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Abstract. By use of asymptotics, we study the interplay of energetics and geometry

on a crystal surface. We derive explicit, simplified formulas for integrals representing

the elastic-dipole interaction energy per unit length between curved line defects (steps)

of the same sign. Our starting point is linear elasticity whereby steps are represented

as force dipoles lying in a high-symmetry plane, in accordance with the classic model

by Marchenko and Parshin (1981 Soviet Phys. JETP 52 129). We consider geometries

that stem from perturbations of concentric circular steps (radial case). In the radial

case, we define a small geometric parameter, δ2, expressing the smallness of interstep

distance relative to the circle radii. We invoke the Mellin transform with respect

to δ2 and derive an approximation of the requisite integral; this technique offers an

alternative to an exact evaluation in terms of elliptic integrals. We then demonstrate

the use of the Mellin transform when calculating the elastic interaction energy between

smoothly varying, non-circular steps, where a closed-form expression in terms of special

functions is generally not available.
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1. Introduction

Modern small devices rely on the precise patterning of crystal surfaces to create

nanostructures and thin films with desired properties. Below the roughening transition

temperature, typical crystal surfaces are not atomically flat, but instead consist of

nanoscale terraces separated by line defects, i.e., steps, of atomic height [1]. The

interaction between steps plays a prominent role in surface morphological evolution.

Fundamental studies of step-step interactions include the model by Marchenko

and Parshin (MP) [2], where each step is viewed as a distribution of force dipoles in

the context of classical elasticity. The interaction energy of two such (infinitesimal)

dipoles at distance r decays as r−3. Effects such as atomic-scale roughness [3], elastic

anisotropy [4], and surface elasticity under concentrated normal and shear loads [5] have

enriched the MP model. Germane computations address mainly interactions between

straight steps. In more complicated geometries, the requisite integrals in principle have

an intricate, hardly transparent, dependence on the physical parameters.

In this paper, we focus on interactions between two-dimensional (2D) steps of the

same sign in configurations that allow for simplifying (yet nontrivial) approximations.

By considering smooth steps of nonzero curvature that form perturbations of circles, we

illustrate analytically the calculation of elastic step interaction energies. Our resulting,

explicit formulas aim to complement thermodynamic ingredients of step flow models

describing crystal surface morphological evolution near equilibrium [1]. Such models

are invoked extensively in the simulation and analysis of the motion of many steps;

thus, it is expedient to have relatively simple formulas for the step interaction energies.

The basic ingredients of step flow were introduced by Burton, Cabrera and Frank

(BCF) [6]. In their pioneering work, steps are non-interacting. Since then, modest

progress has been made in illustrating analytically how to compute the interaction en-

ergies between steps of reasonably arbitrary shapes; for related reviews see, e.g., [1,7–9].

Our intention with the present work is to demonstrate the use of a computational

technique for step interactions. This tool is the Mellin transform with respect to

a suitable geometric parameter. Applications of this transform, although known in

the context of, e.g., acoustics and electromagnetism [10, 11] and high-energy particle

scattering [12], seem to have been previously unexplored in materials physics.

We choose to apply this asymptotic technique to perturbations of circular steps.

The usual step flow equations are rotationally symmetric and, thus, allow for global

rotational symmetry if the initial step configuration consists of concentric circles. Our

setting is relevant to possible deviations from this symmetry, which can be caused by

effects in the governing equations or the initial data. This issue is of practical importance

in two space dimensions.

Elastic-dipole step interactions have taken on a prominent role in surface evolution,

especially in the low-temperature regimes required for the fabrication of nanoscale

features on crystal surfaces. At sufficiently low manufacturing temperatures, the

thermal wandering of steps tends to be suppressed; hence, the influence of entropic
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step repulsions [1] is considered relatively small and negligible here.

A detailed study of elastic interactions between steps in the context of essentially

one-dimensional (1D) geometries is given by Pimpinelli and Villain [13]. They motivate

and define the elastic interaction energy per unit length for straight steps via the MP

model [2]. This energy decays as w−2 where w is the terrace width. The connection of

step energetics to principles of linear elasticity is elucidated in [13].

In the present paper, we start with concentric circular steps, which form the basis

of our treatment. A previously used formula for the step interaction energy in this case

exhibits a simple geometric factor [14]. This formula has been adopted, but apparently

not explained, in various works in crystal surface morphological evolution [15–19]. We

derive this formula explicitly by invoking the MP model of interacting force dipoles and

asymptotics following our definition of a small parameter. This parameter expresses

the smallness of the interstep distance relative to the step radii. The example of

concentric circles serves as a paradigm for understanding the related asymptotics in

more complicated cases, e.g., non-concentric circular and other perturbed steps, which

we examine here in due order.

To approximate the requisite integrals in the non-radial case, where steps are not

concentric circles, we apply the Mellin transform with respect to an analogous geometric

parameter. This technique leads to an asymptotic series for the interaction energy in

the form of distinct contributions from residues associated with poles of the transformed

function in the complex plane.

A goal is to answer the question: how do the shapes of steps affect their elastic

interaction energy ? We restrict attention to the interaction energy per unit step length.

This quantity enters the step chemical potential of BCF-type models [1]. The depen-

dence on geometry of an approximation for this interaction energy has been attributed

to a smooth, multiplicative “geometric factor” Φ [20], by analogy with the case of con-

centric circular steps [14]. In [20], by use of local coordinates perpendicular and parallel

to step edges, this Φ is assumed to depend locally only on the transverse coordinates of

the interacting steps. For the perturbed geometries considered here, this hypothesis for

the leading-order term is reasonable. The next higher-order term is logarithmic in the

step distance, with a prefactor depending on the local slope of the step curve.

The results of this paper rest on several simplifying assumptions. First, the strain

field due to a step edge is obtained as a superposition of the dipole strain fields arising

from each point of the step edge. For this principle to be meaningful, the material

must of course be in the linear elastic regime. Second, the dipole moment associated

with each point of a step edge has a negligible (z-) component normal to the reference

plane. In the same vein, we regard as constant the magnitude of the elastic dipole

per unit step length. The geometries chosen are consistent with slowly varying step

configurations [20], where the associated curvatures change appreciably over lengths

comparable to or larger than the step radius of curvature, a macroscopic length.

