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Abstract. We improve the recent result of [2] proving a one-sided threshold condi-
tion which leads to finite-time breakdown of the Euler-Poisson equations in arbitrary
dimension n.

1. Introduction

The pressure-less Euler-Poisson (EP) equations in dimension n ≥ 1 are

ρt + div (ρu) = 0(1.1a)

ut + u · ∇u = k∇∆−1(ρ − c),(1.1b)

governing the unknown density ρ = ρ(t, x) : R+ × R
n 7→ R+ and velocity u = u(t, x) :

R+ × R
n 7→ R

n subject to initial conditions ρ(0, x) = ρ0(x) and u(0, x) = u0(x). They
involve two constants: a fixed background state c > 0 such that

∫

(ρ − c)dx = 0, and the
constant k which parameterizes the repulsive k > 0 or attractive k < 0 forcing, caused
by the Poisson potential ∆−1(ρ − c). The EP system appears in numerous applications
including semiconductor, plasma physics (k > 0) and collapse of interstellar cloud (k < 0).

This paper is restricted to the attractive case, k < 0. For simplicity, we set c = 1,
k = −1 in (1.1a), (1.1b) to arrive at the unit-free EP system,

ρt + div (ρu) = 0,(1.2a)

ut + u · ∇u = −∇∆−1(ρ − 1).(1.2b)

All discussion in this paper remains valid for EP system with physical parameters c > 0,
k < 0 upon a simple rescaling argument — see Corollary 1.1 below.

We are concerned here with the persistence of C1 regularity for solutions of the attrac-
tive EP system. Our main theorem reveals a pointwise criterion on the initial data, a
so-called critical threshold criterion [5, 8, 10], that leads to finite time blow-up of ∇u.
It is a sharp, nonlinear quantification of balance between div u and ρ, two competing
mechanisms that dictate the C1 regularity of EP flows. Our result also stands out as a
generalization of several existing results [5, 2, 9, 10] for which further discussion is given
after the Main Theorem and its corollary.
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Main Theorem 1.1. Consider the n-dimensional, attractive Euler-Poisson system (1.2a),
(1.2b) subject to initial data ρ0, u0. Then, the solution will lose C1 regularity at a finite
time t = tc < ∞, if there exists a non-vacuum initial state ρ0(x̄) > 0 with vanishing initial
vorticity, ∇× u0(x̄) = 0, such that the following sup-critical condition is fulfilled,

(1.3a) div u0(x̄) < sgn(ρ0(x̄) − 1)
√

nF (ρ0(x̄)),

where

(1.3b) F (ρ) :=















1 +
2ρ

n − 2
− nρ2/n

n − 2
, n 6= 2,

1 − ρ + ρ ln ρ, n = 2.

In particular, minx div u(t, x) → −∞ and maxx ρ(t, x) → ∞ as t ↑ tc.

Proof. Combine Lemma 3.1 and Lemma 4.2 below, while noting that the curve

div u = sgn(ρ − 1)
√

nF (ρ),

is the separatrix along the boundary of the blow-up region Ω = Ω1 ∪ Ω2 defined in (4.3)
and illustrated in Figure 4.1.

We note by passing that, by classical arguments, the force-free Euler system ut+u·∇u =
0 exhibits finite time blow-up if and only if there exists at least one negative eigenvalue of
∇u0(x̄). In the above theorem, however, finite-time blow-up can occur solely depending
on the initial profile of div u0 and ρ0 regardless of individual eigenvalues of ∇u0.

We also note that, by rescaling ρ to ρ/c, x to
√
−kc x and t to

√
−kc t, the Main

Theorem immediately applies to the EP system (1.1a), (1.1b) with physical parameters.
Since the EP system with k < 0 models the collapse of interstellar cloud, the following
corollary reveals a pointwise condition for mass concentration, ρ → ∞, which interestingly
preludes the birth of new stars.

