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Abstract. In this work, we are interested in the spectrum of the diffusively excited granular gases
equation, in a space inhomogeneous setting, linearized around an homogeneous equilibrium.

We perform a study which generalizes to a non-hilbertian setting and to the inelastic case the
seminal work of Ellis and Pinsky [8] about the spectrum of the linearized Boltzmann operator. We
first give a precise localization of the spectrum, which consists in an essential part lying on the
left of the imaginary axis and a discrete spectrum, which is also of nonnegative real part for small
values of the inelasticity parameter. We then give the so-called inelastic “dispersion relations”,
and compute an expansion of the branches of eigenvalues of the linear operator, for small Fourier
(in space) frequencies and small inelasticity.

One of the main novelty in this work, apart from the study of the inelastic case, is that we
consider an exponentially weighted L1(m−1) Banach setting instead of the classical L2(M−1

1,0,1)
Hilbertian case, endorsed with Gaussian weights. We prove in particular that the results of [8]
hold also in this space.
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1. Introduction

Let f ε := f ε(t, x, v) be a solution to the space inhomogeneous collisional kinetic equation

(1.1) ∂fε

∂t
+ v · ∇xf ε = 1

ε
(Qα(f ε, fε) + ε∆v(f ε)) ,

where t ≥ 0, v ∈ Rd and x ∈ Ω, for Ω being either the whole space domain Rd or the torus1 Td. The
collision operator Qα is the so-called granular gases operator (sometimes known as the inelastic
Boltzmann operator), describing an energy-dissipative microscopic collision dynamics, which we
will present in the following section. The parameter ε > 0 is the scaled Knudsen number, that
is the ratio between the mean free path of particles before a collision and the length scale of
observation.

Once ε goes to 0, and then when the number of collisions per time unit goes to infinity, the
complexity of equation (1.1) is (formally) greatly reduced, the solution being described almost
completely by its local hydrodynamic fields, namely its mass N ≥ 0, its momentum u ∈ Rd and
its temperature T ≥ 0. These quantities are obtained from a particle distribution function f by
computing the first moments in velocity:

(1.2)
N(t, x) =

∫
Rd
f(t, x, v) dv, N(t, x) u(t, x) =

∫
Rd
f(t, x, v) v dv,

T (t, x) = 1
dN

∫
Rd
f(t, x, v) |v − u|2 dv.

This reduction is usually carried on using the so-called Hilbert or Chapman-Enskog expansions of
the solutions to a linearized version of the kinetic equation (1.1) (see e.g. the book of Cercignani,
Illner and Pulvirenti [5] for a complete mathematical introduction in the elastic case).

A rigorous mathematical proof of this “contraction of the kinetic description” (namely the
hydrodynamic limit of the kinetic model towards a macroscopic one) for the elastic case has been
first given for the linear setting in the paper of Ellis and Pinsky [8] but the inelastic case still remains
to be investigated. An important step in the proof of this elastic limit is to give the so-called
dispersion relations of the collision operator, namely a Taylor expansion of the eigenvalues of the
linearization of the collision operator, with respect to the space variable, near a global equilibrium
(and this was the main purpose of [8]). The precise knowledge of the dispersion relations is actually
of crucial interest in the study of the full nonlinear and compressible hydrodynamic limit and it
was for example used by Kawashima, Matsumura and Nishida in [20, 13] (as a part of a rather
abstract Cauchy-Kowalevski-type argument which is also related to Niremberg [19]). The work
of Caflisch [3] also relies (but perhaps not as centrally as the previous ones) on these dispersion
relations. Let us also quote the work of Degond and Lemou [7] where a similar analysis of the
dispersion relations was conducted for the linearized Fokker-Planck equation.

We propose to give in this paper the corresponding inelastic expansion, with respect to both the
space variable and the inelasticity parameter, allowing to investigate in a future work first the two
linearized hydrodynamic limits of our model “à la Ellis et Pinsky” and then the nonlinear, com-
pressible ones “à la Nishida”. This result will allow us in particular to confirm a claim concerning
the clustering behavior of granular gases made in the classical textbook [2, p. 238] after a formal
analysis, namely that

the smaller the inelasticity, the larger the system must be to reveal clusters.

1.1. The Model Considered. Let α ∈ (0, 1] be the restitution coefficient of the microscopic
collision process, that is the ratio of kinetic energy dissipated during a collision, in the direction

1The case of a square domain [−L,L]d, for L ≥ 0 with specular reflection on the boundary can also be seen as a
particular case of a torus made of 2d independent copies of the initial box, using the parity of the normal component
of the velocity of fε at the boundary (as noticed by Grad in [10]).
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of impact. Then, we can define a strong form of the collision operator Qα by

Qα(f, g)(v) =
∫
Rd×Sd−1

|u|
( ′f ′g∗

α2 − f g∗
)
b(û · σ) dσ dv∗,(1.3)

= Q+
α (f, g)(v)− f(v)L(g)(v),

where we have used the usual shorthand notation ′f := f(′v), ′f∗ := f(′v∗), f := f(v), f∗ := f(v∗)
and û := u/|u|. In (1.3), ′v and ′v∗ are the pre-collisional velocities of two particles of given
velocities v and v∗, defined for σ ∈ Sd−1 as

′v = v + v∗
2 − 1− α

4α (v − v∗) + 1 + α

4α |v − v∗|σ,

′v∗ = v + v∗
2 + 1− α

4α (v − v∗)−
1 + α

4α |v − v∗|σ.

The unitary vector σ is the center of the collision sphere (see Figure 1) and u := v − v∗ is the
relative velocity of the pair of particles. Finally, the function b is the so-called angular cross-section,
describing the probability of collision between two particles. We assume that
(1.4) b is a Lipschitz, non-decreasing and convex function on (−1, 1),
and also that it is bounded from above and below by two nonnegative constants bm and bM :
(1.5) bm ≤ b(x) ≤ bM , ∀x ∈ (−1, 1).
In particular, this cross-section is integrable on the unit sphere, thus fulfilling the so-called Grad’s
cut-off assumption2. The operator Q+

α (f, g)(v) is usually known as the gain term because it
can be understood as the number of particles of velocity v created by collisions of particles of
pre-collisional velocities ′v and ′v∗, whereas f(v)L(g)(v) is the loss term, modeling the loss of
particles of pre-collisional velocities ′v.

We can also give a weak form of the collision operator. Indeed, if ω ∈ Sd−1 is the direction of
impact, we can parametrize the post-collisional velocities v′ and v′∗ as

v′ = v − 1 + α

2 (u · ω)ω,

v′∗ = v∗ + 1 + α

2 (u · ω)ω.

Then we have the weak representation, for any smooth test function ψ,

(1.6)
∫
Rd
Qα(f, g)ψ(v) dv = 1

2

∫
Rd×Rd×Sd−1

|u|f∗ g
(
ψ′ + ψ′∗ − ψ − ψ∗

)
b(û · ω) dω dv dv∗.

Thanks to this expression, we can compute the macroscopic properties of the collision operator
Qα. Indeed, we have the microscopic conservation of impulsion and dissipation of kinetic energy:

v′ + v′∗ = v + v∗,

|v′|2 + |v′∗|2 − |v|2 − |v∗|2 = −1− α2

2 |u · ω|2 ≤ 0.

Then if we integrate the collision operator against ϕ(v) = (1, v |v|2), we obtain the preservation of
mass and momentum and the dissipation of kinetic energy:∫

Rd
Qα(f, f)(v)

 1
v
|v|2

 dv =

 0
0

−(1− α2)D(f, f)

 ,
where D(f, f) ≥ 0 is the energy dissipation functional, given by

(1.7) D(f, f) := b1

∫
Rd×Rd

f f∗ |v − v∗|3 dv dv∗ ≥ 0,

2Physically relevant in the case of inelastic collisions, due to the macroscopic size of the grains forming the gas.
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Figure 1. Geometry of inelastic collisions, O := (v + v∗)/2 and Ω± := O ± (v∗ −
v) (1− e)/2 (dashed lines represent the elastic case).

and b1 is the angular momentum, depending on the cross-section b and given by

b1 :=
∫
Sd−1

(1− (û · ω)) b(û · ω) dω <∞.

It is of course finite thanks to the bounds (1.5).
In all the following of the paper, we shall assume that the restitution coefficient is related to the

Knudsen number in the following way :

α = 1− ε.

The macroscopic properties of the collision operator, together with the conservation of positiveness,
imply that the equilibrium profiles of Qα are trivial Dirac masses (see e.g. the review paper [21]
of Villani). Nevertheless, adding a thermal bath (1 − α)∆v will prevent this fact. Indeed, the
existence of a non-trivial equilibrium profile Fα to the space homogeneous granular gases equation
with a thermal bath is insured by the competition occurring between the dissipation of kinetic
energy occasioned by the collision operator Qα and the gain of energy given by the diffusion term
∆v.

More precisely, if we multiply the equation Qα(f, f) + (1 − α) ∆v(f) = 0 by |v|2, integrate in
velocity and divide by 1− α, we obtain using (1.7) the balance equation

(1.8) (1 + α)D(f, f) = 2 d.

It has then been shown in [1, 16] that under the hypotheses (1.4)–(1.5) on the cross-section,
there exists α∗ ∈ (0, 1) such that for all α ∈ [α∗, 1], there exists an unique equilibrium profile
0 ≤ Fα ∈ S(Rd) of unit mass and zero momentum:

(1.9)


Qα(Fα, Fα) + (1− α) ∆v(Fα) = 0,

∫
Rd
Fα(v) dv = 1,

∫
Rd
Fα(v) v dv = 0.
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In the last expression, S(Rd) denotes the Schwartz class of C∞ functions decreasing at infinity
faster than any polynomials. The tails of this distribution are exponentials, of order 3/2.

Of course, if α = 1 (elastic, non-heated case), the distribution F1 is nothing but the following
Maxwellian3 distribution

(1.10) F1(v) :=M1,0,T̄1
(v),

where MN,u, T is the Maxwellian distribution of mass N , velocity u and temperature T , only
equilibria of the elastic collision operator Q1 (see e.g. [5] for more details), and given by

MN,u, T (v) := N

(2πT )d/2
exp

(
|v − u|2

2T

)

for (N,u, T ) ∈ Rd+2. The quantity T̄1 in (1.10) is defined by passing to the limit α → 1 in the
balance equation (1.8) :

D(F1, F1) = d.

