior to any experimentation,
and heuristic performance on each type of problem instance should be discussed.
A good example of such analysis is found in [17], an experimental evaluation of
heuristics for the resource-constrained project scheduling problem. That paper split
problem instances by three key problem instance parameters, the network complex-
ity, resource factor, and resource strength, analyzing theeffects of each on the per-
formance of the heuristics. Especially in testbeds based onreal-world data, this clas-
sification of problem instances and subsequent analysis could help algorithm writers
in industry with a certain type of dataset to determine whichmethod will work the
best for them.

3 Parameters

Though deciding upon a quality testbed is critical when comparing solution qual-
ities and runtimes, it is also important to compare the actual algorithms. This can
be accomplished in part by considering the complexity of thealgorithms; if two
algorithms produce similar results but one is significantlysimpler than the other,
then the simpler of the two is a superior algorithm. Algorithms with a low degree of
complexity have a number of advantages, including being simple to implement in
an industrial setting, being simple to reimplement by researchers, and being simpler
to explain and analyze.

A number of measures of simplicity exist. Reasonable metrics include the num-
ber of steps of pseudocode needed to describe the algorithm or the number of lines
of code needed to implement the algorithm. However, these metrics are not partic-
ularly useful, as they vary based on programming language and style in the case of
the lines of code metric and pseudocode level of detail in thecase of the pseudocode
length metric. A more meaningful metric for algorithmic complexity is the number
of parameters used in the algorithm.

Parameters are the configurable components of an algorithm that can be changed
to alter the performance of that algorithm. Parameters can either be set statically
(for instance, creating a genetic algorithm with a population size of 50) or based on
the problem instance (for instance, creating a genetic algorithm with a population
size of 5

√

n, where n is the number of nodes in the problem instance). In either of
these cases, the constant value of the parameter or the function of problem instance
attributes used to generate the parameter must be predetermined by the algorithm
designer.

Each major type of metaheuristic has a number of parameters that must be set
before algorithm execution. Consider Table 1, which lists basic parameters required
for major types of metaheuristics. Though these are guidelines for the minimum



Comparison of Metaheuristics 5

Table 1 Popular metaheuristics and their standard parameters

Name Parameters

Ant Colony Optimization Pheromone evaporation parameter
Pheromone weighting parameter

Genetic Algorithm Crossover Probability
Mutation Probability
Population size

Harmony Search Distance Bandwidth
Memory Size
Pitch Adjustment Rate
Rate of Choosing from Memory

Simulated Annealing Annealing rate
Initial temperature

Tabu Search Tabu list length

Variable Neighborhood Search None

number of parameters typical in different types of algorithms, in practice, most
metaheuristics have more parameters. For instance, a basictabu search procedure
can have just one parameter, the tabu list length. However, some procedures have
many more than that one parameter. The tabu search for the vehicle routing problem
presented in [33] uses 32 parameters. Likewise, algorithmscan have fewer than the
“minimum” number of parameters by combining parameters with the same value.
For instance, the genetic algorithm for the minimum label spanning tree problem
in [32] uses just one parameter, which functions to both control the population size
and to serve as a termination criterion.

3.1 Parameter Space Visualization and Tuning

Metaheuristics using many parameters are more complex thanprocedures with few
parameters for a number of reasons. First, the effort neededto tune or understand
these parameters is far greater as the number of parameters increases. A brute-force
technique for parameter tuning involves testingm parameter values for each of the
n parameters, a procedure that should testnm configurations over a subset of the
problem instances. Assuming we choose to test just 3 values for each parameter, we
must test 9 configurations for an algorithm with 2 parametersand 2,187 values for an
algorithm with 7 parameters. While this number of configurations is likely quite rea-
sonable, the number needed for a 32-parameter algorithm, 1,853,020,188,851,841,
is clearly not reasonable. The size of the parameter space for an algorithm with a
large number of parameters expands in an exponential manner, making the search
for a good set of parameters much more difficult as the number of parameters in-



6 John Silberholz and Bruce Golden

Fig. 1 Depiction of solution
quality of a metaheuristic
for the generalized orien-
teering problem over its 2-
dimensional parameter space.
The x-axis is the parameteri
at 3 separate values and the
y-axis is the parametert over
a large range of values. The
widths in the figure represent
error of the algorithm; a small
width represents a small error.

creases. While, of course, there are far better ways to search for good parameter
combinations than brute-force search, the size of the search space still increases ex-
ponentially with the number of parameters, meaning a large number of parameters
makes this search much more difficult.