The remainder of the paper is organized as follows. In section 2, we review some

background for the motion of crystal steps; and discuss the role of elastic-dipole step
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a

Figure 1. 2D steps. Top: projection on reference plane. Bottom: cross section.

interactions. In section 3, we demonstrate the application of the associated formula

to the calculation of step interactions in one coordinate, including concentric circular

steps (radial case). In section 4, we consider a geometry deviating from the radial case,

namely, circular steps with different centers. In section 5, we allow the curvature of a

step to vary slowly with the arc length. Finally, in section 6 we summarize our results.

2. Background

In this section we review the underlying geometry and basics of step interactions. The

geometry of crystal steps is depicted from two perspectives in figure 1. The cross-

sectional view illustrates steps of atomic height, a, that descend from a surface peak.

The steps are projected onto non-crossing, non-self-intersecting, smooth curves on the

reference (‘basal’) plane (see footnote 1), shown in the upper part of figure 1. In the

radial case studied, e.g., in [15, 17], these curves are concentric circles.

1The usual requirement of continuously differentiable curves would suffice for normal and tangent

vectors to be well defined at each point of the step curve. Here, we impose the stronger condition of

infinitely differentiable (smooth) curves since this in principle allows for asymptotics (by our method)

to arbitrary order in the small geometric parameter (to be defined below).
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To place step interactions in the broader context of crystal surface motion, we

briefly discuss major elements of BCF-type models (see footnote 2). Then, we review

the main ideas underlying the modeling of interacting steps by force dipoles.

2.1. Evolution of crystal surfaces: role of step interactions

In surface diffusion, the motion of steps is mediated by diffusion of adsorbed atoms

(adatoms) on terraces between steps, and by attachment and detachment of adatoms

at step edges. The adatom density, Cj, on terrace j satisfies

div (D∇Cj) = ∂tCj , (1)

where D is the diffusivity, assumed to be constant. Each step moves by mass

conservation, as the step velocity balances out atom fluxes. Specifically, in the absence

of edge atom diffusion [1, 21], the normal velocity of step j is given by

vj =
Ω

a
(ϕj−1,⊥ − ϕj,⊥) at step j ,

where ϕj is the (vector-valued) flux from terrace j and Ω is the atomic volume;

the subscript ⊥ denotes the component normal to the step. In the quasisteady

approximation, where ∂tCj ≈ 0, we set ϕj = −D∇Cj; for more details, see, e.g., [20,22].

The atom attachment-detachment at step edges is expressed through appropriate

boundary conditions for (1). By linear kinetics [1], the normal flux ϕj,⊥ at the bounding

steps j, j + 1 is proportional to concentration differences according to

−ϕj,⊥ = ku(Cj − Ceq
j ) at step j ,

ϕj,⊥ = kd(Cj − Ceq
j+1) at step j + 1 . (2)

In the above, Ceq
j is an equilibrium adatom density and ku, kd are kinetic rates. This

Ceq
j quantifies the propensity of a step edge to incorporate or release atoms. By recourse

to notions of thermodynamic equilibrium, this propensity is expressed by the law [1]

Ceq
j = C0 exp

(µj

ϑ

)

, (3)

where µj is the step chemical potential, a thermodynamic force, ϑ = kBT is the

Boltzmann energy, and C0 is a constant.

The µj above is the change of the jth-step energy per atom captured or released

by the step edge and links step motion to energetics [20]. It can be shown that µj in

principle involves the step curvature (line tension), entropic step repulsions, and elastic

interactions between steps [1,23]. The latter two energies decay as the inverse square of

step separation in the special case of straight steps [13, 23].

In the radial case, the step chemical potential is [14, 17, 18] (see footnote 3)

µj =
Ωg1

rj

+
Ω

arj

∂

∂rj

{rj[V (rj, rj+1) + V (rj−1, rj)]} , (4)

2As mentioned in section 1, in the original BCF theory [6] steps are non-interacting.
3Our definition of V in (4) and (5) is slightly different from that in [18].
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where rj are radii of concentric circles representing steps, and V (rj, rj+1) is the elastic

interaction energy between steps j, j + 1 per unit length of step j. By [14], this V is

V (rj , rj+1) = g
2rj+1

rj + rj+1

(

a

rj+1 − rj

)2

, (5)

where g is positive and measures the strength of the elastic dipoles arising from steps.

More generally, if Uj is the energy per length of step j, it has been shown by basic

differential geometry [20] that

µj = (Ω/a)(ξ−1
η ∂ηj

Uj + κjUj) , (6)

where η = ηj is a local curvilinear coordinate specifying step j, ξη is the associated

metric coefficient, and κj is the step curvature. Thus, for the purpose of determining

step motion, it is expedient to compute the quantity Uj in terms of step positions. This

Uj includes the step line tension (energy to create a step), as well as entropic and elastic

interactions.

2.2. Elastic step interactions in linear regime: a review

The simplest setting is a vicinal surface, which stems from cutting a crystal along a

plane at a fixed, small angle with respect to one of crystal’s high-symmetry planes. The

resulting interface consists of regularly spaced, atomic-height steps. This configuration

is not as favorable energetically as a perfectly flat interface, so the atoms at the surface

‘react’ to their missing bonds by undergoing small displacements. We can expect such

displacements to induce an effective elastic force between adjacent steps (see footnote 4).

Alternatively, picture a step as a defect on a continuous elastic surface. In order

to maintain this defect against the natural tendency of the medium to flatten out, a

pair of oppositely-directed forces must be applied by the bulk of the crystal at distinct

points of the step. Then the step itself applies equal and opposite forces on the bulk

of the crystal, as depicted in figure 2. This force dipole introduces strain in the vicinity

of the step. The resulting strain field causes elastic interactions between steps by

displacing the intervening atoms. Although the existence of a force dipole is inferred

from considerations of a continuous elastic surface, such a dipole can also be justified

while respecting the discrete nature of a real crystal surface, as argued, e.g., in [25].