We can then show thanks to this relation (see [16] for details) that T̄1 is given by

(1.11) T̄1 = 1
2
d2/3

b
2/3
1

(∫
Rd
M1,0,1(v)|v|3 dv

)−2/3
.

1.2. The Linearized Operator. As we have said in the introduction, our goal is to perform the
fluid dynamic limit ε→ 0 of equation (1.1). By rescaling the time t̃ = t/ε and introducing a new
distribution f̃(t̃, x, v) = f(t, x, v), the equation (1.1) now reads (forgetting the tildas)

(1.12) ∂fε

∂t
+ ε v · ∇xf ε = Qε(f ε, fε) + ε∆v(f ε).

The hydrodynamic limit then amounts to consider the large time, small space variations of the
model (see the paper of Carlen, Chow and Grigo [4] for more details on the scaling and on the
different types of limit models it can yields). This means as ε = 1 − α that we are studying
fluctuations g of fα near the space homogeneous equilibrium profile Fα:

(1.13) fα = Fα + g.

By plugging this expansion on equation (1.12) and using the equilibrium relation (1.9), we obtain
the following equation for g:

(1.14) ∂g

∂t
+ (1− α) v · ∇xg = Lα g + (1− α) Γα(g, g),

where the linearized operator Lα is given for v ∈ Rd by

Lα(g)(v) := Qα(g, Fα)(v) +Qα(Fα, g)(v) + (1− α)∆v(g)(v),

and Γα is the quadratic remainder.
In order to prove rigorous results on the original model, such as nonlinear stability, it will be

crucial that the fluctuation g lives in a weighted L1 space. Indeed, to this purpose, we shall need
to connect the properties of the linearized operator Lα to the existing L1

3 a priori estimates for
the nonlinear operator Qα. These regularity properties were discussed extensively by Mischler
and Mouhot in the series of paper [15, 16]. As we can see in these papers (we recalled the most
important properties in the Appendix), we will need to take g ∈ L1(m−1), for m an exponential
weight function: there exists a > 0 and 0 < s < 1 such that

(1.15) m(v) := exp(−a |v|s).

The expansion (1.13) is well defined provided that the original distribution f ∈ L1 (m−1).
3Hence, there is a bifurcation which occur between the inelastic heated case and the elastic nonheated one.
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Let us present some basic properties of the linear operator Lα. We first need to define the
so-called collision frequency by

να(v) := L(Fα)(v) =
∫
Rd×Sd−1

|v − v∗|Fα(v∗) b(û · σ) dσ dv∗.

It is known (see for example the lemma 2.3 of [15] for an elementary proof) that for any g ∈ L1
3(Rd),

there exists some explicit nonnegative constants c0, c1 such that
0 < c0 (1 + |v|) ≤ L(g)(v) ≤ c1 (1 + |v|), ∀ ∈ v ∈ Rd.

In particular, the collision frequency να verifies
(1.16) 0 < ν0,α (1 + |v|) ≤ να(v) ≤ ν1,α (1 + |v|),
for two explicit nonnegative constants ν0,α, ν1,α. Then, we can rewrite the linearized collision
operator as a difference of nonlocal and local operators:

Lα(g) = L+
α (g)− L∗(g)− Lνα(g),

where L+
α is the linearization near Fα of the gain term, L∗ a convolution operator and Lν is the

operator of multiplication by a function of the velocity variable ν. Classically, for α = 1, the
linearized operator splits between a compact operator on L1(m−1) (see the paper of Mouhot [17]
for this particular exponentially weighted L1 case) and a multiplication operator:

L1(g) = Lc1(g)− Lν1(g).
We will see in Section 2 that the same type of decomposition holds for Lα.

As a first step to treat mathematically the question of the hydrodynamic limit of equation (1.1),
we shall forget the nonlinearity in equation (1.14) and study the hydrodynamic limit of the linear
equation

(1.17) ∂g

∂t
+ (1− α) v · ∇xg = Lα g.

One strategy of proof is to compare the spectrum of the linear operator
(1.18) − (1− α) v · ∇x + Lα,
to the one of the linearized fluid equation associated to the limit, as done in the seminal paper
of Ellis and Pinsky [8]. As a byproduct, the study of this spectrum will allow us to answer to
the question of the stability of the solutions to equation (1.17), by proving that the real part of
the eigenvalues of (1.18) remains nonpositive. Hence, the rest of this paper is devoted to the
computation of the spectrum (for small inelasticity and small space positions) of (1.18).

In order to avoid to deal with the free transport operator in differential form, we shall now use
Fourier transform in space. More precisely, if we define the Fourier transform in x of a function
ϕ : Rd → R as

Fx(ϕ)(ξ) :=
∫
Rd
e−iξ ·xϕ(x) dx, ∀ ξ ∈ Rd,

it is well know that
Fx (∇g) (ξ) = i ξFx(g)(ξ).

Then using the fact that Lα only acts on velocity variables and setting
γ := (1− α) ξ,

we can write (1.18) in (scaled) spatial Fourier variables as
(1.19) − i (γ · v) + Lα =: L(α, γ).

This operator is well defined on L1 (m−1), with domain dom(Lα, γ) = W 2,1
1
(
m−1). In this partic-

ular set of variable, the equation (1.17) finally reads
∂g

∂t
= Lα, γ g,
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and we see now the need to study the spectrum of the linear operator Lα, γ for small values of the
variable γ.

To finish with the definitions, let us denote by N1 the kernel of the elastic operator L1. It is
spanned by the elastic collisional invariants, namely

N1 := Span{F1, vi F1, |v|2 F1 : 1 ≤ i ≤ d},
where F1 = M1,0,T̄1

and T1 is the quasi-elastic equilibrium temperature (1.11). For α < 1, the
kernel Nα of the inelastic operator Lα is smaller, because of the lack of energy conservation; it is
given by

Nα := Span{Fα, vi Fα : 1 ≤ i ≤ d}.

1.3. Functional Framework and Main Results. Let us present some functional spaces needed
in the paper. We denote by Lpq for p ∈ [1,+∞) and q ∈ [1,+∞) the following weighted Lebesgue
spaces:

Lpq =
{
f : Rd → R measurable; ‖f‖Lpq :=

∫
Rd
|f(v)|p 〈v〉pq dv <∞

}
,

where 〈v〉 :=
√

1 + |v|2. The weighted L∞q is defined thanks to the norm
‖f‖L∞q := supessv∈Rd (|f(v)| 〈v〉q) .

Then, we denote for s ∈ N by W s,p
q the weighted Sobolev space

W s,p
q :=

f ∈ Lpq ; ‖f‖pW s,p
q

:=
∑
|k|≤s

∫
Rd

∣∣∣∂kf(v)
∣∣∣p 〈v〉p q dv <∞

 .
The case p = 2 is the Sobolev space Hs

q := W s,2
q , which can also be defined thanks to Fourier

transform by the norm
‖f‖2Hs

q
:= ‖Fv (f 〈·〉s)‖L2

q
.

We also need to define the more general weighted spaces Lp(m−1) and W s,p(m−1), where m is an
exponential weight function given by (1.15) respectively by the norms

‖f‖pLp(m−1) :=
∫
Rd
|f(v)|pm−1(v) dv,

‖f‖pW s,p(m−1) :=
∑
|k|≤s

∥∥∥∂kf∥∥∥p
Lp(m−1)

.

For the sake of completeness, let us finally state some notions about operators that we shall
need in the following.

Definition 1. A closed operator T defined on a Banach space X is said to be a
• Fredholm operator of index (nul(T ), def(T )) if the quantities nul(T ) := dim(kerT ) (the
nullity) and def(T ) := codim(R(T )) (the deficiency) are finite;
• semi-Fredholm operator if R(T ) is closed and at least one of these two quantities are finite.

For such an operator, we define the
• resolvent set R(T ) ⊂ C and the resolvent operator R(T, ζ) as

R(T ) := {ζ ∈ C : T − ζ is invertible on X, of bounded inverse R(T, ζ)};
• spectrum Σ(T ) of T as the (closed) set

Σ(T ) := R(T )c;
• Fredholm set F(T ) ⊂ C of T as

F(T ) := {ζ ∈ C : T − ζ is Freholm};
• semi-Fredholm set SF(T ) ⊂ C of T as

SF(T ) := {ζ ∈ C : T − ζ is semi-Freholm};
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Figure 2. Localization of the eigenvalues of Lα, γ for |γ| ≤ γ0(δ).

• essential spectrum Σess(T ) of T as the set
Σess(T ) := SF(T )c ⊂ Σ(T );

• discrete spectrum Σd(T ) of T as the set
Σd(T ) := Σ(T ) \ Σess(T ).

The two main results of this paper are the following Theorems. We first localize the spectrum
of the operator Lα,γ in the space L1 (m−1), generalizing to this space the classical L2 result of
Nicolaenko [18] (see also the chapter 7 of the book [5] of Cercignani, Illner and Pulvirenti). Let us
denote by ∆x for x ∈ R the half-plane

∆x := {ζ ∈ C : <e ζ ≥ x}.
We first prove the following result (which has been summarized in Figure 1.3).

Theorem 1.1. Let α ∈ (α1, 1], for a constructive constant 0 < α1 < 1. There exists a constructive
constant µ̄α > 0 such that the essential spectrum of the operator L(α, γ) in W

2,1
1
(
m−1) is contained

on the half-plane ∆c
−µ̄α:

Σess

(
L(α, γ)

)
⊂ ∆c

−µ̄α .

The remaining part of its spectrum is composed of discrete eigenvalues. Their behavior for small
frequencies γ is the following.

Let us fix δ > 0. There exist some constants 0 < λ̄ < µ∗ < µα and α2 ∈ (α1, 1] such that if
α ∈ (α2, 1] there exists a nonnegative number γ0 such that for all |γ| ≤ γ0, if λ ∈ Σd(L(α, γ)), then

λ ∈ ∆−µ∗ ⇒ |=mλ| ≤ δ;
λ ∈ ∆− λ̄2

⇒ |λ| ≤ δ.