Larger numbers of parameters also make the parameter space much harder to
visualize or understand. As a motivating example, considerthe relative ease with
which the parameter space of an algorithm with two parameters can be analyzed. We
analyzed the 2-parameter metaheuristic due to [30] for solving the Generalized Ori-
enteering Problem on a few random problems from the TSPLIB-based large-scale
Orienteering Problem dataset considered in that paper. To analyze this algorithm,
we chose a number of parameter configurations in which each parameter value was
close to the parameter values used in that paper. For each parameter set, the algo-
rithm was run 20 times on each of five randomly selected problem instances from
all the TSPLIB-based instances used. The optimal solutionsare known for each of
the five problem instances tested.

The resulting image, shown in Figure 1, is a testament to the simplicity of anal-
ysis of an algorithm with just 2 parameters. In this figure, different values of the
parameteri are shown on the x-axis, while different values of the parameter t are
shown on the y-axis. Parameteri is an integral parameter with small values, so re-
sults are plotted in three columns representing the three values tested for that param-
eter: 3, 4, and 5. For each parameter set (a pair ofi andt), a horizontal line is plotted
with width normalized by the average error of the algorithm over the 20 runs for
each of the five problem instances tested. A narrow width corresponds to an average
error near the best performance of the testing, which is 2.53%, while a wide width
corresponds to an average error near the worst performance of the testing, which is
4.08%. In a dense parameter space, the same sort of visualization could be gleaned
by coloring dots with colors relating to the error or by presenting a 3-dimensional
depiction, where the z-coordinate is the error.



Comparison of Metaheuristics 7

It is immediately clear that the two lower values tested fori, 3 and 4, are superior
to the higher value of 5 on the problem instances tested. Further, it appears that
higher values oft are preferred over lower ones for all of the values ofi tested,
ignoring a single outlier with higher error for lowi and hight.

This sort of simplistic visual analysis becomes more difficult as the dimension-
ality of the parameter space increases. It is certainly possible to visualize a 3-
dimensional parameter space in which the color at each pointrepresents the solution
quality of the algorithm with that parameter set, though this technique suffers from
difficulties in viewing the interior points in a cubic parameter space with the exte-
rior points in the way. Though visualizations of 4-dimensional spaces do exist (see,
for instance, [18]), the visualizations do not provide information that is nearly as
intuitive, decreasing the simplicity with which the parameter space can be visual-
ized. Certainly no simple visualizations are available for32-dimensional parameter
spaces.

3.2 Parameter Interactions

This is not the only downside of metaheuristics with a large number of parameters.
Another shortcoming is apparent in the susceptibility of a large parameter set to
exhibit complex parameter interactions. These complex interactions might lead to,
for instance, multiple locally optimal solutions in the parameter space in terms of
solution quality. In a more practical optimization sense, this concept of parameter
interaction implies that optimizing parameters individually or in small groups will
become increasingly ineffective as the total number of parameters increases.

Parameter interaction is a topic that has been documented ina variety of works.
For instance, in [10] the authors observe non-trivial parameter interactions in genetic
algorithms with just three parameters. These authors note that the effectiveness of a
given parameter mix is often highly based on the set of problem instances consid-
ered and the function being optimized, further noting the interdependent nature of
the parameters. To a certain extent, it is often very difficult to avoid parameter inter-
actions such as these. In the case of genetic algorithms, forinstance, a population
size parameter, crossover probability parameter, and mutation probability parame-
ter are typically used, meaning these algorithms will typically have at least the three
parameters considered by Deb and Agrawal. However, there have been genetic algo-
rithms developed that operate using only one parameter [32]or none [29], actually
eliminating the possibility of parameter interactions.

Though to some degree there is parameter interaction in algorithms with a small
number of parameters, we believe that the level of interaction increases dramatically
with the number of parameters. To our knowledge, no researchhas been done on the
effects of the number of parameters in a metaheuristic or heuristic on the parameter
interactions for that algorithm. However, we propose a simple experiment to test
this hypothesis.