The question arises as to how the force distribution near a step is calculated. A

proposal involving a pair of forces oriented normal to the step edge in the high-symmetry

plane, as shown in figure 2, first appeared in a paper by Marchenko and Parshin [2] and

has since been used as a core model. This (MP) model has one free parameter, which

is related to the strength of the force dipole (see footnote 5).

4For a pictorial representation, consider the displacements calculated by atomistic simulations in [24].
5Note in passing that Prévot and Croset [26, 27] introduced a model of ‘embedded dipoles’, which

describes the opposing forces by use of two free parameters rather than one. Accordingly, these authors

were able to make predictions in close agreement with observed relaxations of atomistic simulations.
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Figure 2. Schematic of a force dipole for to a step by the MP model [2]. The dipole

moment is along the step edge and normal to the cross-sectional plane.

Pimpinelli and Villain [13] adopt the MP model, positing that the elastic strain field

stems from a line of force dipoles normal to the step. It is tempting to resort to electro-

statics for the field of an elastic force dipole. We do not pursue this analogy. It suffices

to add that the scaling of the field strength as the inverse cube of distance is common

to electric and elastic dipoles [28,29] (see footnote 6). For an explicit calculation of the

linear response of elastic surface dipoles, the reader may consult the appendices in [13].

The nature of elastic step-step interactions implies that steps of the same sign (i.e., steps

either descending or ascending) exert repulsive forces on each other. The situation is

different, and more delicate, with steps of opposite sign [3].

Extensive discussions on defect interactions for crystal surfaces can be found

in [2,13,24,25]. We appeal to the formulation in [13] to quantify the interaction energy of

two force dipoles. In this work, the force dipole moments are defined as the mechanical

moments, mbd, stemming from forces Fk acting at points Rk [13]:

mbd =
∑

k

Rk,bFk,d (b, d = x, y, z) ,

where it is assumed that
∑

k Fk = 0; (x, y, z) is a Cartesian coordinate system, z is the

axis normal to the basal plane, and Qk,b is the b component of the vector Qk. For a

cubic lattice, we adopt the formula [13]

mbd = δbd[(δbx + δby)m+ δbzmzz] , (7)

where δbd is Kronecker’s delta. The interaction energy of two such force dipoles with

moments m and m′ is calculated to be [13]

W dip
int =

1 − ζ2

πY r3

[

mm′ − ζ

1 − ζ
(mm′

zz +mzzm
′) +

(

ζ

1 − ζ

)2

mzzm
′

zz

]

, (8)

where Y is Young’s modulus, ζ is the Poisson coefficient, and r is the distance between

the dipoles; typically, 1/5 6 ζ < 1/2 [30]. If the force dipoles lie in the high-symmetry

plane as in the classic MP model (figure 2), then mzz = m′

zz = 0. Alternatively, consider

|mzz|, |m′

zz| ≪ |m| and interpret our subsequent results as subject to corrections due to

mzz and m′

zz. So, we restrict attention to a truncated version of (8):

W dip
int =

1 − ζ2

πY r3
mm′ . (9)

6Recall that the interaction energy of two electric dipoles with moments pA and pB at distance rAB

is [28] W = 1

r3

AB

[pA · pB − 3(pA · eAB)(eAB · pB)]; eAB is the unit vector pointing from A to B.
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Figure 3. Geometry of straight steps.

Equation (9) forms our starting point. The moments m and m′ are expressed in a

fixed coordinate system. If the step segments are not parallel, the product mm′ in (9)

must be appropriately replaced by the dot product of the respective vector moments.

3. Reference cases: 1D step geometries

In this section, we illustrate the application of (9) to simple geometries describable in

terms of a single spatial coordinate: straight steps and concentric circular steps.

3.1. Straight steps

Consider the case of two (infinite) straight steps shown in figure 3. The steps are aligned

with the y-axis, and their distance equals w, the terrace width. To find the elastic

interaction energy per unit length of step 1, we fix the line element dl1 and integrate

over step 2, summing up the contributions of interactions with the line elements dl2.

Let R be the vector along the line joining dl1 and dl2, θ be the angle formed by R and

dl1, and R = |R|. Choosing to integrate with respect to θ, we have

R =
w

sin θ
, dl2 = dy =

∣

∣

∣
d

( w

tan θ

)
∣

∣

∣
=

w

sin2 θ
dθ , 0 6 θ 6 π .

The force dipoles, m and m′, are now proportional to the lengths of the associated

step segments, dl1 and dl2, with proportionality constant P , the dipole moment per unit

length of a step. Thus, the interaction energy per length of step 1 due to step 2 is

Vint ≡
dWint

dl1
=
P 2

w2

∫ π

0

sin θ dθ =
2P 2

w2
. (10)

Note that we replaced the symbol W dip
int of (9) by d2Wint

dl1dl2
and then integrated over dl2.

This example serves as a reference case. Indeed, the plausibility of later results can

be checked by allowing the step curvature in respective geometries to approach zero.

3.2. Concentric circular steps

Next, we consider concentric circular steps, shown in figure 4. Our purpose is twofold.

First, we aim to offer a streamline derivation and improvement of (5) for the interaction

energy [14]. Second, we intend to clarify the role of a (assumed small) geometric

parameter and demonstrate the use of the Mellin transform technique.
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Figure 4. Geometry of concentric circular steps with radii r1 and r2.

By figure 4, we fix our attention on the interaction between an infinitesimal element

dl1 on the inner step (step 1) and the entire outer step (step 2). Recall formula (9),

now written for two dipoles on circles 1 and 2. The product mm′ is proportional to

dl1 · dl2 where dlj is an infinitesimal tangential vector along step j (j = 1, 2). By use of

Cartesian coordinates (x, y), the dipoles are located at (r1, 0) and (r2 cos θ, r2 sin θ).