We then give a first order (in γ and α) Taylor expansion of the eigenvalues of Lα,γ , which
generalizes the results of Ellis and Pinsky [8] and Mischler and Mouhot [16]. Notice that this
result also contains a part of the analysis led by Brilliantov and Pöschel in the chapter 25 of their
book [2] about the stable and unstable modes of the fluid approximation of the granular gases
equation, namely that the energy eigenvalue is proportional to the inelasticity.

Before stating the result, let us define the eigenvalue problem we want to deal with: finding a
triple (λ, γ, h) such that
(1.20) (−i(γ · v) + Lα)h = λh,

for γ ∈ Rd, λ ∈ C and h ∈ L1 (m−1).
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Theorem 1.2. There exist α∗ ∈ (α2, 1], some open sets U1 × U2 ⊂ R× C, neighborhood of (0, 0),
and functions λ

(j) : U1 × (α∗, 1]→ U2 ∀ j ∈ {−1, . . . , d},

h(j) : U1 × Sd−1 × (α∗, 1]→ L1
(
m−1

)
∀ j ∈ {−1, . . . , d},

such that
(1) The triple

(
ρω, λ(j)(ρ, α), h(j)(ρ, ω, α

)
is solution to the eigenvalue problem (1.20), for all

α ∈ (α∗, 1], ρ ∈ U1, ω ∈ Sd−1, j ∈ {−1, . . . , d};

(2) The eigenvalue λ(j) is analytic on U1 × (α∗, 1] and verifies

λ(j)(0, 1) = 0, ∀ j ∈ {−1, . . . , d},

∂λ(j)

∂ρ
(0, 1) = j i

√
T̄1 + 2T̄ 2

1
d
, ∀ j ∈ {−1, 0, 1}, ∂λ(j)

∂ρ
(0, 1) = 0, ∀ j ∈ {2, . . . , d},

∂2λ(j)

∂ρ2 (0, 1) < 0, ∀ j ∈ {−1, . . . , d},

∂λ(0)

∂α
(0, 1) = − 3

T̄1
,

∂λ(j)

∂α
(0, 1) = 0, ∀ j ∈ {−1, 1, . . . , d};

(3) For α ∈ (α∗, 1], if a triple (ρω, λ, h) is solution to the problem (1.20) for (ρ, λ) ∈ U1×U2, then
necessarily λ = λ(j) for some j ∈ {−1, . . . , d};

(4) For j ∈ {−1, 0, 1}, α ∈ (α∗, 1] and ω ∈ Sd−1, the function v 7→ h(j)(ρω, α)(v) depends only on
|v| and v · ω.

Remark 1 . We notice in this result that the eigenvalues depend only on |γ| and not on γ itself.
This is due to the rotational invariance of the linearized collision operator. However, this is not
the case of the eigenvectors, which can also depend on the angular coordinates.

Remark 2 . As a consequence of this result, we can write for (ρ, α) ∈ U1 × (α∗, 1]

λ(j)(ρ, α) = iλ
(j)
1 ρ− λ(j)

2 ρ2 − e(j)
1 (1− α) +O

(
ρ2 + (1− α)2

)
,

for explicit (see Section 3.4) constants λ(j)
1 ∈ R, λ(j)

2 ∈ R+ and e(j)
1 ∈ R+. In particular, we obtain

that for small space frequencies and small values of the inelasticity, the spectrum of the linear
operator remains at the left of the imaginary axis in the complex plane. This phenomenon has at
least two important consequences on the behavior of the solution to the granular gases equation:

• The solutions to the linear collision equation (1.17) are L1 (m−1) stable;
• The clustering phenomenon (see e.g. [2]) is not possible for quasi-elastic collisions α ∼ 1,
or for systems with a small typical length scale.

1.4. Method of Proof and Plan of the Paper. The proof of Theorem 1.1, concerning the
rough4 localization of the spectrum of the linear operator L(α, γ) is given in Section 2, and can be
summarized as follows:

• We first decompose this operator as a sum of compact and Schrödinger-like operators:

L(α, γ) h = − [i (γ · v) + να(v)]h+ (1− α)∆vh+ 2Q+
α (Fα, h)− Fα L(h)

= D(α, γ)h+ Lcαh.

4By rough, we mean more precisely that this result do not establish whether or not the eigenvalues can cross the
vertical axis of the complex plane.
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• We then compute the spectrum in L1 of the Schrödinger-like part D(α, γ) and apply a
Banach variant of Weyl’s Theorem (found e.g. in [12]) about the stability of the essential
spectrum under relatively compact perturbation

Σess

(
L(α, γ)

)
= Σess

(
D(α, γ)

)
.

• Once the essential spectrum has been localized, we take advantage of some space homoge-
neous coercivity and spectral gap estimates (proven in [15]) to establish the existence of
the eigenvalues.
• We finally combine some information about the asymptotic (α→ 1) behavior of the space
homogeneous eigenvalues (also taken from [15]) and the decay properties of the semi-group
of the operator D(α, γ) to finally give a rough localization of the spectrum.

The proof of Theorem 1.2 concerning the Taylor expansion of the eigenvalues of L(α, γ) is given
in Section 3. Up to a certain extent. this proof is a generalization of Ellis & Pinsky’s arguments
for [8], namely:

• We start by reformulating the eigenvalue problem (1.20) as a functional equation, using
bounded operators:

(1.20)⇐⇒ Finding (λ, γ, h) s.t. h = Ψ−1
(λ,γ, α)Φ(λ,γ, α)ν

−1/2
α Π ν1/2

α h,

where Π is a projection operator, Φ a “multiplication” operator, and Ψ a “small” pertur-
bation of the identity.
• We then project this new problem onto the space of elastic collisional invariants, allowing
to rewrite completely (1.20) as a finite dimensional system of linear equations of the form(

A(λ,γ,α) − Id
)
X(λ,γ,α) = 0,

for a non-invertible square matrix A.
• We finally solve this system of equation taking advantage of some elastic and space homo-
geneous techniques, from both [8] and [15].

2. Localization of the Spectrum

In this section, we shall give a rough localization of the spectrum of the linearized collision
operator Lα, proving Theorem (1.1).

2.1. Geometry of the Essential Spectrum. We start by describing the “easy part”, namely
the essential spectrum. As we have to deal with the Banach space L1 (m−1), we cannot apply
directly the classical Weyl’s Theorem about the stability of the spectrum under relatively compact
perturbations, because of the lack of Hilbertian structure. We shall rather apply the more general
version stating only the stability of the semi-Fredholm set, which is well suited for our definition
of the essential spectrum.

Proposition 2.1. Let α ∈ (α0, 1], where α0 is defined in Lemma A.1. There exists a constructive
constant µ̄α > 0 such that the essential spectrum of the operator L(α, γ) in W

2,1
1
(
m−1) is contained

on the half-plane ∆c
−µ̄α:

Σess

(
L(α, γ)

)
⊂ ∆c

−µ̄α .

The remaining part of its spectrum is composed of discrete eigenvalues.

Proof. Let us use the expression (1.19) of the collision operator in spatial Fourier variables, and
decompose it for h ∈ L1 (m−1) as a local and a non local part:

L(α, γ) h = − [i (γ · v) + να(v)]h+ (1− α)∆vh+ 2Q+
α (Fα, h)− Fα L(h)

= D(α, γ)h+ Lcαh,(2.1)
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where

(2.2)
{
D(α, γ) := − [i (γ · v) + να(v)] Id +(1− α)∆v,

Lcα := 2Q+
α (Fα, ·)− Fα L(·).

We start by the spectrum of D(α, γ) in L1 (m−1). This operator is the difference of a Laplace
operator with the operator of multiplication by C(α, γ)(v) := i (γ ·v)+L(Fα). This quantity verifies
according to the lower bound of the collision frequency (1.16)

<eCα, γ(v) > ν0,α,

where ν0,α is the lower bound of the loss term v → L(Fα)(v) (thanks to the smoothness of the
profile Fα stated in Proposition A.2).

It is known from e.g. [11, 14] that the spectrum of the Schrödinger-like operator D(α, γ) is
independent of the weighted Lp space (for p ∈ [1,+∞)) where we study it. Let us compute this
spectrum in L2. To this end, we shall look at the stability properties of the semi-group generated
by D(α, γ) on L2 (m−1): let h = h(t, v) ∈ C

(
0,+∞;W 2

1
)
be a weak solution to

(2.3) ∂h

∂t
= D(α, γ)h.

If we multiply this equation by h̄ and integrate in the velocity space, we have thanks to Stokes
Theorem and for α close to 1

∂

∂t
‖h(t)‖2L2(m−1) ≤ −‖C(α, γ) h(t)‖L2(m−1) ≤ −ν0,α‖h(t)‖2L2(m−1).(2.4)

We then obtain that
‖h(t)‖L2(m−1) ≤ e−ν0,α t/2.

Hence, there exists a constant 0 < µ̄α < ν0,α such that the spectrum of the operator D(α, γ) is
included in the set ∆c

−µ̄α .
Moreover, thanks to the Hölder continuity of the inelastic gain term in operator norm (with loss

of weight) stated in Proposition A.2, the operator Lcα is D(α, γ)–compact (and this is here that the
weak inelasticity assumption α ∈ (α0, 1] is used). Notice that we have chosen to define the essential
spectrum of an operator S “à la Kato”, namely as the complement of the semi-Fredholm set of S
in C. Then we can apply the Banach version of Weyl’s Theorem (see e.g. [12, Theorem IV.5.26
and IV.5.35]), stating that the semi-Fredholm set is stable under relatively compact perturbation.
Hence, the essential spectrum of L(α, γ) is included in ∆c

−µ̄α .
The set ∆−µ̄α is then equal to the Fredholm set F

(
L(α, γ)

)
. It remains to show that this set only

contains the eigenvalues and the resolvent set. We know from the discussion in [12, Chapter IV,
Section 6, and Theorem 5.33] that F

(
L(α, γ)

)
is an open set, composed of the union of a countable

number of components Fn, characterized by the value of the index: for any n ∈ N, the functions

nul : ζ → nul
(
L(α, γ) − ζ

)
, def : ζ → def

(
L(α, γ) − ζ

)
are constant on Fn, except for a countable set of isolated values of ζ. In our case, we have
F
(
L(α, γ)

)
= ∆−µ̄α which is connected; it has only one component, which means that nul(ζ) and

def(ζ) are constant on ∆−µ̄α , except for a countable set of isolated values of ζ.
We will prove that these constant values are nul(ζ) = def(ζ) = 0, meaning that ζ belongs to

the resolvent set of L(α, γ). The remaining isolated values ζ, being in the Fredholm set, then verify
0 < nul(ζ) < +∞ and 0 < def(ζ) < +∞, which exactly characterizes the eigenvalues. We shall
follow closely the proof of [17, Proposition 3.4], and exhibit an uncountable set I ⊂ ∆−µ̄α such
that nul(ζ) = def(ζ) = 0 for all ζ ∈ I.