Corollary 1.1. Consider the Euler-Poisson system (1.1a), (1.1b) with c > 0, k < 0
subject to initial data ρ0, u0. Then, the solution will lose C1 regularity at a finite time
tc < ∞, if there exists a non-vacuum initial state ρ0(x̄) > 0 with vanishing initial vorticity,
∇× u0(x̄) = 0, such that the sup-critical condition is fulfilled,

(1.4) div u0(x̄) < sgn(ρ0(x̄) − c)

√

−nkcF

(

ρ0(x̄)

c

)

where F (·) is given in (1.3b). In particular, minx div u(t, x) → −∞ and maxx ρ(t, x) → ∞
as t ↑ tc.

The concept of Critical Threshold and associated methodology is originated and de-
veloped in a series of papers by Engelberg, Liu and Tadmor [5], Liu and Tadmor [10, 8]
and more. It first appears in [5] regarding pointwise criteria for C1 solution regularity
of 1D EP system. The key argument in that paper is based on the convective derivative
along particle paths ′ = ∂t + u · ∇. It makes possible to obtain a 2-by-2 ODE system
for ux and ρ along particle paths — the so-called Lagrangian formulation. Phase plane
analysis is then employed to study the finiteness of the ODE solutions and therefore C1

regularity of the PDE solution. Similar results stay valid for Euler-Poisson systems with
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geometric symmetry in higher dimensions [1, 8]. To treat genuinely multi-D cases, Liu
and Tadmor introduce in [8] the method of spectral dynamics which relies on the ODE
system governing eigenvalues of

M := ∇u,

which is the velocity gradient matrix, along particle paths. They identify if-and-only-
if, pointwise conditions for global existence of C1 solutions to restricted Euler-Poisson
systems. Chae and Tadmor [2] further extend the Critical Threshold argument to multi-
D full Euler-Poisson systems (1.2a), (1.2b) with attractive forcing k < 0. Their result,
however, offers a blow-up region ∇×u0 = 0, div u0 < −

√
−nkc which is only a subset of

the blow-up region in (1.4). This subset is to the left of the solid line d ≤ d− := −
√
−nkc

depicted in figure 4.1. Finally, a recent paper by Tadmor and Wei [22] reveals the critical
threshold phenomena in 1D Euler-Poisson system with pressure.

When tracking other results on well-posedness of Euler-Poisson equations, we find them
commonly relying on (the vast family of) energy methods and thus fundamentally differ
from our pointwise results obtained via the Lagrangian approach. With repulsive force
k > 0, we refer to [7, 3] for global existence of classical solutions with small data and
[19] for nonexistence of global solutions. With attractive force k < 0, see [15] for local
regularity of classical solutions and [16, 17] for nonexistence results. Discussion on weak
solutions of Euler-Poisson systems can be found in e.g. [25, 18, 20]. We also refer to
[6, 4, 12, 14, 21] and references therein for steady-state solutions. Study of Euler-Poisson
system with damping relaxation can be found in e.g. [23, 24, 13].

The rest of this paper is organized as following. In Section 2, we follow the idea of
[2] to derive along particle paths an ODE system governing the dynamics of eigenvalues

for S :=
1

2
(M + M>). This is a variation of the spectral dynamics for M introduced in

[8]. We then derive in Section 3 a closed 2 × 2 ODE system (3.1) at the cost of turning
one equation into inequality. By the comparison principle, this inequality is in favor of
blow-up. Thus, with the inequality sign being replaced with equality sign, a modified
ODE system is used to yield sub-solutions and to study blow-up scenario for the original
system. Section 4, devoted to the modified system, reveals the Critical Threshold for
such a system. Consequently, a pointwise blow-up condition for the original system is
identified.

2. Spectral dynamics

We examine the gradient matrix M = ∇u and its symmetric part, S = 1
2

(

∇u + (∇u)>
)

.
Both matrices are used to study the spectral dynamics of Euler systems (see e.g. [8] for M
and [2] for S). The relation between the spectra of M and S is described in the following.