8 John Silberholz and Bruce Golden

First, the experimenter should select a combinatorial optimization problem for
which a large number of metaheuristics have been developed.Reasonable choices
might be the Traveling Salesman Problem or the Vehicle Routing Problem. Next, the
experimenter should obtain implementations of a number of those metaheuristics,
preferably of different types (genetic algorithm, tabu search, simulated annealing,
ant colony optimization, etc.) and necessarily with a rangeof number of parameters.

The next step would be to test the parameter interactions using methods designed
for this purpose on a representative set of problem instances for the problem con-
sidered. One method that could capture parameter interactions of any order would
be a full factorial design, in which a reasonable maximum andminimum value is
selected for each parameter and each combination of high andlow values for each
parameter is tested. However, the number of configurations tested with this method
is exponential; a 32-parameter algorithm would require 4,294,967,296 configura-
tions to be tested, which is almost certainly not reasonable. Even a 10-parameter
algorithm, which is not uncommon in metaheuristics today, would require tests on
over 1,000 configurations, likely a computational burden.

Thus, a better design might be the Plackett-Burman method [27], which requires
a number of configurations that is linear in the number of parameters considered.
Though this method is limited in that it can only show second-order parameter in-
teractions (the interactions between pairs of parameters), this is not an enormous
concern as most parameter interactions are of the second order variety [24].

In either of these two designs, the number and magnitude of parameter interac-
tions will be measured for each of the algorithms, and a comparison of the intensity
of the interactions will be possible. We believe that not only will the number and
magnitude of second-order interactions increase as the size of the parameter set in-
creases, but the same will be true for the higher-order interactions measured through
the full-factorial design (if it is possible to use this design).

3.3 Fair Testing Involving Parameters

Though the effect of parameters on algorithmic simplicity is an important considera-
tion, it is not the only area of interest in parameters while comparing metaheuristics.
The other major concern is one of fairness in parameter tuning — if one algorithm is
tuned very carefully to the particular set of problem instances on which it is tested,
this can make comparisons on these instances unfair. Instead of tuning parameters on
all the problem instances used for testing, a fairer methodology for parameter setting
involves choosing a representative subset of the problem instances to train param-
eters on, to avoid overtraining the data. The complementarysubset can be used for
testing and comparing metaheuristics. A full description of one such methodology
can be found in [9].



Comparison of Metaheuristics 9

4 Solution Quality Comparisons

While it is important to gather a meaningful testbed and to compare the metaheuris-
tics in terms of simplicity by considering their number of parameters, one of the
most important comparisons involves solution quality. Metaheuristics are designed
to give solutions of good quality in runtimes better than those of exact approaches.
To be meaningful, a metaheuristic must give acceptable solutions, for some defini-
tion of acceptable.

Depending on the application, the amount of permissible deviation from the opti-
mal solution varies. For instance, in many long-term planning applications or appli-
cations critical to a company’s business plan the amount of permissible error is much
lower than in optimization problems used for short-term planning or for which the
solution is tangential to a company’s business plans. Even for the same problem, the
amount of permissible error can differ dramatically. For instance, a parcel company
planning its daily routes to be used for the next year using the capacitated vehi-
cle routing problem would likely have much less error tolerance than a planning
committee using the capacitated vehicle routing problem toplan the distribution of
voting materials in the week leading up to Election Day.

As a result, determining a target solution quality for a combinatorial optimiza-
tion problem is often difficult or impossible. Thus, when comparing metaheuristics
it is not sufficient to determine if each heuristic meets a required solution quality
threshold; comparison among the heuristics is necessary.

4.1 Solution Quality Metrics

To compare two algorithms in terms of solution quality, a metric to represent the so-
lution quality is needed. In this discussion of the potential metrics to be selected, we
assume that solution quality comparisons are being made over the same problem in-
stances. Comparisons over different instances are generally weaker, as the instances
being compared often have different structures and almost certainly have different
optimal values and difficulties.

Of course, the best metric to use in solution quality comparison is the deviation
of the solutions returned by the algorithms from optimality. Finding the average
percentage error over all problems is common practice, as this strategy gives equal
weight to each problem instance (instead of, for instance, giving preference to prob-
lem instances with larger optimal solution values).