Let us use the decomposition (A.1) introduced initially in [15]

Lα, γ = Aδ −Bα, δ (i(γ · v)) ,
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for δ > 0 (see Section A for more details). We know from Lemma A.1 that Aδ is compact on
L1 (m−1), and that Bα,δ satisfies the coercivity estimate
(2.5) ‖Bα, δ(ζ) g‖L1(m−1) ≥ ‖(ν1 + <e ζ) g‖L1(m−1) − ε(δ) ‖(ν1 + <e ζ) g‖L1(m−1) ,

where ε(δ) → 0 where δ → 0. If we fix r0 > 0 sufficiently big and δ > 0 small enough, then we
have according to (2.5) for all r ≥ r0

‖Bα, δ (r + i(γ · v)) g‖L1(m−1) ≥
ν0,1 + r0

2 ‖g‖L1(m−1).

Thus, the operator Bα, δ (r + i(γ · v)) is invertible on L1 (m−1), for all r ≥ r0, and then it is the
same for Lα, γ − r = Aδ −Bα, δ (r + i(γ · v)) by compacity of Aδ. It finally means that the interval
I := [r0,+∞) is included on the resolvent set of Lα, γ , and then that

nul(ζ) = def(ζ) = 0, ∀ ζ ∈ [r0,+∞),
which concludes the proof. �

2.2. Behavior of the Eigenvalues for Small Inelasticity. We shall now focus on the discrete
spectrum of this operator, namely its eigenvalues. A major difference with the elastic case in the
classical Hilbertian L2 setting is that the operator we deal with is not a nonpositive operator, and
we cannot conclude thanks to the last proposition that this operator has a spectral gap (namely a
negative bound for its eigenvalues). Nevertheless, we know from [17] for the elastic case and [16]
for the weak inelasticity case α ∈ (α0, 1) that Lα has a spectral gap −λ̄ in L1 (m−1), verifying for
α sufficiently small (say α ∈ (α1, 1] for 1 > α1 > α0)

0 < λ̄ < µ∗ < µ̄α,

for a nonnegative constant µ∗ depending on α.
Let us now study the behavior of the discrete spectrum of L(α, γ) for small values of the frequency

γ. We shall show that if γ → 0, then the eigenvalues of this operator converge first towards the
real axis and then towards 0.

Proposition 2.2. Let δ > 0. There exists α2 ∈ (α1, 1] such that if α ∈ (α2, 1] there exists a
nonnegative number γ0 such that for all |γ| ≤ γ0, if λ ∈ Σd(L(α, γ)), then

λ ∈ ∆−µ∗ ⇒ |=mλ| ≤ δ;(2.6)
λ ∈ ∆− λ̄2

⇒ |λ| ≤ δ.(2.7)

Proof. Let us first notice that if λ is an eigenvalue of L(α, γ) and h an associated eigenvector, then
using the decomposition (2.1) introduced in the proof of Proposition 2.1, we can write

(2.8) Lcαh =
(
λ−D(α, γ)

)
h,

where Lcα is compact on L1 (m−1) (thanks to the sharp estimates of Lemma A.1) and
D(α, γ) = − [i (γ · v) + να(v)] Id +(1− α)∆v.

We will proceed by contradiction using the representation (2.8). Concerning the first implication,
if, for δ > 0, there exist a sequence (γn)n ⊂ Rd converging towards 0, a sequence of functions
(hn)n ∈ L1 (m−1) of unit norm, and a sequence of complex numbers λn ∈ Σd

(
L(α, γn)

)
verifying

(2.9)

L
c
αhn =

(
λn −D(α, γn)

)
hn,

|=mλn| > δ, <e λn ≥ −µ∗,

then we must have lim sup |=mλn| < ∞. Indeed, the operator Lcα is compact on L1 (m−1), and
then the sequence (Lcαhn)n converges (up to an extraction) towards g ∈ L1 (m−1). Thus we can
write using (2.9)

(2.10) g = lim
n→∞

(
λn −D(α, γn)

)
hn.
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We have seen in the proof of Proposition 2.1 that the semi-group S(α, γ)
t associated to the operator

D(α, γ) in L1 is exponentially decaying in time, uniformly in α and γ. But, we know (see e.g. [9],
chap. II) that if R(D(α, γ), ·) is the resolvent operator of Dα, γ , we have the integral representation
for all ζ ∈ R(D(α, γ))

R
(
D(α, γ), ζ

)
= lim

t→+∞

∫ t

0
e−t ζS

(α, γ)
t dt.

Thus, using the decay of S(α, γ)
t , we have R

(
D(α, γ), 0

)
=: D−1

(α, γ) bounded in L1, uniformly in γ,
and then according to (2.10)

(2.11) lim
n→∞

hn =
(

lim
n→∞

λn −D(α, 0)
)−1

g.

But, we also have for v ∈ Rd(
λn −D(α, γn)

)−1
g(v) = 1

λn + i(γn · v) + να(v)

(
Id− 1− α

λn + i(γn · v) + να(v)∆v

)−1
g(v),

and then by considering again the behavior of the solutions to equation (2.3), which gives inequality
(2.4), we obtain a constant C independent on (α, λn, γn) such that

(2.12)
∥∥∥∥(λn −D(α, γn)

)−1
g

∥∥∥∥
L∞
≤ C

|λn| − ν0,α
‖g‖L∞ .

Finally, if lim |=mλn| =∞ we would have according to the limit (2.11) and the estimation (2.12)

lim
n→∞

‖hn‖L∞ = 0

with ‖hn‖L1(m−1) = 1, which is not possible. Hence, |=mλn| ≤ C for an infinite number of indices
n and C > 0.

But, we also have −µ∗ ≤ <e λn < r0 (where r0 > 0 is defined in the proof of Proposition
2.1), and then we can extract another subsequence (λnk)k converging towards λ ∈ C such that
=mλ ≥ δ > 0. Using the fact that γn → 0 and the smoothness of the map λ 7→

(
λ−D(α, 0)

)−1
,

we obtain in (2.11)

lim
k→∞

hnk =
(
λ−D(α, 0)

)−1
g =: h ∈ L1

(
m−1

)
,

with ‖h‖L1(m−1) = 1. Hence we conclude by inversion of
(
λ−D(α, 0)

)−1
and by the smoothness of

the nonlocal part of Lα that (
λ−D(α, 0)

)
h = g = lim

n→∞
Lcαhn = Lcαh

which means according to the definition of Lα that

λh = Lαh.

This is absurd because |=mλ| ≥ δ > 0, <e λ ≥ −µ∗ for µ∗ close to the spectral gap of Lα, and yet
we know from [15] that the eigenvalues of Lα can be made arbitrarily close (with respect to 1−α)
to the ones of L1, which are real according to [17].

We shall now give the proof of the implication (2.7), also by contradiction. If for δ > 0 there
exist a sequence (γn)n converging towards 0, a sequence (hn)n ∈ L1 (m−1) of unit norm, and some
complex numbers λn ∈ Σd (Lε,γn) such that

−λ̄/2 ≤ <e λn ≤ −δ,

then λn ∈ ∆−µ∗ and according to the relation (2.6) we have |=mλn| ≤ δ. We can then extract a
subsequence (λnk)k which converges towards a complex number λ also verifying−λ̄/2 ≤ <e λ ≤ −δ.
When k → ∞, the same argument than before gives Lαh = λh with λ 6= 0. By using again the
spectral properties of Lα, we then have <e λ ≤ −λ̄, which is absurd. �
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This concludes the proof of Theorem 1.1. We also summarized the results of this proposition in
Figure 1.3. Moreover, it gives us some rough information on the behavior of the resolvent operator
of L(α,γ).

Corollary 2.1. If α ∈ (α1, 1], the resolvent operator R(L(α, γ), ζ) is well defined for ζ ∈ ∆−µ∗
such that =mζ > δ.

3. Inelastic Dispersion Relations

Our goal in this section is to precise the localization results of the previous section, by proving
Theorem 1.2, that is to give a Taylor expansion of the eigenvalues of L(α,γ) in α and γ. The purpose
of this expansion is twofold: on the one hand, we want to establish that, at least for small values
of α and γ, the eigenvalues of the linear operator L(α,γ) stay at the left of the imaginary axis. This
could be useful if e.g. one wants to prove nonlinear stability of the solutions to (1.1). On the other
hand, obtaining this decomposition up to the second order in the spatial frequency γ and to first
order in α is necessary to establish the validity of the linearized quasi-elastic hydrodynamic limit
of our model, in the same way than [8]. To obtain this expansion, we shall refine the method of
proof of this paper, together with the use of some ideas introduced in [16] in order to deal with
the quasi-elastic setting.

We recall for the reader’s convenience that we are interested in the following eigenvalue problem:
finding λ ∈ C, γ ∈ Rd and h ∈ L1(m−1) such that

(−i(γ · v) + Lα)h = λh,

which can be reformulated thanks to the decomposition (2.1) as finding λ ∈ C, γ ∈ Rd and
h ∈ L1(m−1) such that
(3.1) Lcαh = (λ+ να(v) + i(γ · v)− (1− α)∆v)h.