Proposition 2.1. Let {λM} denote the eigenvalues of M and {λS} for S. Then
∑

λM

λM =
∑

λS

λS = div u,(2.1)

∑

λM

λ2
M =

∑

λS

λ2
S − 1

2
|ω|2.(2.2)
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Here, ω is the n(n−1)
2

vorticity vector which consists of the off-diagonal entries of A :=
1
2

(

∇u− (∇u)>
)

.

Proof. Use identity M = S + A and the skew-symmetry of A,
∑

λM

λM = tr(M) = tr(S + A) = tr(S) =
∑

λS

λS .

Squaring the last identity we have M2 = S2 + A2 + AS + SA and therefore,
∑

λM

λ2
M = tr(M2) = tr(S2 + A2 + AS + SA) =

∑

λS

λ2
S + tr(A2).

Note that AS + SA is skew-symmetric and thus traceless. A simple calculation yields
tr(A2) = −1

2
|ω|2.

Following [8], we turn to study the dynamics of M along particle paths. Take the
gradient of (1.2b) to find

(2.3) M ′ + M2 ≡ Mt + u · ∇M + M2 = −R(ρ − 1),

where R stands for the Riesz matrix, R = {Rij} := {∂xixj
∆−1}.

The trace of (2.3) then yields that the divergence, d := tr(M), is governed by

d′ = −
∑

λM

λ2
M − (ρ − 1),

and in view of (2.2),

(2.4) d′ = −
∑

λS

λ2
S +

1

2
|ω|2 − (ρ − 1).

We now make the first observation regarding the invariance of the vorticity ω: taking
the skew-symmetric part of the M-equation (2.3),

(2.5) A′ + AS + SA = 0.

It follows that if the initial vorticity vanishes, ω(x̄) 7→ ∇ × u(x̄) = 0, then by (2.5),
ω 7→ ∇ × u vanishes along the particle path which emanates from x̄. This allows us to
decouple the vorticity and divergence dynamics, and (2.4) implies

(2.6) d′ = −
∑

λS

λ2
S − (ρ − 1), ∇× u = 0.

Finally, we use Cauchy-Schwartz
∑

λ2
S ≤ 1

n

(

∑

λS

)2

=
1

n
d2 and the fact that all λS

are real (due to the symmetry of S), to deduce the inequality,

(2.7a) d′ ≤ −1

n
d2 − (ρ − 1).

This, together with the mass equation (1.2a) which can be written along particle path

(2.7b) ρ′ = −dρ,

give us the desired closed system which governs (ρ, d) along particle paths.
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Remark 2.1. The approach pursued in this paper will be based on the inequality (2.7a)
and is therefore limited to derivation of a finite time breakdown. To argue the global
regularity, one needs to study the underlying equality (2.6), and to this end, to study the
trace

∑

λ2
S . In the two-dimensional case, for example, one can use

∑

λ2
S = d2/2 + η2/2

to replace (2.7a) with

d′ = −1

2
d2 − 1

2
η2 − (ρ − 1), η := λS,2 − λS,1.

In this framework, global 2D regularity is dictated by the dynamics of the spectral gap,
η = λS,2 − λS,1, which in turn requires the dynamics of the Riesz transform R(ρ − 1).

3. A comparison principle with a majorant system

The blow-up analysis, driven by the inequalities (2.7),

d′ ≤ −1

n
d2 − (ρ − 1),(3.1a)

ρ′ = −dρ.(3.1b)

is carried out by standard comparison with the majorant system

e′ = −1

n
e2 − (ζ − 1),(3.2a)

ζ ′ = −eζ.(3.2b)

The following proposition guarantees the monotonicity of the solution operator associ-
ated with (3.1).