If P is the dipole moment per unit length associated with each step, the interaction

energy per unit length of step 1 is (see footnote 7)

Vint =
dWint

dl1
= P 2

∫ π

−π

r2 cos θ

(r2
1 + r2

2 − 2r1r2 cos θ)3/2
dθ . (11)

This integral can be computed exactly in terms of a special function but the result is

not particularly informative about the dependence on r1 and r2 (see appendix A).

To render (11) amenable to approximation, we identify a parameter expressing the

property that the terrace width, r2 − r1, is sufficiently small. Thus, set r2 = r1 + ρ and

r1 = ǫ−1, a large length scale, while ǫρ ≪ 1. We compute (11) by

Vint =
dWint

dl1
= 2P 2

∫ π

0

r2 cos θ

[ρ2 + 4(ǫ−2 + ǫ−1ρ) sin2(θ/2)]3/2
dθ . (12)

By the change of variable s = sin(θ/2) and the definition

λ2 = 4(ǫ−2 + ǫ−1ρ) = 4r1r2 ⇒ λ ∼ 2ǫ−1(1 + ǫρ/2) = r1 + r2 , (13)

where λ is a macroscopic length parameter, integral (12) is recast to the form

Vint(δ
2) =

4P 2r2
λ3

∫ 1

0

ds√
1 − s2

1 − 2s2

(s2 + δ2)3/2
=

4P 2r2
λ3

I(δ2) . (14)

Note that I(δ2) diverges in the neighborhood of s = 0 as δ2 ↓ 0.

7Because of rotational symmetry, the total interaction energy of steps 1 and 2 follows trivially.
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3.2.1. Application of Mellin transform One may proceed by evaluating Vint(δ
2) exactly

in terms of complete elliptic integrals; see (A.4) of appendix A. Instead, we apply the

Mellin transform in δ2, which enables us to derive an asymptotic expansion for Vint if

δ2 ≪ 1 and is generalizable to cases without rotational symmetry. For a short review of

the Mellin transform, see appendix B.

The Mellin-transformed integral of (14) reads

Î(ζ) =

∫

∞

0

I(δ2)(δ2)−ζ dδ2 =

∫ 1

0

ds (1 − 2s2)√
1 − s2

(
∫

∞

0

(δ2)−ζ

(s2 + δ2)3/2
dδ2

)

,

by interchange of the order of integrations. The integral for Î(ζ) converges for

−1
2
< Reζ < 0 and can be evaluated in terms of the Gamma function [31]:

Î(ζ) =
Γ(1 − ζ)Γ(ζ + 1

2
)

Γ(3

2
)

∫ 1

0

d(s2)
(s2)−ζ−1/2

√
1 − s2

(1 − 2s2)

= − 1

2

Γ(1 − ζ)2 Γ(1
2

+ ζ)

Γ(1

2
− ζ)

Γ(1
2
)

Γ(3

2
)

(

1

ζ
+

2
1

2
− ζ

)

; (15)

recall that the sole singularities of Γ(ω) are simple poles at ω = −n = 0,−1,−2, . . ..

We invert (15) by summing over residues from poles that lie in the right half-plane

and are closest to the fundamental strip; this sum yields the desired expansion for δ ≪ 1.

We write

I(δ2) =
1

2πi

∫ ν+i∞

ν−i∞

(δ2)ζ−1Î(ζ) dζ , −1

2
< ν < 0 , (16)

by definition 2 in appendix B. By shifting the contour to the right, the leading-order

term in (16) comes from the residue at ζ = 0. Thus, we approximate [31]

(δ2)ζ−1Î(ζ) ∼ − 1

2δ2

Γ(1

2
)

Γ(3
2
)

1

ζ
= − 1

δ2

1

ζ
as ζ → 0 .

The respective residue at ζ = 0 is 1/δ2. Thus, by (14) we find

I(δ2) ∼ 1

δ2
⇒ Uint ∼

4P 2r2
λ3δ2

as δ2 ↓ 0 . (17)

To leading order in δ2 the interaction energy per unit length of step 1 is written as

Vint ∼
1

2

√

r2
r1

(

2P

r2 − r1

)2

∼ 1

2

(

2r2
r1 + r2

)(

2P

r2 − r1

)2

,
r2 − r1
r1

≪ 1, (18)

where we used λ = 2
√
r1r2 ∼ r1 + r2 and δ = ρ/λ. Formula (18) is in agreement with

(5) via the definition 2P =: a
√

2g [14, 17]. By setting ρ = r2 − r1 ≡ w (fixed) with

r1 = ǫ−1 and r2 = ǫ−1 + ρ, we recover the straight-step interaction energy (10) as ǫ ↓ 0.

Corrections to (18) can originate from residues at the poles ζ = 1, 2, . . . of

Î(ζ)(δ2)ζ−1. In particular, the residue at ζ = 1 is found via expansions in ζ̃ = 1 − ζ .

Using the recursive relation ωΓ(ω) = Γ(ω + 1) [31] where necessary, we have

Î(ζ) ∼ 1

4

[

− 3

ζ̃2
− 6ψ(1) − 3ψ(3/2) − 3ψ(−1/2) + 7

ζ̃

]

as ζ̃ → 0 ,
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Figure 5. Geometry of non-concentric circular steps of radii r1 and r2.

where ψ(ω) = d
dω

ln Γ(ω) [31]. Thus, (δ2)ζ−1Î(ζ) has the residue 1
4
( − 3 ln 16

δ2 + 5) at

ζ = 1. Accordingly, we obtain a logarithmic correction:

Vint ∼ P 2r2

[

4

λ

1

ρ2
− 3

λ3
ln

(

16λ2

ρ2

)

+
5

λ3

]

,
ρ

λ
≪ 1 . (19)

Further corrections in this context may be questionable, since these may be

comparable in magnitude to terms omitted from our starting point, equation (8). Our

computation demonstrates the contributions of force dipole moments parallel to step

edges on the basal plane.

4. Non-concentric circular steps

In this section, we consider two circular steps of different centers. This geometry forms

a deviation from the radial case (section 3.2). The energy of interest is still exactly

calculable in terms of elliptic integrals and also amenable to asymptotics by the Mellin

transform. Specifying the shape of step 1 is not necessary since attention is focused on

the interaction energy per unit length. In the end, we indicate the computation of the

total elastic interaction energy for the two steps.