However, using this metric requires knowledge of the optimal solution for every
problem instance tested. However, this is a presuppositionthat likely cannot always
be made. If optimal solutions are available for every problem instance tested upon,
the problem instances being considered are likely not largeenough, since exact al-
gorithms can provide solutions in reasonable runtimes.

This introduces the need for new metrics that can provide meaningful informa-
tion without access to the optimal solution for all (or potentially any) problem in-



10 John Silberholz and Bruce Golden

stances. Two popular metrics that fit this description are deviation from best-known
solutions for a problem and deviation between the algorithms being compared.

Deviation from best-known solution or tightest lower boundcan be used on prob-
lems for which an optimal solution was sought but optimal solutions were not ob-
tained for some problem instances within a predetermined time limit. In these cases,
deviation from best-known solution or tightest relaxationis meaningful because for
most problem instances the best-known solution or tightestrelaxation will be an
optimal solution. An example of the successful applicationof this approach can be
found in [14]. In that paper, a metaheuristic, optimal solution, and relaxation of that
optimal solution are all created. Though the optimal solution was not run on the
largest problem instances due to the excessive runtime required, the low error of the
metaheuristic from the optimal solution on the smaller problems (0.25%) reinforces
moderate deviations from the relaxed solutions over all problem instances (6.09%).

The metric can also be used for problems for which no optimal solution has been
published, though the resulting deviations are less meaningful. It is unclear to a
reader how well the algorithm performs without an understanding of how close the
best-known solutions or tight lower bounds are to optimal solutions.

Though it also addresses the issue of not having access to optimal solutions, a
metric of deviation between the algorithms being compared operates differently —
any evaluation of solution quality is done in relation to theother algorithm(s) being
considered. This method has the advantage of making the comparison between the
algorithms very explicit — all evaluations, in fact, compare the two or more algo-
rithms. However, these comparisons lack any sense of the actual error of solutions.
Regardless of how an algorithm fares against another algorithm, its actual error as
compared to the optimal solution is unavailable using this metric. Therefore, using a
metric of deviation from another algorithm loses much of itsmeaningfulness unless
accompanied by additional information, such as optimal solutions for some of the
problem instances, relaxation results for the problem instances, or deviation from
tight lower bounds (to give a sense of the global optimality of the algorithms).

4.2 Multi-objective Solution Quality Comparisons

Though this section has focused on solution quality comparisons of single-objective
heuristics, much work has also been done on the comparison ofheuristics seeking
to optimize multiple objective functions. For a detailed overview of multi-objective
optimization and some of the difficulties encountered in comparing multi-objective
metaheuristics, see [8]. For an example of the application of metaheuristics to mul-
tiobjective optimization problems, see [26].



Comparison of Metaheuristics 11

5 Runtime Comparisons

While it is necessary that a metaheuristic demonstrate goodsolution quality to be
considered viable, having a fast runtime is another critical necessity. If metaheuris-
tics did not run quickly, there would be no reason to choose these approaches over
exact algorithms.

At the same time, runtime comparisons are some of the most difficult compar-
isons to make. This is fueled by difficulties in comparing runtimes of algorithms that
compiled with different compilers (using different compilation flags) and executed
on different computers, potentially on different testbeds.

5.1 The Best Runtime Comparison Solution

The best solution is, of course, to get the source code for thealgorithm, compile it
on the same computer with the same compilation flags as your own code, and run
both algorithms on the same computer. This is certainly the best solution in terms
of runtime comparison, as the runtimes for a given problem are then directly com-
parable. Further, assuming the code can be obtained, this isa relatively simple way
to compare the solution qualities. However, this techniquefor comparing algorithm
runtimes is often not possible.