Lemma 3.1. The following monotone relation between system (3.1) and system (3.2) is
invariant forward in time,

(3.3)

{

d(0) < e(0)
0 < ζ(0) < ρ(0)

implies

{

d(t) < e(t)
0 < ζ(t) < ρ(t)

for t ≥ 0,

as long as all solutions remain finite on time interval [0, t].

Proof. Invariance of positivity of ζ is a direct consequence of (3.2b) and finiteness of e.
The rest can be proved by contradiction. Suppose t1 is the earliest time when (3.3) is
violated. Then,

(3.4) ζ(t1) = ζ(0) exp

(

−
∫ t1

0

e(t)dt

)

< ρ(0) exp

(

−
∫ t1

0

d(t)dt

)

= ρ(t1).

Therefore, we are left with only one possibility e(t1) = d(t1). However, subtracting (3.1a)
from (3.2a),

(3.5) (e − d)′ ≥ −1

n
(e2 − d2) − (ζ − ρ).

Setting t = t1 in the above inequality, we find that

LHS of (3.5) =
(

e(t1) − d(t1)
)′ ≤ 0,

since e(t)− d(t) > 0 for all t < t1; but this contradicts the positivity of the expression on
the right of (3.5), for by (3.4)

RHS of (3.5) = 0 − [ζ(t1) − ρ(t1)] > 0.
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In the next section, we employ phase plane analysis on the modified system (3.2). When
translated in terms of the original system (3.1), however, such analysis can only yield blow-
up results and is insufficient for global existence results. In other words, estimate (3.3) is
only useful for proving d ↘ −∞, the key mechanism for blow-up of C1 solutions.

4. Stability analysis of the majorant system

We shall prove the blow-up of the majorant system (3.2), e(t) → −∞ as t ↑ tc, which
in turn, by lemma 3.1 implies d(t) → −∞. Abusing notations, we express the majorant
system in terms of the original variables (e, ζ) 7→ (d, ρ):

d′ = −1

n
d2 − (ρ − 1),(4.1a)

ρ′ = −dρ.(4.1b)

The (in-)stability analysis of (4.1) hinges on the path invariants of this system. To
this end, we use the same q-transformation employed in [11, 10]: setting q := d2 and
differentiate along the path {(t, X(a, t)) | Xt(a, t) = u(t, X(a, t)), X(a, 0) = a}, we find

dq

dρ
= 2d

d′

ρ′
=

2

nρ
q + 2

(

1 − 1

ρ

)

,

which yields
d

dρ

(

qρ−
2

n

)

= 2(1 − ρ−1)ρ−
2

n .

Upon integration, we arrive at the following key observation.

Lemma 4.1. The majorant system (4.1) is equipped with the path invariant,

I(d(t), ρ(t)) = I(d0, ρ0),

along each path (t, x(t)) initiated with a non-vacuum state (d0, ρ0 > 0). Here,

(4.2) I(d, ρ) := d2ρ−
2

n − 2

∫ ρ

1

(1 − r−1)r−
2

n dr = ρ−
2

n

(

d2 − nF (ρ)
)

,

where F (·) is specified in (1.3b).

It is simple calculation to show that the majorant system (4.1) admits three distinct
critical points (see figure 4.1):

(d∗, ρ∗) := (0, 1), (d±, ρ±) := (±
√

n, 0).

and that (0, 1) is a saddle point, (−√
n, 0) a nodal source and (

√
n, 0) a nodal sink. The

separatrix is given by the zero level set I(d, ρ) = 0. Moreover, the right branch of the

separatrix, d =
√

nF (ρ) connects critical points (0, 1) and (
√

n, 0) while the left branch,

d = −
√

nF (ρ) connects (0, 1) and (−√
n, 0).