3.1. Projection of the Eigenvalue Problem. Let us now define the scalar product we will use
in the following. If φ, ψ are such that the following expression has a meaning, we will set

〈φ, ψ〉 :=
∫
Rd
φ(v)ψ(v)F−1

1 (v) dv,

where F1 = M1,0,T̄1
is the quasi-elastic equilibrium and T̄1 is given by (1.11). Indeed, our goal

is to introduce a spectral decomposition of L1 (m−1) as a direct sum of Lα-invariant spaces. The
inner product we use for this purpose is the one of L2

(
F−1

1

)
because f = m + h ∈ L1 (m−1) if

and only if h ∈ L1 (m−1) and f ∈ L2
(
F−1

1

)
if and only if h ∈ L2

(
F−1

1

)
. This hilbertian structure

allows us to define the spectral projections.
Let us start by decomposing the operator Lcα as

(3.2) Lcα = ν1/2
α (Π + Sα) ν1/2

α ,

where Π is the projection on the space
Nα := ν1/2

α N1 = Span{ν1/2
α F1, ν

1/2
α vi F1, ν

1/2
α |v|2 F1 : 1 ≤ i ≤ d},

and Sα is given by
Sα := ν−1

α Lcα − ν−1/2
α Π ν1/2

α .

Actually, P := ν
−1/2
α Π is the spectral projection on the null space of L1, and can be defined using

the resolvent operator of L1 as

P = 1
2iπ

∫
ζ∈C:|ζ|=r

R(L1, ζ) dζ

where r < δ for δ sufficiently small (see the discussion in Section 5 of [15]). In particular, P
commutes with L1. Moreover, the operator Lcα being compact on L1(m−1), Π + Sα is compact on
the same space. Given that the rank of Π is finite, Sα is then a compact operator on L1(m−1).

We first need to prove a result concerning the eigenvalues of the operator ν−1/2
1 S1 ν

1/2
1 .
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Lemma 3.1. On the space L1(m−1), λ = 1 is not an eigenvalue of ν−1/2
1 S1 ν

1/2
1 .

Proof. If there is an h ∈ L1(m−1) such that ν−1/2
1 S1 ν

1/2
1 h = h, then according to (3.2),

L1 h = −ν1h+ ν
1/2
1 (Π + S1) ν1/2

1 h

= ν
1/2
1 Π ν

1/2
1 h.(3.3)

Projecting this equation upon the null space of L1, using (3.3), we obtain for all ϕ ∈ N1 that

0 = 〈L1h, ϕ〉

= 〈Π ν
1/2
1 h, ν

1/2
1 ϕ〉,

and then Π ν
1/2
1 h is orthogonal to ν1/2

1 N1, which is the whole range of Π. Then, necessarily, as Π
is a projection, we have Π ν

1/2
1 h = 0. It means according to (3.3) that L1 h = 0, and then that

h ∈ N1, which is absurd because Π is a projection onto ν1/2
1 N1 thus

ν
1/2
1 h = Π ν

1/2
1 h = 0.

�

Let us now denote by Φ(λ,γ,α) the operator

Φ(λ,γ,α) = (να(v) + λ+ i (γ · v)− (1− α)∆v)−1 να(v).

If the triple (γ, λ, h) is solution to the eigenvalue problem (3.1), then we can write using the
decomposition (3.2)

h = (να(v) + λ+ i (γ · v)− (1− α)∆v)−1 να(v) (να(v))−1Lcαh

= Φ(λ,γ,α)ν
−1/2
α (Π + Sα) ν1/2

α h.(3.4)

This will allow us to rewrite the eigenvalues problem with bounded operators. To this purpose,
we state a technical lemma about the asymptotic behavior of the operator Φ(λ,γ,α).

Lemma 3.2. For all g ∈W 2,1(m−1), we have∥∥∥(Φ(λ,γ,α) − Id
)
g
∥∥∥
L1(m−1)

≤ ε(λ, γ, α)‖g‖W 2,1(m−1),

where lim(λ,γ,α)→(0,0,1) ε(λ, γ, α) = 0.

Proof. If we set C(λ, α, γ) = λ+ i (γ · v) + να, we can write for all v ∈ Rd

Φ(λ,γ,α)g(v)− g(v) =
(
C(λ, α, γ)(v)− (1− α)∆v

)−1
να(v)g(v)− g(v)

= 1
C(λ, α, γ)

(
Id− 1− α

C(λ, α, γ)(v)∆v

)−1

C(0,0,1)g(v)− g(v).

Then, to prove the Lemma, we need to prove that the norm of the operator

Tε := (Id−ε∆v)−1 − Id,

defined from W 2,1 onto L1, can be made arbitrarily small for small ε.
Let us first reformulate this operator using the resolvent of the Laplace operator ∆v. Since we

have
(Id−ε∆v) Tε = ε∆v,
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we can rewrite Tε as5

Tε =
(1
ε

Id−∆v

)−1
∆v =: R

(1
ε
,∆v

)
∆v.(3.5)

It is known from [6] (and classical for unweighted Lp spaces) that the resolvent of the Laplace oper-
ator on exponentially weighted L1 spaces verifies for an explicit real constant a and a nonnegative
constant C

(3.6) ‖R (λ,∆v)h‖L1(m−1) ≤
C

λ− a
‖h‖L1(m−1) ,

for any λ in an unbounded angular sector of the complex plane which does not contains a. In
particular, using this inequality in the identity (3.5), we have that for any g ∈W 2,1(m−1)

‖Tε g‖L1(m−1) ≤
εC

1− a ε ‖g‖W 2,1(m−1) →ε→0 0,

which concludes the proof of the Lemma.
�

In all the following of this section, we shall use the polar decomposition γ = ρω for ρ ≥ 0
and ω ∈ Sd−1 of the frequency γ. We prove an invertibility result, which is needed to rewrite the
eigenvalue problem (3.1) using bounded operators:

Lemma 3.3. There exist α3 ∈ (α2, 1] and some open sets U1×U2 ⊂ R×C, neighborhood of (0, 0)
such that if (ρ, λ, α) ∈ U1 × U2 × (α3, 1], then for all ω ∈ Sd−1, the operator

Ψ(λ, ρ ω, α) := Id −Φ(λ, ρ ω,α)ν
−1/2
α Sα ν1/2

α

has a bounded inverse on L1(m−1).

Proof. We have seen that ν1/2
α Sα ν1/2

α is a compact operator on L1(m−1). Moreover, we have
according to the representation (2.8) (with D(α, γ) given by (2.2))

Φ(λ, ρ ω, α) = (να(v) + λ+ i (γ · v)− (1− α)∆v)−1 να(v)

=
(
λ−D(α, γ)

)−1
να(v)

which is a bounded operator (at least for small frequencies γ), thanks to the analysis we led on
Section 2, and particularly from the localization of the discrete spectrum of L(α, γ) of Proposition
2.2. Hence, the operator

Φ(λ, ρ ω, α)ν
−1/2
α Sα ν1/2

α =
(
Φ(λ, ρ ω,α)ν

−1
α

) (
ν1/2
α Sα ν1/2

α

)
is compact on L1(m−1).

By Fredholm alternative, it just remains to show that for (ρ, λ) small enough and α close to 1,
there is no non-trivial solutions h ∈ L1(m−1) of

(3.7) h = Φ(λ, ρ ω, α)ν
−1/2
α Sα ν1/2

α h.

Let us do this by contradiction. Assume that there are sequences (λn, γn, αn)n → (0, 0, 1) and
(hn)n ⊂ L1(m−1), ‖hn‖ = 1 solutions to (3.7). First, we notice thanks to the continuity of the
equilibrium profiles Fα with respect to α (recalled in Proposition A.4) and to the smoothness
properties of these profiles (recalled in Proposition A.3) that we have

lim
α→1
‖να − ν1‖L∞ = 0.

5If it has been possible to conduct this study on a unweighted L2 space, it would have been enough to notice the
following Fourier representation:

Fv (Tε f) (ξ) = − ε |ξ|2

1 + ε |ξ|2Fv(f)(ξ).
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Moreover, according to Lemma A.1, the operator Lα converges towards L1 in the norm of graph
in L1(m−1). Then, the operator ν−1/2

αn Sαn ν
1/2
αn , which is compact on L1(m−1), converges towards

the operator ν−1/2
1 S1 ν

1/2
1 , and we have up to a subsequence,

ν−1/2
αn Sαn ν1/2

αn hn →n→∞ g ∈ L1(m−1).

Thus, if we write Φn := Φ(λn, γn, αn), given that hn is solution to (3.7), we have

(3.8) hn = Φn

[
ν−1/2
αn Sαn ν1/2

αn hn − g
]

+ Φn g.

But, according to Lemma 3.2 we have

(3.9) lim
n→∞

‖Φng − g‖L1(m−1) = 0.

Hence, by Lebesgue dominated convergence Theorem, this implies with identity (3.8) that the
sequence (hn)n strongly converges towards g (using also the fact that the sequence (Φng)n is
bounded in L1(m−1) for large n thanks to (3.9)). Therefore, we have by continuity

g = lim
n→∞

ν−1/2
αn Sαn ν1/2

αn hn = ν
−1/2
1 S1 ν

1/2
1 g,

namely g is an eigenvector6 for ν−1/2
1 S1 ν

1/2
1 associated to the eigenvalue 1, which is absurd ac-

cording to Lemma 3.1. Finally, the operator Id −Φ(λ, γ, α)ν
−1/2
α S ν

1/2
α is invertible on L1(m−1) for

small (λ, γ) and α close to 1.
�

Let us now rewrite the relation (3.4) as

Ψ(λ,γ, α)h =
[
Id−Φ(λ,γ, α)ν

−1/2
α Sα ν1/2

α

]
Φ(λ,γ)ν

−1/2
α (Π + Sα) ν1/2

α h

= Φ(λ,γ, α)
{
ν−1/2
α Π ν1/2

α + ν−1/2
α Sα ν1/2

α

[
Id−Φ(λ,γ) (Π + Sα) ν1/2

α

]}
h.

According to Lemma 3.3, Ψ(λ,γ, α) is invertible for small (λ, γ) and α ∈ (α3, 1]. Then, provided
that h is solution to (3.4), we have

(3.10) h = Ψ−1
(λ,γ, α)Φ(λ,γ, α)ν

−1/2
α Π ν1/2

α h.

Let us introduce the “conjugated operator” P := ν
−1/2
α Π ν

1/2
α = P ν1/2

α , where P is the projection
onto the space of elastic collisional invariants N1. We can use it to rewrite (3.10) (and then the
eigenvalue problem (3.1)) as the following finite dimensional system of equations

(3.11) Ph = PΨ−1
(λ,γ, α)Φ(λ,γ, α)Ph,

which can be understood as:

Finding X(λ,γ, α) = (x0, . . . , xd+1) ∈ Rd+2 such that(
A(λ,γ, α) − Id

)
X(λ,γ, α) = 0,

where A = PΨ−1Φ ∈Md+2, d+2(R).