The geometry is depicted in figure 5. Let the x-axis join the two centers, which are

offset by a distance c. The circles radii are r1 and r2. The centers and the fixed point

of interest on the inner circle (step 1) form a triangle of sides with lengths c, r1 and L.

The dipole dl1 along step 1 is located at a point at angle β with the x-axis (see footnote

8). The dipole dl2 on the outer circle is located at angle α with the side of length L.

We also define the angles γ and θ, and the distance R between the two dipoles as in

8For the interaction energy per unit length, it suffices to take dl1 in a fixed (say, y-) axis. Here, we

choose to also give a formula for the total energy, so β is needed to parametrize the position of dl1.
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figure 5. Clearly, we have the relations R2 = L2 + r2
2 − 2Lr2 cosα and

α = θ + γ , cos γ =

√

1 −
( c

L
sin β

)2

cosα +
c

L
sin β sinα.

We compute the elastic interaction energy per unit length of step 1 with step 2 via

an integral over α. So, fix dl1, L and β. By dl1 · dl2 = (dl1)(r2dα) cos γ, we find

Vint =
dWint

dl1
= P 2r2

∫ π

−π

cosα
√

1 −
(

c
L

sin β
)2

+ c
L

sinα sin β

(L2 + r2
2 − 2r2L cosα)3/2

dα .

This integral is recast to a form analogous to the radial case (section 3.2). Let

s = sin(α/2); accordingly,

Vint(β) =
4P 2r2
λ3

√

1 −
( c

L
sin β

)2

I(δ2), δ = ρ/λ , (20)

where L2 = L(β)2 = r2
1 + c2 − 2r1c cosβ, ρ = r2 −L, λ = 2

√
r2L and I(δ2) is defined by

(12); in the radial case, c = 0 and L = r1.

Hence, we wind up with the same integral, I(δ2), as in the case with concentric

circular steps. By (17), the leading-order approximation for the interaction energy with

step 2 per unit length of step 1 is

Vint(β) ∼ 1

2

√

r2
L

√

1 −
( c

L
sin β

)2
(

2P

r2 − L

)2

if r2 − L≪
√

r2L , (21)

i.e., provided dipole 1 does not lie too close to the center of step 2 and the radii difference

is small compared to
√
r1r2. Formula (21) reduces to approximation (18) of the radial

case if c → 0. Correction terms to (21) follow from the higher-order terms in the

expansion for I(δ2); see end of section 3.2.

We note in passing that an approximation for the total elastic interaction energy of

steps 1 and 2 stems from integrating (21) with respect to β, where dl1 = r1dβ:

V tot
int ∼ r1

∫ π

0

√

r2
L(β)

√

1 −
(

c

L(β)
sin β

)2(
2P

r2 − L(β)

)2

dβ .

5. Perturbation of circular step

In this section we address the computation of the interaction energy, Vint, per unit length

of a step with another non-circular step. The latter step has a shape that forms pertur-

bation of a circle. Our main assumption is that the polar coordinates r1 and r2 for the

two steps are sufficiently close, by direct analogy with the radial case (section 3.2). We

derive leading-order and correction (logarithmic) terms for Vint.

The Mellin transform technique could have been bypassed in favor of elliptic

integrals and their asymptotic expansions, if our only focus in this paper was the energies

of circular steps. The worth of the Mellin transform may be better demonstrated by

indicating how it can be applied to the integral for elastic-dipole interactions between

steps of other smooth shapes. From the viewpoint of our analysis, the ensuing integrals
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dl
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1

2

Figure 6. Force dipole moment Pdl1 and neighboring perturbed (non-circular) step.

are amenable to approximations if a coordinate system can be specified such that |r1−r2|
is small compared to r1 and r2 (uniformly in the assorted angle variables).

The geometry is shown in figure 6. The system consists of: (i) a fixed force dipole

dl1 = (dl1)ey (along the y-axis) located at (x, y) = (r1, 0); and (ii) a step described

by the polar graph (r2(α), α) where r2(α) is smooth and −π < α 6 π. The force

dipole along the latter step is dl2, at distance R from dipole dl1. Since we focus on the

interaction energy per unit length of step 1, the overall shape of this step does not enter

our discussion. We can assume that the position of dipole 1 is parametrized so that the

element dl1 lies on some prescribed smooth curve (see footnote 9). Consider

r2(α) = r1 + r(s) , r(s) = ρ[1 + sr̄(s)] ; s = sin(α/2) , (22)

where r̄(s) is smooth, O(1) and signifies the breaking of rotational symmetry.

By analogy with the radial case (section 3.2), the distance R here is given by

R(s)2 = r2
1 + r2

2 − 2r1r2 cos(α) = λ2{s2 + δ2[1 + sA(s)]} =: λ2Q(s; δ2) ,

where

λ2 = 4r1(r1 + ρ) , δ2 = ρ2/λ2 , A(s) = r̄(s)[2 + sr̄(s) + 4s2r1/ρ] ; (23)

A(s) ≡ 0 in the radial case (r̄ ≡ 0). In general, A(s) depends on δ via r1 and ρ. In using

the Mellin transform, we treat A(s) as δ-independent. So, the coefficients of the expan-

sion can be functions of δ; this feature does not raise any concerns (see footnote 10).

We now proceed with the calculation of the elastic-dipole interaction energy, noting

that dl1 ·dl2 = [r′2(α) sinα+r2 cosα]dα dl1 where the prime here denotes differentiation.