By inspection of the phase plane in figure 4.1, we postulate the following invariant
region of finite-time blow-up for the modified system (4.1),

(4.3a) Ω = Ω1 ∪ Ω2 = {(d, ρ) | d < sgn(ρ − 1)
√

nF (ρ)}
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where

Ω1 := {(d, ρ) | I(d, ρ) > 0 and d < 0 and ρ > 0},(4.3b)

Ω2 := {(d, ρ) | I(d, ρ) < 0 and ρ > 1}.(4.3c)

Figure 4.1. Phase plane of (4.1) with blow-up region Ω1 ∪ Ω2 which ex-
tends the Chae-Tadmor region [2] d ≤ d−.

Lemma 4.2. Consider the modified system (4.1), equipped with initial data (d0, ρ0). If
(d0, ρ0) ∈ Ω, then div u → −∞ and ρ → ∞ at a finite time.

Proof. We begin by recalling (1.3b), consult (4.2),

F (ρ) =
2

n
ρ

2

n

∫ ρ

1

(1 − r−1)r−
2

n dr.

Clearly, F (1) = F ′(1) = 0 and a simple calculation shows that F ′′(ρ) =
2

n
ρ

2

n
−2, which

implies that F (ρ) is a strictly convex function of positive ρ and attains its only minimum
at ρ = 1,

(4.4) F (ρ) ≥ F (1) = 0.

We shall also utilize the invariance of (4.2)

(4.5) d2 − nF (ρ) = ρ
2

n I0, I0 = I(d0, ρ0).

We now turn to discuss the two possible blow-up scenarios, depending whether the
initial data (d0, ρ0) belong to the blow-up regions Ω1 or Ω2 given in (4.3).

Case #1. Assume that (d0, ρ0) ∈ Ω1 so that the invariant I remains a positive constant

I > 0.
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In this case, d remains negative, for otherwise, setting d = 0 in (4.5) would result in

F (ρ) = −ρ
2

n I/n < 0, violating (4.4). Thus, (4.5) and (4.4) yield an upper bound,

d ≤ −ρ
1

n

√
I.

Then, by (4.1b), we have a Riccati type of equation ρ′ ≥
√

Iρ1+ 1

n for which the solution
exhibits blow-up ρ → +∞ and the divergence d = div u approaches −∞ at a finite time
due to (4.5).

Case #2. Assume that (d0, ρ0) ∈ Ω2 so that the invariant I remains a negative constant

I < 0.

In this case, ρ − 1 remains positive, for otherwise setting ρ = 1 in (4.5) would result in
F (1) = (d2 − I)/n > 0 in contradiction to (4.4). Now, for ρ > 1 we have

F (ρ) =
2

n
ρ2/n

∫ ρ

1

(

1 − 1

r

)

1

r2/n
dr ≤ 2

n
ρ2/n(ρ − 1).

This together with (4.5) yield

2

n
ρ2/n(ρ − 1) ≥ F (ρ) =

1

n

(

d2 − ρ2/nI
)

≥ −1

n
ρ2/nI

and the lower bound, ρ − 1 ≥ −I/2 follows. Thus, by (4.1a), we end up with a Riccati
type of equation

d′ ≤ −d2

n
+

I

2
.

Since the invariant I remains a negative constant, the solution exhibits blow-up d =
div u → −∞ at a finite time even if initially d0 > 0. The density ρ also approaches ∞ in
finite time due to (4.5).

The last step of proving the Main Theorem is just to combine the comparison principle
in Lemma 3.1 with the above lemma. We notice that Ω is an open set and thus given any
initial data (d0, ρ0) ∈ Ω for the original system, we can always find ε > 0 and initial data
(d0 +ε, ρ0−ε) ∈ Ω for the modified system. This latter initial data will lead to finite time
blow-up of the modified system and therefore, by lemma 3.1, initial data (d0, ρ0) ∈ Ω will
lead to finite time blow-up of the original system.
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Poisson pour l’évolution d’étoiles gazeuses, Japan J. Appl. Math. 7 (1990), no. 1, 165–170.
18. Pierangelo Marcati and Roberto Natalini, Weak solutions to a hydrodynamic model for semiconduc-

tors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal. 129 (1995), no. 2,
129–145.
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