6This justifies the use of Lemma 3.2 in equation (3.9). Indeed, the solutions h to this eigenvalue problem are such
that

‖h‖W2,1(m−1) ≤ C ‖h‖L1(m−1),

for C ≥ 0, as was shown for instance in [15] using the decomposition (A.1):

0 = (Lα,γ − λ)h = (Aδ −Bα, δ (λ+ i (γ · v)))h.
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We shall find in the following section some conditions on λ in order to have

det
(
A(λ,γ, α) − Id

)
= 0.

Under such conditions, the abstract problem will admit a non-trivial solution X. Coming back to
the original problem, given that X = Ph = Pν1/2

α h, we will obtain thanks to equation (3.10) a
solution h to the original eigenvalue problem (3.1).

3.2. Finite Dimensional Resolution. We shall study the vector X component-wise, using the
normalization

(3.12) X = P ν1/2
α h(v) = x0 F1(v) + (x · v)F1(v) + xd+1

(
|v|2 − cν

)
F1(v),

where cν is such that 〈να, |v|2〉 = 〈να, cν〉. If we compute the product of (3.12) with elements of

Nα = Span{ν1/2
α F1, ν

1/2
α vi F1, ν

1/2
α

(
|v|2 − cν

)
F1 : 1 ≤ i ≤ d},

we find using the definition of P and the orthogonality of elements of Nα for 〈·, ·〉 that

(3.13)


〈ν1/2
α h, ν1/2

α F1〉 = x0
〈
ν1/2
α F1, ν

1/2
α F1

〉
,

〈ν1/2
α h, ν1/2

α vi F1〉 = xi
〈
ν1/2
α vi F1, ν

1/2
α vi F1

〉
, ∀1 ≤ i ≤ d,

〈ν1/2
α h, ν1/2

α

(
|v|2 − cν

)
F1〉 = xd+1

〈
ν1/2
α

(
|v|2 − cν

)
F1, ν

1/2
α

(
|v|2 − cν

)
F1
〉
.

For clarity sake, let us set in the following

〈φ, ψ〉F1 :=
∫
Rd
φ(v)ψ(v)F1(v) dv,

in order to have 〈
ν1/2
α h1 F1, ν

1/2
α h2 F1

〉
= 〈ναh1, h2〉F1 .

Using (3.10) together with the relations (3.13), we obtain for all 1 ≤ i ≤ d
(3.14)

x0 〈να, 1〉F1
= x0 〈να, Tγ1〉F1

+ 〈να, Tγ (x · v)〉F1
+ xd+1

〈
να, Tγ

(
|v|2 − cν

)〉
F1
,

xi 〈να vi, vi〉F1
= x0 〈να vi, Tγ1〉F1

+ 〈να vi, Tγ (x · v)〉F1
+ xd+1

〈
να vi, Tγ

(
|v|2 − cν

)〉
F1
,

xd+1
〈
να
(
|v|2 − cν

)
, |v|2 − cν

〉
F1

= x0
〈
να
(
|v|2 − cν

)
, Tγ1

〉
F1

+
〈
να
(
|v|2 − cν

)
, Tγ (x · v)

〉
F1

+ xd+1
〈
να
(
|v|2 − cν

)
, Tγ

(
|v|2 − cν

)〉
F1
,

where we have set for fixed (λ, α)

(3.15) Tγ := Ψ−1
(λ,γ, α)Φ(λ,γ, α).

The system (3.14) is the componentwise version of the projected problem (3.11). We are now
going to decompose this system of d + 2 equations in X = (x0, . . . , xd+1) in a closed system of 3
equations in x0, x ·ω and xd+1 for a fixed ω ∈ Sd−1 (corresponding to the longitudinal sound waves
of the Boltzmann equation, see also the work of Nicolaenko [18]) together with a scalar relation in
xi for all 1 ≤ i ≤ d (corresponding to the transverse sound waves). For this, we need the following
technical lemma:
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Lemma 3.4. Let x, y ∈ Rd, e := (1, 0, . . . , 0)T and γ = ρω for ρ ∈ R and ω ∈ Sd−1. Then, we
have

〈να, Tγ (x · v)〉F1
= x · ω 〈να, Tρe v1〉F1

,(3.16)
〈να (x · v), Tγ 1〉F1

= x · ω 〈να v1, Tρe 1〉F1
,(3.17)

〈να (x · v), Tγ (y · v)〉F1
= (x · ω)(y · ω) 〈να v1, Tρe v1〉F1

+ [x · ω − (x · ω)(y · ω)] 〈να v2, Tρe v2〉F1
,

(3.18) 〈
να (x · v), Tγ

(
|v|2 − cν

)〉
F1

= x · ω
〈
να v1, Tρe

(
|v|2 − cν

)〉
F1
,(3.19) 〈

να
(
|v|2 − cν

)
, Tγ (x · v)

〉
F1

= x · ω
〈
να
(
|v|2 − cν

)
, Tρe v1

〉
F1
.(3.20)

Proof. According to the definitions of Tγ and Ψ(λ,γ, α), the γ–dependency of Tγ is only happening
through the operator Φ(λ,γ, α). But, forM ∈ O(d) the orthogonal group of Rd (namely,MM∗ = Id)
one has for v ∈ Rd and g ∈ dom

(
Φ(λ,γ, α)

)
, using the fact that να is a radial function, for all v ∈ Rd,(

Φ(λ,γ, α) g
)

(Mv) = (να(Mv) + λ+ i (γ ·Mv)− (1− α)∆v)−1 να(Mv) g(Mv),

=
(
Φ(λ,M−1 γ, α)Mg

)
(v),

where we have set Mg (v) := g(Mv). Then

(Tγ g) (Mv) =
(
TM−1γMg

)
(v), ∀ v ∈ Rd.

Especially, if g is a radial function, there exists a function Γg such that

(Tγ g) (v) = Γg(γ · v, |v|).

One has thanks to this result

〈να, Tγ (x · v)〉F1
=
〈
T ∗γ να, (x · v)

〉
F1

=
∫
Rd

Γνα(γ · v, |v|) (x · v)F1(v) dv.

Let M ∈ O(d) such that M−1 ω = e. Thanks to the change of variables v = Mξ and using the
polar coordinates γ = ρω one has γ · v = ρM−1 ω · ξ = ρ ξ1 and then

〈να, Tγ (x · v)〉F1
=
∫
Rd

Γνα(ρ ξ1, |ξ|) (M−1x · ξ)F1(ξ) dξ

=
∫
Rd

Γoddνα (ρ ξ1, |ξ|) (M−1x · ξ)F1(ξ) dξ,

where godd(a, ·) = (g(a, ·)− g(−a, ·)) /2. Given that F1 is a radial function of v, 〈godd, h〉F1 =
〈g, hodd〉F1 and (M−1x)1 = (M−1x) ·M−1ω, one has

〈να, Tγ (x · v)〉F1
=
∫
Rd

Γoddνα (ρ ξ1, |ξ|) (M−1x)1 ξ1 F1(ξ) dξ

= (M−1x)1

∫
Rd

Γνα(ρ ξ1, |ξ|) ξ1 F1(ξ) dξ

= x · ω
〈
T ∗ρe να, v1

〉
F1
,

which proves (3.16).
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Thanks to the same arguments

〈να (x · v), Tγ 1〉F1
=
∫
Rd
να(v) (x · v) Γ1(γ · v, |v|)F1(v) dv

=
∫
Rd
να(ξ) (M−1x · ξ) Γ1(ρ ξ1, |ξ|)F1(ξ) dξ

=
∫
Rd
να(ξ) (M−1x · ξ) Γodd1 (ρ ξ1, |ξ|)F1(ξ) dξ

= x · ω 〈να v1, Tρe1〉F1
,

which proves (3.17). Concerning the next identity, one has

〈να (x · v), Tγ (y · v)〉F1
=

∑
1≤i,j≤d

xi yj

∫
Rd
να(v) vi (Tγ vj)(v)F1(v) dv

=
∑

1≤i,j≤d
xi yj

∫
Rd
να(ξ) (Mξ)i (Tρe(Mξ)j) (ξ)F1(ξ) dξ

=
∑

1≤i,j,k,l≤d
xi yjMilMjk

∫
Rd
να(ξ) ξl (Tρe ξk) (ξ)F1(ξ) dξ.

If k 6= l, this integral is zero (it is clear by doing the transformation ξ → −ξ). In the other case,
one has

〈να (x · v), Tγ (y · v)〉F1
=

∑
1≤i,j≤d

xi yjMi1Mj1

∫
Rd
να(ξ) ξ1 (Tρe ξ1) (ξ)F1(ξ) dξ

+
∑

1≤i,j≤d
2≤l≤d

xi yjMilMjl

∫
Rd
να(ξ) ξ2 (Tρe ξ2) (ξ)F1(ξ) dξ

= (x · ω)(y · ω) 〈να v1, Tρe v1〉F1

+
∑

1≤i,j≤d
xi yj [(MM∗)ij −Mi1Mj1 ] 〈να v2, Tρe v2〉F1

,

which is (3.18) because MM∗ = Id. The inequalities (3.19) and (3.20) are finally obtained using
the same methods of proof. �

Applying this lemma to system (3.14), we find for all 1 ≤ i ≤ d

x0 〈να, Tρe1− 1〉F1
+ x · ω 〈να, Tρev1〉F1

+ xd+1
〈
να, Tρe

(
|v|2 − cν

)〉
F1

= 0,(3.21)

xi〈να vi, vi〉F1 = ωi x0 〈να v1, Tρe1〉F1
+ [xi − ωi (x · ω)] 〈να v2, Tρev2〉F1

+ ωi (x · ω) 〈να v1, Tρev1〉F1
+ ωi xd+1

〈
να v1, Tρe

(
|v|2 − cν

)〉
F1
,

(3.22)

x0
〈
να
(
|v|2 − cν

)
, Tρe 1

〉
F1

+ x · ω
〈
να
(
|v|2 − cν

)
, Tρev1

〉
F1

+ xd+1
〈
να
(
|v|2 − cν

)
, Tρe

(
|v|2 − cν

)
−
(
|v|2 − cν

)〉
F1

= 0.
(3.23)

Now, on the one hand, if we multiply (3.22) by ωi and sum over all i, using the fact that |ω| = 1,
we find that

(3.24) x0 〈να v1, Tρe1〉F1
+ x · ω 〈να v1, Tρev1 − v1〉F1

+ xd+1
〈
να v1, Tρe

(
|v|2 − cν

)〉
F1

= 0.