Thus, we obtain the formula

dWint

dl1
=

2P 2

λ3
[(r1 + ρ)I0 + 2ρI1 + ρI21 − 2(r1 + ρ)I22 − 3ρI3 − ρI4] , (24)

9More generally, we can assume that the polar graph of step 1, not shown in figure 6, is (r1(β), β);

thus, ρ as well as λ and δ (to be defined below) are β-dependent.
10This situation is somewhat analogous to seeking an expansion for, e.g., [1 − b(δ2)δ2]−1 for δ2 ≪ 1

where b(u) = o(1) as u ↓ 0. One can treat b as independent of δ and finally account for b = b(δ2).
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where, with Q(s; δ2) = s2 + δ2[1 + sA(s)], the associated integrals are defined by

I0(δ
2) =

∫ 1

−1

ds√
1 − s2

Q(s; δ2)−3/2 , I1(δ
2) =

∫ 1

−1

ds√
1 − s2

sr̄(s)

Q(s; δ2)3/2
,

I21(δ
2) =

∫ 1

−1

ds√
1 − s2

r̄′(s) s2

Q(s; δ2)3/2
, I22(δ

2) =

∫ 1

−1

ds√
1 − s2

s2

Q(s; δ2)3/2
,

I3(δ
2) =

∫ 1

−1

ds√
1 − s2

r̄(s) s3

Q(s; δ2)3/2
, I4(δ

2) =

∫ 1

−1

ds√
1 − s2

r̄′(s) s4

Q(s; δ2)3/2
.

Evidently, these integrals are classified according to the explicit power of s appearing in

their integrands. As δ2 ↓ 0, the most singular integral is I0(δ
2), which reduces precisely

to the integral of the radial case if r̄(s) ≡ 0. By contrast, the integrals I3(δ
2) and I4(δ

2)

remain finite, yielding (δ-independent) constants.

In appendix C, the above integrals are approximated for small δ2 (δ2 ≪ 1) by use of

the Mellin transform. The main idea is to single out the contributions of the underlying

divergencies (as δ2 ↓ 0) in the form of appropriate residues of a complex-valued function.

Our results, up to (and including) logarithmic corrections, are summarized as follows:

I0(δ
2) ∼ 2

δ2
+

1

2
ln

16

δ2
− 1

2
[2A′(0) − A(0)2 + 3] , (25)

I1(δ
2) ∼ r̄(0)A(0) + r̄′(0)

(

ln
16

δ2
− 2

)

+ C1 , (26)

I21(δ
2) ∼ r̄′(0)

(

ln
16

δ2
− 2

)

+ C2 , I22(δ
2) ∼ ln

16

δ2
− 2 , (27)

I3(δ
2) ∼ C3 =

∫ 1

−1

ds√
1 − s2

r̄(s) sgn(s) , (28)

I4(δ
2) ∼ C4 =

∫ 1

−1

ds√
1 − s2

r̄′(s) |s| , (29)

where sgn(s) = −1 if s < 0 and sgn(s) = 1 if s > 0, and

C1 =

∫ 1

−1

ds√
1 − s2

[

r̄(s) − r̄(0)

s
− r̄′(0)

]

|s|−1 , (30)

C2 =

∫ 1

−1

ds√
1 − s2

[r̄′(s) − r̄′(0)] |s|−1 , (31)

A(0) = 2r̄(0) , A′(0) = 2r̄′(0) + r̄(0)2 . (32)

Note that ρ does not appear in the values A(0) and A′(0) to these orders of

approximation; see appendix C for more details.

The corresponding expansion for Vint = dWint/dl1 follows from combination of (24)

with (25)–(29). By neglect of O(δ) terms, this expansion reads

dWint

dl1
∼ 4P 2

λ3
(r1 + ρ)

{

1

δ2
− 3

4

[

1 − 2
ρ

r1 + ρ
r̄′(0)

]

ln
16

δ2

+
1

4
[5 + 2r̄(0)2 − 4r̄′(0)]

}

. (33)
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For r̄(s) ≡ 0 (radial case), this dWint/dl1 reduces to formula (19). For a non-circular

step 2, the logarithmic correction in (33) involves the derivative of r̄(s) at s = 0, a

geometric dependence not seen in the leading-order term of the same formula.

A few more remarks on the results of this section are in order.

Remark 1. In the context of the BCF-type step flow, (33) can be used in order to

express the step chemical potential, µ1, at any point of step 1 (where dl1 is located);

recall formula (6). The curve representing step 1, and thus the position of the dipole

on step 1, must be parametrized accordingly, e.g., by use of an angle variable. For the

validity of our approximation, impose |r1 − r2| ≪
√
r1r2.

Remark 2. In principle, higher-order terms of the asymptotic expansion for dWint/dl1
involve higher derivatives of r̄(s) at s = 0. This means that knowing these asymptotic

terms to arbitrary order in principle amounts to extracting information about the local

shape of step 2 (assuming r̄(s) is smooth).

Remark 3. The leading-order term in (33) is consistent with the geometric factor

based on local coordinates in [20]. This is not surprising since the present geometry is

a (regular) perturbation of concentric circles.

Remark 4. We reiterate that the magnitude of corrections to (33) relative to terms

omitted in (8) is not known a priori. Adding corrections from other residues here might

not be enough to ensure overall accuracy. Estimating the contribution of cross-terms in

(8), which stem from dipole moments perpendicular to the basal plane, lies beyond our

present purposes.

6. Conclusion

We began this investigation in an attempt to verify, and possibly improve, a previously

used formula for the elastic-dipole interaction energy between two concentric circular

steps. To this end, we applied the Mellin transform with respect to a parameter

expressing the relative magnitude of the step distance and the step radii of curvature.

This technique singles out the most important contributions to integration over the step

circumference in the form of appropriate residues of poles in the complex plane for the

transformed integral. Our derivation offered a refinement of the previous formula in two

respects: the leading-order term is slightly more accurate; and a logarithmic correction

is added.

In the course of our derivation, we extended the calculation of the interaction

energy to a class of smooth 2D steps. In our model, these steps form perturbations

of circles. The leading-order behavior of their interaction energy is consistent with

physical intuition: the elastic energy per unit length between the steps decays as the

inverse square of their separation, as measured along the appropriate local normal. This

property was invoked by Weeks et al [7] for perturbations of straight steps. Here,

we generalized this result to other geometries and also derived corrections; these may

become important for a certain range of interstep distances and material parameters.
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Previous numerical studies of step flow with circular steps [15, 17] made use of the

interaction energy formula from [14], which we now understand to be valid when step

separations are sufficiently small compared to the step radii (δ2 ≪ 1 in our notation).