One case in which it is not possible is if the algorithms were programmed in dif-
ferent languages. This implies that their runtimes are not necessarily directly com-
parable. Though attempts have been made to benchmark programming languages in
terms of solution qualities (see, for instance, [4]), thesebenchmarks are susceptible
to the type of program being run, again rendering any precisecomparison difficult.
Further invariants in these comparisons include compiler optimizations. The pop-
ular C compiler gcc has over 100 optimization flags that can beset to fine-tune
the performance of a C program. As most papers do not report compiler optimiza-
tion flags along with computational results, it would be difficult to obtain the exact
scalar multiplier for a C program without additional information. Therefore, while
the technique of obtaining a scalar multiplier between programming languages will
almost certainly allow comparisons accurate to within an order of magnitude be-
tween algorithms coded in different programming languages, these methods cannot
provide precise comparisons.

5.2 Other Comparison Methods

It is sometimes not possible to obtain the source code for thealgorithm to which
we compare. The source code may have been lost (especially inthe case of older
projects) or the authors may be unwilling to share their source code. While this
does make runtime comparison harder, it does not excuse authors from performing



12 John Silberholz and Bruce Golden

these computations — they are critical to the comparison of two algorithms. Two
major approaches remain for a researcher to compare runtimes between the two
algorithms, each with advantages and disadvantages.

The first is to reimplement another researcher’s code in the same language as your
code, running it on the same computer on the same problem instances. This has the
advantage of actually running the same algorithm on the samehardware with the
same compiler on the same computer, all positive attributesof a comparison. How-
ever, this approach suffers from two major weaknesses. First, some algorithms are
not clear on certain details of the approach, making an exactreimplementation dif-
ficult. While statistical tests can be used to prove that solution qualities returned by
the two algorithms are not statistically significantly different between the two im-
plementations, this makes direct comparison of the resultsmore difficult. Second,
there is no guarantee that the approach used to reimplement another researcher’s
code is really similar to their original code. For instance,the other researcher may
have used a clever data structure or algorithm to optimize a critical part of the code,
yielding better runtime efficiency. As there is little incentive for a researcher to per-
form the hard work of optimizing the code to compare against,but much incentive
to optimize one’s own code, we believe it is fair to say that reimplementations typ-
ically overstate the runtime performance of a new algorithmover an existing one
(see [3] for a humorous view of issues such as these).

The other approach does not suffer from these weaknesses. Inthis approach,
published results of an algorithm over a publicly availabledataset are compared to
a new algorithm’s results on the same dataset. While the dataset being tested is the
same and the algorithms being compared are the algorithms asimplemented by their
developers, the computer used to test these instances is different, and the compiler
and compiler flags used are likely also not the same. This approach has the advan-
tage of simplicity for the researcher — no reimplementationof other algorithms is
needed. Further, the implementations of each algorithm arethe implementations of
their authors, meaning there are no questions about implementation as there were
in the reimplementation approach. However, the problem then remains to provide
a meaningful comparison between the two runtimes. Researchers typically solve
this issue by using computer runtime comparison tables suchas the one found in
[11] to derive conservative runtime multipliers between the two algorithms. These
comparison tables are built by running a benchmarking algorithm (in the case of
[11], this algorithm is a system of linear equations solved using LINPACK) and
comparing the time to completion for the algorithm. However, it is well known that
these sorts of comparisons are imprecise and highly dependent on the program be-
ing benchmarked, and the very first paragraph of the benchmarking paper makes
sure to mention the limitations of this sort of benchmarking: “The timing informa-
tion presented here should in no way be used to judge the overall performance of a
computer system. The results only reflect one problem area: solving dense systems
of equations.” Hence, the multipliers gathered in this way can only provide a rough
idea of runtime performance, clearly a downside of the approach.



Comparison of Metaheuristics 13

5.3 Runtime Growth Rate

Regardless of the comparison method used to compare algorithms’ runtimes, the
runtime growth rate can be used as a universal language for the comparison of run-
time behaviors of two algorithms. While upper bounds on runtime growth play an
important role in the discussion of heuristic runtimes, metaheuristic analysis often
does not benefit from these sorts of metrics. Consider, for instance, a genetic al-
gorithm that terminates after a fixed number of iterations without improvement in
the solution quality of the best solution to date. No meaningful worst-case analysis
can be performed, as there could be many intermediate best solutions encountered
during the metaheuristic’s execution. Even in metaheuristics where such analysis is
possible (for instance, a genetic algorithm with a fixed number of generations be-
fore termination), the worst-case runtime will often not berepresentative of how
the algorithm will actually perform on problem instances, decreasing its value. As a
result, the worst-case runtime is a bad choice for asymptotic analysis.