The system (3.21)–(3.24)–(3.23) is closed in (x0, x · ω, xd+1) for a fixed ω ∈ Sd−1. Coming back to
a more abstract form, there exists solutions to this system if and only if

(3.25) D(λ, ρ, α) = 0,
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where we have defined D as the following Gram-like matrix (remember that Tγ is given by (3.15)
and depends on (λ, γ, α))

(3.26) D(λ, ρ, α) :=∣∣∣∣∣∣∣∣
〈να, (Tρe − Id) 1〉F1

〈να, Tρev1〉F1

〈
να, Tρe

(
|v|2 − cν

)〉
F1

〈να v1, Tρe1〉F1
〈να v1, (Tρe − Id) v1〉F1

〈
να v1, Tρe

(
|v|2 − cν

)〉
F1〈

να
(
|v|2 − cν

)
, Tρe1

〉
F1

〈
να
(
|v|2 − cν

)
, Tρev1

〉
F1

〈
να
(
|v|2 − cν

)
, (Tρe − Id)

(
|v|2 − cν

)〉
F1

∣∣∣∣∣∣∣∣ .
On the other hand, if one multiplies (3.24) by ωi and subtract this expression to (3.22), one

finds
(3.27) [xi − ωi (x · ω)]Dω(λ, ρ, α) = 0,
where we have set
(3.28) Dω(λ, ρ, α) := 〈να v1, (Tρe − Id) v1〉F1

.

Then, if one solves (3.24) in C · ω, the relation (3.27) will give the expression of xi, provided that
the equation Dω(λ, ρ, α) = 0 admits an unique solution λ.

We will simplify these expressions thanks to the following Lemma.

Lemma 3.5. Let (ρ, λ, α) ∈ U1 × U2 × (α3, 1]. If g, h are elastic collisional invariants, namely if
g, h ∈ N1 = Span{F1, vi F1, |v|2 F1 : 1 ≤ i ≤ d},

then we can write for all ω ∈ Sd−1 and γ = ρω(
Ψ−1

(λ,γ, α)Φ(λ,γ, α) − Id
)
h = Ψ−1

(λ,γ, α)

(
Φ(λ,γ, α) − Id

)
h,〈

ναg,Ψ−1
(λ,γ, α)Φ(λ,γ, α)h

〉
=
〈
ναg,Ψ−1

(λ,γ, α)

(
Φ(λ,γ, α) − Id

)
h
〉
.

Proof. By definition of Nα, we have ν1/2
α h ∈ Nα, and then Sα ν1/2

α h = 0. But, we know that
Ψ(λ,γ,α) = Id−Φ(λ,γ,α)ν

−1/2
α Sα ν1/2

α .

Thus, we have Ψ(λ,γ,α)h = h, and given that Ψ(λ,γ, α) is invertible for (ρ, λ, α) ∈ U1 × U2 × (α3, 1]
and γ = ρω, we have
(3.29) Ψ−1

(λ,γ,α)h = h,

which proves the first relation. Using the orthogonality of the collisional invariants and (3.29), we
obtain the second equality:〈

ναg,Ψ−1
(λ,γ, α)Φ(λ,γ,α)h

〉
=
〈
ναg,Ψ−1

(λ,γ, α)Φ(λ,γ,α)h
〉
− 〈ναg, h〉

=
〈
ναg,

(
Ψ−1

(λ,γ, α)Φ(λ,γ,α) − Id
)
h
〉

=
〈
ναg,Ψ−1

(λ,γ, α)

(
Φ(λ,γ,α) − Id

)
h
〉
.

�

Let us set Υ(λ,γ, α) := Ψ−1
(λ,γ, α)

(
Φ(λ,γ, α) − Id

)
. Thanks to this lemma, to the definition of cν and

by the nullity of the odd moments of the centered Gaussian F1, we can write (3.26) in a “simpler”
form, namely

(3.30) D(λ, ρ, α) =

∣∣∣∣∣∣∣∣∣

〈
να,Υ(λ, ρe, α) 1

〉
F1

〈
να,Υ(λ, ρe, α) v1

〉
F1

〈
να,Υ(λ, ρe, α) g

〉
F1〈

να v1,Υ(λ, ρe, α) 1
〉
F1

〈
να v1,Υ(λ, ρe, α) v1

〉
F1

〈
να v1,Υ(λ, ρe, α) g

〉
F1〈

να g,Υ(λ, ρe, α) 1
〉
F1

〈
να g,Υ(λ, ρe, α) v1

〉
F1

〈
να g,Υ(λ, ρe, α) g

〉
F1

∣∣∣∣∣∣∣∣∣ ,
where we have set g(v) := |v|2 − cν . We can also write (3.28) the same way
(3.31) Dω(λ, ρ, α) = 〈να v1,Υρe v1〉F1

.
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Before solving these equations, we need a last lemma.

Lemma 3.6. Let h be an elastic collisional invariant (namely h ∈ N1). If Ψ∗ denotes the adjoint
operator of Ψ, then we have (

Ψ∗(0,0,1)

)−1
ν1h = ν1h.

Proof. Let (ρ, λ, α) ∈ U1×U2× (α2, 1] and ω ∈ Sd−1 and set γ = ρω. If T is an invertible operator
on a Banach space, it is known that (T ∗)−1 = (T−1)∗. Moreover, provided that ν1 ∈ R, the adjoint
operator Φ∗(λ,γ, 1) is the operator of multiplication by

ν1(v)
ν1(v) + λ̄− i (γ · v)

Then, if (λ, ρ)→ (0, 0) we have Φ∗(λ,ρ ω, 1) → Id strongly. But, we can also compute

Ψ∗(λ, ρ ω, α) = Id −
(
Φ(λ,ρ ω)ν

−1/2
1 S1 ν

1/2
1

)∗
= Id − ν1/2

1 S
∗
1 ν
−1/2
1 Φ∗(λ,ρ ω),

and as h ∈ N1, we have
ν

1/2
1 S

∗
1 ν
−1/2
1 νh = 0.

Finally, we can write

Ψ∗(0,0,1)ν1h =
(
Id − ν1/2

1 S
∗
1 ν
−1/2
1

)
ν1h

= ν1h,

which concludes the proof after inversion. �

Remark 3 . The eigenvalues and eigenvectors of Lα, ρω are analytic function or ρ. Indeed, thanks
to the hard spheres kernel and estimates (1.16), there exists a nonnegative constant M such that

‖(ω · v)h‖L1(m−1) ≤M
(
‖h‖L1(m−1) + ‖Lαh‖L1(m−1)

)
.

We can then apply [12, Thm. VII.2.6 and Rem. VII.2.7] about the analyticity of the spectrum of
a closed operator on a Banach space.

3.3. First Order Coefficients of the Taylor Expansion. We can now study in details for
what values of the parameters λ and α one can solve the projected eigenvalue problem (3.27). We
start by considering the behavior of the transverse sound waves.

Proposition 3.1. Let ω ∈ Sd−1. There exist ρ0 > 0 and α4 ∈ (α3, 1] such that the problem of
solving the equation

Dω(λ, ρ, α) = 0
has a unique solution λω = λω(ρ, α) ∈ C∞ ((−ρ̄0, ρ̄0)× (α4, 1]), verifying

λω(0, 1) = ∂λω
∂ρ

(0, 1) = ∂λω
∂α

(0, 1) = 0.

Proof. Let us write thanks to the compact expression (3.31) of Dω

0 = −Dω(λ, ρ, α)

= −
〈(

Ψ∗(λ, ρe, α)

)−1
(ναv1),

(
Φ(λ, ρe, α) − Id

)
v1

〉
F1

= −
∫
Rd

(
Ψ∗(λ, ρe, α)

)−1
(ναv1)

[
(να(v) + λ+ i (ρe · v)− (1− α)∆v)−1 να(v)− Id

]
(v1)F1(v) dv

=
∫
Rd

(
Ψ∗(λ, ρe, α)

)−1
(ναv1) (να(v) + λ+ i ρ v1 − (1− α)∆v)−1 (λ+ i ρ v1 − (1− α)∆v) (v1)

F1(v) dv.
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Let us now set z = λ/ρ and s = 1− α. We shall take the limit (ρ, s)→ (0, 0) in Dω. For this, we
define a new function Gω as

Gω(z, ρ, s) := 1
ρ
Dω(ρz, ρ, 1− s).

Then, as ∆v(v1) = 0, we will have Dω(λ, ρ, α) = 0 if and only if
0 = −Gω(z, ρ, s)

=
∫
Rd

(
Ψ∗(ρz,ρe,1−s)

)−1
(ν1−sv1) (ν1−s(v) + ρz + i ρ v1 − s∆v)−1 ((z + iv1) v1)F1(v) dv.

Moreover, if α → 1, thanks to the continuity of the equilibrium profiles Fα with respect to
α (recalled in Proposition A.4) and to the smoothness properties of these profiles (recalled in
Proposition A.3), we have να(v)→ ν1(v), uniformly in v. Hence, if we take the limit (ρ, s)→ (0, 0),
we find thanks to Lemma 3.6 that

0 = −Gω(z, 0, 1)

=
∫
Rd

(
Ψ∗(0, 0, 1)

)−1
(ν1v1)z + iv1

ν1
(v1)F1(v) dv

= z

∫
Rd
v2

1 F1(v) dv = z T̄1.

Provided that T̄1 is nonzero, we have z = 0.
It just remains to apply the implicit function theorem to the map (z, ρ, s) 7→ Gω(z, ρ, s) in

(0, 0, 0). Provided that we have 
Gω(0, 0, 0) = 0,
∂Gω
∂z

(0, 0, 0) = T̄1,

there exist two real constants ρ̄0 > 0, α4 ∈ (α3, 1] and a mapping zω ∈ C∞ ((−ρ̄0, ρ̄0)× [0, 1− α4))
such that if |ρ| ≤ ρ̄0 and s ∈ [0, 1− α4), then

1
ρ
Dω (ρzω(ρ, s), ρ, 1− s) = Gω (zω(ρ, s), ρ, s) = 0.