A more precise regime of validity of this formula should stem by considering limitations

of classical elasticity as well; for example, the starting elastic-dipole formula becomes

inadequate if the step distance becomes comparable to a few atomic lengths [24].

The extended formulas of this paper express effects of rotational symmetry breaking

through logarithmic corrections. These involve local geometric features of the step curve.

Our analysis has limitations. For example, we did not address contributions of

dipole moments perpendicular to the basal plane; nor did we compute corrections due to

elastic-multipole interactions. Our goal was to demonstrate the use of an analytical tool

(Mellin transform) in simple yet physically relevant geometries, rather than embark on

lengthy computations. In cases of multipole interactions, the associated integrals have

a similar algebraic structure with some modifications, e.g., the denominators of the

integrands involve higher powers. Such energies are amenable to the Mellin transform

as well and are the subject of work in progress.
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Appendix A. On elliptic integrals

In this appendix, we compute the integral Vint(δ
2) of the radial case, equation (14), in

terms of complete elliptic integrals [32].

By (14), we express Vint(δ
2) as

Vint(δ
2) =

4P 2r2
λ3

[

−2(2δ2 + 1)
d

d(δ2)
− 2

]

Ic(δ
2) (A.1)

where

Ic(δ
2) =

∫ 1

0

ds√
1 − s2

1√
s2 + δ2

. (A.2)

With s = cos θ in (A.2), we find

Ic(δ
2) =

∫ π/2

0

dθ
√

δ2 + 1 − sin2 θ
=

1√
1 + δ2

K(1/
√

1 + δ2) (A.3)

where K(̟) =
∫ π/2

0
dθ (1 − ̟2 sin2 θ)−1/2 is the complete elliptic integral of the first

kind [32]. Thus, by (A.1) and ̟ = (1 + δ2)−1/2, we obtain

Vint(δ
2) =

4P 2r2
λ3

̟

[

2 −̟2

1 −̟2
E(̟) − 2K(̟)

]

; (A.4)
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E(̟) =
∫ π/2

0

√

1 −̟2 sin2 θ dθ is the complete elliptic integral of the second kind [32].

This result is compatible with the asymptotic expansion of section 3.2. In

particular, by expanding (1 + δ2)−1/2 about δ = 0 and using an expansion of K(̟)

about ̟ = 1 [32], we recover Ic ∼ ln(16/δ2) and the assorted correction terms as δ ↓ 0.

Appendix B. Review of Mellin transform

In this appendix, we review elements of the Mellin integral transform. For a

more thorough discussion including other applications, the reader may consult, e.g.,

[10–12,33–35]. We include only technical elements that serve our present purposes.

Definition 1 The Mellin transform of F (x) : R+ → R (R: set of reals) is defined as

F̂ (ζ) =

∫

∞

0

F (x)x−ζ dx , (B.1)

where ζ lies in some vertical strip, S0, of the complex plane so that the integral converges.

Note that, once defined via (B.1) for ζ ∈ S0, the function F̂ (ζ) can in principle be

continued analytically to the whole complex plane, C.

Definition 2 The inverse Mellin transform of F̂ (ζ) : C → C is defined by

(F̂ )̌ (x) =
1

2πi

∫ ν+i∞

ν−i∞

F̂ (ζ)xζ−1 dζ (i2 = −1) , (B.2)

where, for appropriate ν, the contour of integration must lie in S0 ⊂ C.

Under reasonably general assumptions on F (x), we henceforth take F (x) = (F̂ )̌ (x)

(almost everywhere). In the following, we motivate formulas (B.1) and (B.2) with

recourse to a (presumably more familiar) variant of the Fourier transform.

For a function f : R → R, the two-sided Laplace transform is

L(f)(σ) =

∫

∞

−∞

f(t)e−σt dt , (B.3)

which follows from the Fourier transform [33]. By reasonably general conditions, f is

recovered from L(f) via the inversion formula

f(t) =
1

2πi

∫ γ+i∞

γ−i∞

L(f)(σ)eσt dσ , (B.4)

where the integration path lies in the region of convergence of the integral for L(f)(σ).

The Mellin transform ensues from (B.3) by x = et. Formally, this yields

L(f)(σ) =

∫

∞

0

f(ln x)x−σ−1 dx , (B.5)

which leads to (B.1) via the definitions F (x) = f(ln x), ζ = σ + 1, and F̂ (ζ) =

L(f)(ζ − 1). The inverse Mellin transform (B.2) with (F̂ )̌ = F follows from (B.4).

We add a note on convergence. For arbitrary yet fixed c > 0, split integral (B.1) as

F̂ (ζ) =

(
∫ c

0

+

∫

∞

c

)

F (x)x−ζ dx , (B.6)
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and assume that F (x) is summable on any finite (c1, c2) ⊂ (0,∞) where c1 > 0,

F (x) = O(xp2−1) as x ↓ 0 and F (x) = O(xp1−1) as x→ ∞. The first integral converges

provided Reζ < p2, while the second one converges if p1 < Reζ . Thus, if p1 < p2, F̂ (ζ)

is originally defined (as a convergent integral) in the fundamental strip p1 < Reζ < p2.

Appendix C. Asymptotics for integrals of non-circular step

In this appendix, we evaluate approximately the integrals Iℓ(δ
2) (ℓ = 0, 1, 21, 22, 3, 4)

of section 4 by use of their Mellin transforms, Îℓ(ζ). Each Îℓ(ζ) is a meromorphic

function and, although not exactly calculable in terms of tractable special functions,

it can be written as a Laurent series in the vicinity of every pole. By starting with

the definition of the Mellin transform in the fundamental strip, we derive terms of the

Laurent series by analytic continuation. So, the respective residues can be computed to

yield an asymptotic expansion in δ with coefficients containing details of the step curve.