A much better approach for asymptotic analysis is fitting a curve to the run-
times measured for each of the algorithms. Regression analysis is a well-known
technique that matches functions to a set of measurement points, minimizing the
sum-of-squares error of the matching. These asymptotic results help indicate how
an algorithm might perform as the problem size increases. Though there is no guar-
antee that trends will continue past the endpoint of the sampling (motivating testing
on large problem instances), asymptotic runtime trends arekey to runtime analyses.
Even if one algorithm runs slower than another on small- or medium-sized problem
instances, a favorable asymptotic runtime suggests the algorithm may well perform
better on large-sized problem instances, where metaheuristics are most helpful.

5.4 An Alternative to Runtime Comparisons

Though the focus thus far has been on runtime comparisons, there are other forms of
computational complexity comparison that do not rely on runtimes. One of the most
intriguing, counting the number of representative operations the algorithm uses, is
discussed in [1]. In this scheme, the number of a selected setof bottleneck operations
is compared without any regard for the total execution time of the algorithms being
compared.

There are several clear advantages to this approach over runtime comparisons.
As described in [1], it removes the invariants of compiler choice, programmer skill,
and power of computation platform, providing complexity measures that are easier
to replicate by other researchers. However, this approach suffers from the fact that
it is often difficult to identify good operations that each algorithm being compared
will implement. The only function sure to be implemented by every procedure is
the evaluation of the function being optimized. As a result,comparisons of this type
often only compare on the optimization function, losing information about other
operations, which could potentially be more expensive or more frequently used. As



14 John Silberholz and Bruce Golden

a result, in the context of metaheuristic comparison this technique is best if used
along with more traditional runtime comparisons.

6 Conclusion

We believe following the procedures described in this paperwill increase the qual-
ity of metaheuristic comparisons. In particular, choosingan appropriate testbed and
distributing it so other researchers can access it will result in more high-quality com-
parisons of metaheuristics, as researchers will test on thesame problem instances.
In addition, expanding the practice of creating geometric problem instances with
easy-to-visualize optimal or near-optimal solutions willincrease understanding of
how metaheuristics perform in a global optimization sense.

Furthermore, it is important to recognize that the number ofalgorithm param-
eters has a direct effect on the complexity of the algorithm and on the number of
parameter interactions, which complicates analysis. If the number of parameters is
considered in the analysis of metaheuristics, this will encourage simpler, easier-to-
analyze procedures.

Finally, good techniques in solution quality and runtime comparisons will ensure
fair and meaningful comparisons are carried out between metaheuristics, producing
the most meaningful and unbiased results possible.

References

1. Ahuja, R., Orlin, J.: Use of representative operation counts in computational testing of algo-
rithms. INFORMS Journal on Computing8(3), 318–330 (1996)

2. Archetti, C., Feillet, D., Hertz, A., Speranza, M.G.: Thecapacitated team orienteering and
profitable tour problems (2009). Accepted for publication in Journal of the Operational Re-
search Society

3. Bailey, D.: Twelve ways to fool the masses when giving performance results on parallel com-
puters. Supercomputing review4(8), 54–55 (1991)

4. Bull, M., Smith, L., Pottage, L., Freeman, R.: Benchmarking Java against C and Fortran for
scientific applications. In: ACM 2001 Java Grande/ISCOPE Conference, pp. 97–105 (2001)

5. Chao, I.M.: Algorithms and solutions to multi-level vehicle routing problems. Ph.D. thesis,
University of Maryland, College Park, MD (1993)

6. Chen, S., Golden, B., Wasil, E.: The split delivery vehicle routing problem: Applications,
algorithms, test problems, and computational results. Networks49, 318–329 (2007)

7. Christofides, N., Eilon, S.: An algorithm for the vehicle dispatching problem. Operational
Research Quarterly20(3), 309–318 (1969)

8. Coello, C.: Evolutionary multi-objective optimization: A historical view of the field. IEEE
Computational Intelligence Magazine1(1), 28–36 (2006)

9. Coy, S., Golden, B., Runger, G., Wasil, E.: Using experimental design to find effective param-
eter settings for heuristics. Journal of Heuristics7(1), 77–97 (2001)