Integral I0. The leading-order term for the energy stems from I0(δ
2). We compute

Î0(ζ) =
Γ(1 − ζ) Γ(1

2
+ ζ)

Γ(3
2
)

∫ 1

−1

ds√
1 − s2

[1 + sA(s)]ζ−1 (s2)−ζ−1/2 , (C.1)

with fundamental strip −1/2 < Reζ < 0. To single out the simple pole ζ = 0, we write
∫ 1

−1

ds√
1 − s2

[1 + sA(s)]ζ−1(s2)−ζ−1/2 = 2

∫ 1

0

ds√
1 − s2

(s2)−ζ−1/2 + O(1)

as ζ → 0, where O(1) is bounded. The last integral equals Γ(−ζ)Γ(1/2)/Γ(1/2−ζ); thus,

Î0(ζ) ∼ −2/ζ as ζ → 0 , (C.2)

which yields the first term in (25). In the same vein, we find zero residue at ζ = 1/2

and thus no contribution O(1/δ) to I0(δ
2).

Regarding the double pole of Î0(ζ) at ζ = 1, we write

[1 + sA(s)]ζ−1 = 1 + s2[Λ0(s; ζ) − Λ0(0; ζ)] + s2Λ0(0, ζ) + K0(ζ) s ,

where

Λ0(s; ζ) = s−1

{

[1 + sA(s)]ζ−1 − 1

s
−K0(ζ)

}

,

K0(ζ) = lim
s→0

[1 + sA(s)]ζ−1 − 1

s
.

As ζ̃ = 1−ζ → 0, we have K0(ζ) ∼ −ζ̃A(0) and Λ0(s; ζ) ∼ −ζ̃{ln[1+sA(s)]−sA(0)}/s2

uniformly in s; hence, Λ(0; ζ) ∼ −ζ̃[A′(0) − 1

2
A(0)2]. By integration (in s), we obtain

Î0(ζ) ∼
1

2

[

1

ζ̃2
− 2A′(0) −A(0)2 − 1 + ψ(3

2
) + ψ(−1

2
) − 2ψ(1)

ζ̃

]

. (C.3)

The residue for Î0(ζ)(δ
2)ζ−1 at ζ̃ = 0 yields the remaining terms in (25); ln δ2 appears.
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Integral I1. The Mellin transform of I1(δ
2) reads

Î1(ζ) =
Γ(1 − ζ) Γ(1

2
+ ζ)

Γ(3
2
)

∫ 1

−1

ds√
1 − s2

sr̄(s)[1 + sA(s)]ζ−1(s2)−ζ−1/2

with fundamental strip −1/2 < Reζ < 1/2. Because of the factor s here, we conclude

by analytic continuation that ζ = 1/2 is a ‘removable singularity’. Next, consider the

double pole at ζ = 1; ζ̃ = 1 − ζ . For analytic continuation, apply the splitting

r̄(s)[1 + sA(s)]ζ−1 = s[Λ1(s; ζ)− Λ1(0; ζ)] + sΛ1(0; ζ) + r̄(0) ,

where

Λ1(s; ζ) =
r̄(s)[1 + sA(s)]ζ−1 − r̄(0)

s
.

Notice that Λ1(s; ζ) ∼ s−1{r̄(s) − r̄(0) − ζ̃ r̄(s) ln[1 + sA(s)]} as ζ̃ → 0, uniformly in s;

in particular, lims→0 Λ1(s; ζ) ∼ r̄′(0) − ζ̃ r̄(0)A(0). By integration in s, we find

Î1(ζ) ∼
r̄′(0)

ζ̃2
+

C1 + [2ψ(1) − ψ(1

2
) − ψ(3

2
)]r̄′(0) + r̄(0)A(0)

ζ̃
, (C.4)

as ζ̃ → 0; the constant C1 is defined by (30). The expansion for Î1(ζ) (δ2)ζ−1 as ζ → 1

yields (26).

Integrals I21, I22. The Mellin transforms of I21(δ
2) and I22(δ

2) read

Î21(ζ) =
Γ(1 − ζ)Γ(1

2
+ ζ)

Γ(3

2
)

∫ 1

−1

ds√
1 − s2

[1+ sA(s)]ζ−1r̄′(s) (s2)−ζ+1/2,(C.5)

Î22(ζ) =
Γ(1 − ζ) Γ(1

2
+ ζ)

Γ(3

2
)

∫ 1

−1

ds√
1 − s2

[1 + sA(s)]ζ−1 (s2)−ζ+1/2 , (C.6)

with fundamental strip −1/2 < Reζ < 1. Each of the above functions has a double pole

at ζ = 1. We analytically continue each function to 1 6 Reζ < 3/2 via the splitting

Λ2(s; ζ) ≡ [1 + sA(s)]ζ−1q(s) = [Λ2(s; ζ) − Λ2(0; ζ)] + Λ2(0; ζ) ,

where q(s) = r̄′(s) or 1. Note that Λ2(s; ζ) ∼ {1 − ζ̃ ln[1 + sA(s)]}q(s) as ζ̃ → 0,

uniformly in s. After substitution in (C.5) and (C.6), and further algebra, we find

Î21(ζ) ∼
r̄′(0)

ζ̃2
+

C2 + r̄′(0)[2ψ(1) − ψ(1

2
) − ψ(3

2
)]

ζ̃
, (C.7)

Î22(ζ) ∼
1

ζ̃2
+

2ψ(1) − ψ(1

2
) − ψ(3

2
)

ζ̃
, (C.8)

where the constant C2 is defined by (31). The expansions of I21(ζ)(δ
2)ζ−1 and

I22(ζ) (δ2)ζ−1 at ζ = 1 (ζ̃ = 0) and computation of residues lead to formulas (27).

Integrals I3, I4. By contrast to Iℓ(δ
2) for ℓ = 0, 1, 21, 22, the integrals I3(δ

2) and I4(δ
2)

remain convergent as δ2 ↓ 0. Thus, by continuity in δ, we have I3(δ
2) ∼ I3(0) and

I4(δ
2) ∼ I4(0) as δ2 ↓ 0. These assertions readily yield (28) and (29).
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