10. Deb, K., Agarwal, S.: Understanding interactions amonggenetic algorithm parameters. In:
Foundations of Genetic Algorithms, pp. 265–286. Morgan Kauffman, San Mateo, CA (1998)



Comparison of Metaheuristics 15

11. Dongarra, J.: Performance of various computers using standard linear equations software.
Tech. rep., University of Tennessee (2009)

12. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)
13. Fischetti, M., Salazar González, J.J., Toth, P.: A branch-and-cut algorithm for the symmetric

generalized traveling salesman problem. Operations Research 45(3), 378–394 (1997)
14. Gamvros, I., Golden, B., Raghavan, S.: The multilevel capacitated minimum spanning tree

problem. INFORMS Journal on Computing18(3), 348–365 (2006)
15. Gendreau, M., Laporte, G., Semet, F.: A tabu search heuristic for the undirected selective

travelling salesman problem. European Journal of Operational Research106(2–3), 539–545
(1998)

16. Glover, F.: Tabu search: A tutorial. Interfaces20(4), 74–94 (1990)
17. Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics for the

resource-constrained project scheduling problem. European Journal of Operational Research
127(2), 394–407 (2000)

18. Hollasch, S.: Four-space visualization of 4d objects. Ph.D. thesis, Arizona State University,
Tempe, Arizona (1991)

19. Jans, R., Degraeve, Z.: Meta-heuristics for dynamic lotsizing: A review and comparison of
solution approaches. European Journal of Operational Research177(3), 1855–1875 (2007)

20. Li, F., Golden, B., Wasil, E.: Very large-scale vehicle routing: New test problems, algorithms,
and results. Computers & Operations Research32(5), 1165–1179 (2005)

21. Li, F., Golden, B., Wasil, E.: The open vehicle routing problem: Algorithms, large-scale test
problems, and computational results. Computers & Operations Research34(10), 2918–2930
(2007)

22. Li, F., Golden, B., Wasil, E.: A record-to-record travelalgorithm for solving the heterogeneous
fleet vehicle routing problem. Computers & Operations Research 34(9), 2734–2742 (2007)

23. Michalewicz, Z.: Genetic Algorithms + Data Structures =Evolution Programs. Springer
(1996)

24. Montgomery, D.: Design and Analysis of Experiments. John Wiley & Sons (2006)
25. Nummela, J., Julstrom, B.: An effective genetic algorithm for the minimum-label spanning

tree problem. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, pp. 553–557. ACM (2006)

26. Paquete, L., Stützle, T.: Design and analysis of stochastic local search for the multiobjective
traveling salesman problem. Computers & Operations Research 36(9), 2619–2631 (2009)

27. Plackett, R., Burman, J.: The design of optimum multifactorial experiments. Biometrika33,
305–325 (1946)

28. Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA Journal on Computing
3(4), 376–384 (1991)

29. Sawai, H., Kizu, S.: Parameter-free genetic algorithm inspired by “disparity theory of evolu-
tion”. In: A. Eiben, T. Bäck, M. Schoenauer, H.P. Schwefel (eds.) Parallel Problem Solving
from Nature – PPSN V,LNCS, vol. 1498, pp. 702–711. Springer Berlin / Heidelberg (1998)

30. Silberholz, J., Golden, B.: The effective application of a new approach to the generalized
orienteering problem (2009). Accepted for publication inJournal of Heuristics

31. Wang, Q., Sun, X., Golden, B.L.: Using artificial neural networks to solve generalized orien-
teering problems. In: C. Dagli, M. Akay, C. Chen, B. Fernández, J. Ghosh (eds.) Intelligent
Engineering Systems Through Artificial Neural Networks: Volume 6, pp. 1063–1068. ASME
Press, New York (1996)

32. Xiong, Y., Golden, B., Wasil, E.: A one-parameter genetic algorithm for the minimum labeling
spanning tree problem. IEEE Transactions on Evolutionary Computation9(1), 55–60 (2005)

33. Xu, J., Kelly, J.: A network flow-based tabu search heuristic for the vehicle routing problem.
Transportation Science30(4), 379–393 (1996)