To conclude the proof, we set λω(ρ, α) := ρzω (ρ, 1− α) and this function has the properties we
were looking from. �

Let us now turn to the dispersion relations (3.25), corresponding to the longitudinal sound
waves. We recall the simplified expression of D for the reader convenience:

D(λ, ρ, α) =

∣∣∣∣∣∣∣∣∣

〈
να,Υ(λ, ρe, α) 1

〉
F1

〈
να,Υ(λ, ρe, α) v1

〉
F1

〈
να,Υ(λ, ρe, α) g

〉
F1〈

να v1,Υ(λ, ρe, α) 1
〉
F1

〈
να v1,Υ(λ, ρe, α) v1

〉
F1

〈
να v1,Υ(λ, ρe, α) g

〉
F1〈

να g,Υ(λ, ρe, α) 1
〉
F1

〈
να g,Υ(λ, ρe, α) v1

〉
F1

〈
να g,Υ(λ, ρe, α) g

〉
F1

∣∣∣∣∣∣∣∣∣ .
We prove the following result concerning the behavior of the eigenvalues for small frequency and
inelasticity.

Proposition 3.2. For λ ∈ U2 (see Lemma 3.3), there exists ρ̄ > 0 and α5 ∈ (α4, 1] such that
for α ∈ (α5, 1] the elastic dispersion relation D(λ, ρ, α) = 0 has exactly three branches of solutions
λ(j)(ρ, α) for all j ∈ {−1, 0, 1} and ρ ∈ (−ρ̄1, ρ̄1). These solutions are of class C∞(−ρ̄1, ρ̄1) and
verify 

λ(j)(0, 1) = 0, ∀ j ∈ {−1, 0, 1},

∂λ(j)

∂ρ
(0, 1) = j i

√
T̄1 + 2T̄ 2

1
d
, ∀ j ∈ {−1, 0, 1},

∂λ(0)

∂α
(0, 1) = − 3

T̄1
,
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where, λ(0) is the so-called energy eigenvalue and T̄1 is given by (1.11). Finally, we also have the
symmetry properties

(3.32) λ(j)(−ρ, α) = λ(j)(ρ, α) = λ(−j)(ρ, α).

Proof. We shall use the ideas introduced in the proof of Proposition 3.1: instead of solving directly
the equation (3.25), we want to solve an equivalent one depending on z = λ/ρ and we set to
simplify s = 1− α. We then introduce a function G = G(z, ρ, s) by setting

G(z, ρ, s) := 1
ρ3D(ρz, ρ, 1− s).

According to the simplified expression (3.30) of D, all the components of the matrix found in
G(z, ρ, s) can be written for h1, h2 ∈ N1

1
ρ

〈
ν1−s h1,Υ(ρz, ρe, 1−s) h2

〉
F1

=
∫
Rd

(
Ψ∗(ρz, ρe, 1−s)

)−1
(ν1−sh1)(v)

(ν1−s(v) + ρz + i ρ v1 − s∆v)−1
(
z + iv1 −

s

ρ
∆v

)
(h2)(v)F1(v) dv.

By doing the same computations than in the proof of Proposition 3.1, this quantity becomes for
ρ = s = 0 ∫

Rd
h1(v)(z + iv1)h2(v)F1(v) dv.

Moreover, according to the definition of the Maxwellian distribution F1, we have

∫
Rd

 1
|v|2
v2

1 |v|2

F1(v) dv =

 1
T̄1

(d+ 2) T̄ 2
1

 .
Thus, we can write D as

G(z, 0, 1) =

∣∣∣∣∣∣
〈1, z + iv1〉F1 〈1, (z + iv1)v1〉F1 〈1, (z + iv1)g〉F1
〈v1, z + iv1〉F1 〈v1, (z + iv1)v1〉F1 〈v1, (z + iv1)g〉F1
〈g, z + iv1〉F1 〈g, (z + iv1)v1〉F1 〈g, (z + iv1)g〉F1

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
z i T̄1 z

(
d T̄1 − cν

)
i T̄1 z T̄1 i T̄1

(
(d+ 2) T̄1 − cν

)
z
(
d T̄1 − cν

)
i
(
(d+ 2) T̄1 − cν

)
z

((
d T̄1 − cν

)2
+ 2d T̄ 2

1

)
∣∣∣∣∣∣∣∣∣∣

= 2 T̄ 2
1 z
(
dz2 + d T̄1 + 2 T̄ 2

1

)
= 2d T̄ 2

1 (z − z−1)(z − z0) (z − z+1),

where we have set for any j ∈ {−1, 0,+1}

zj := j i

√
T̄1 + 2T̄ 2

1
d
.

Hence, provided that G(z, 0, 1) has no multiple root, we have shown that
G(zj , 0, 0) = 0,
∂G

∂z
(zj , 0, 0) 6= 0,

and we can apply again the implicit function theorem to show that in a neighborhood B×(−ρ̄1, ρ̄1)×
[0, 1 − α5) of (zj , 0), there exists an unique function z̃j ∈ C∞ ((−ρ̄1, ρ̄1)× [0, 1− α5)) such that if



SPECTRAL STUDY OF THE LINEARIZED GRANULAR GASES OPERATOR 25

|ρ| ≤ ρ̄1 and s ∈ [0, 1− α5), then G(z̃j(ρ, s), ρ, s) = 0 (and of course z̃j(0, 0) = zj). We finally set
λ(j)(ρ, s) := ρz̃j(ρ, s), which give a solution to (3.25) (with α = 1− s) verifying

λ(j)(0, 0) = 0,
∂λ(j)

∂ρ
(0, 0) = zj .

We now have to prove that these three branches are the only solutions to D(λ, ρ, α) = 0 for small
ρ and 1− α.

For this, following once more [8], we shall use tools from complex analysis. Let us fix |ρ| ≤ ρ̄1
and α ∈ (α5, 1]; according to the definition of D, the map λ 7→ D(λ, ρ, α) is holomorphic on
the set U2 (defined Lemma 3.3). Moreover, following the previous computations, we also have
D(λ, 0, 1) = λ3H(λ) for a function H holomorphic on U2 such that H(0) = 1. Hence, if λ is
defined along a circle C around 0, then D(λ, 0, 1) will encircle the origin exactly three times. Using
the strong convergence of the multiplication operator Φ(λ, ρe, α) towards Id when (ρ, α) → (0, 1),
we can write

lim
(ρ, α)→(0,1)

sup
λ∈U2

|D(λ, ρ, α)−D(λ, 0, 1)| = 0.

Hence, for small (ρ, 1 − α), the function λ 7→ D(λ, ρ, α) encircles the origin also only three times
when λ traverses C. This function then only has three roots for fixed ρ and α.

Next, we compute the partial derivative with respect to α of the energy eigenvalue. This
eigenvalue is given by the solution of the dispersion relation that depends on ρ only at second
order, namely λ(0). Let h(0)

(ρω, α) be the associated eigenvector. We then have for all ω ∈ Sd−1 and
ρ ≥ 0

(3.33) L(α,γ) h
(0)
(ρω, α)(v) = λ(0)(ρ, α)h(0)

(ρω, α)(v), ∀ v ∈ Rd.

In particular, the “elastic, space homogeneous” energy eigenvector h(0)
(0,1) is defined thanks to the

Maxwellian profile F1 (given in (1.11)) as

(3.34) h
(0)
(0,1) = c0

(
|v|2 − d T̄1

)
F1,

where c0 is a normalizing constant. We have by construction, using some elementary properties of
Gaussian functions∥∥∥h(0)

(0,1)

∥∥∥
L1(m−1)

= 1, N
(
h

(0)
(0,1)

)
= 0, E

(
h

(0)
(0,1)

)
= 2 c0 d T̄

2
1 ,

where we have defined the mass N(f) and the kinetic energy E(f) of a given distribution f as

N(f) :=
∫
Rd
f(v) dv, E(f) :=

∫
Rd
f(v) |v|2 dv.

By integrating the eigenvalue equation (3.33) against |v|2 we obtain according to the expression
of the energy dissipation functional (1.7)

λ(0)(ρ, α)E
(
h

(0)
(ρω, α)

)
=

− 2(1− α2)D
(
Fα, h

(0)
(ρω,α)

)
+ 2dN(1− α)

(
h

(0)
(ρω, α)

)
+ iρω ·

∫
Rd
h

(0)
(ρω, α)(v) v |v|2 dv.

As ρ tends to 0, dividing by 1− α yields

λ(0)(0, α)
1− α E

(
h

(0)
(0,α)

)
= −2(1 + α)D

(
Fα, h

(0)
(0,α)

)
+ 2dN

(
h

(0)
(0,α)

)
.

Now, we use the rate of convergence of the inelastic profile Fα towards the elastic one F1 recalled
in Proposition A.4 and the smoothness of h(0)

(0,α) with respect to α obtained thanks to the use of



26 THOMAS REY

the implicit functions theorem. We then obtain thanks to the nullity of the mass of h(0)
(0,1)

(3.35) λ(0)(0, α)
1− α E

(
h

(0)
(0,1)

)
= −2(1 + α)D

(
F1, h

(0)
(0,1)

)
+O(1− α).

Finally, we compute thanks to the expression of the elastic energy eigenvector (3.34) and to the
definition (1.11) of the equilibrium temperature the quantities

E
(
h

(0)
(0,1)

)
= 2 d c0 T̄

2
1 , D

(
F1, h

(0)
(0,1)

)
= 3

2d c0 T̄1.

Gathering these relations and passing to the limit α→ 1 in (3.35) gives the result.
Concerning the last assertion of the proposition, we notice thanks to the invariance of the

eigenvalue problem (3.1) under the composition of the convex conjugation and the reflection γ →
−γ that D(λ, ρ, α) = D(λ,−ρ, α) = D(λ, ρ, α). �

Remark 4 . As a consequence of the symmetry relation (3.32)

λ(j)(−ρ, α) = λ(j)(ρ, α) = λ(−j)(ρ, α),

we have λ(0)(ρ, α) ∈ R.

Thanks to this proposition, we can construct the d+ 2 normalized hydrodynamic eigenvectors(
h

(j)
(ρω, α)

)
j∈{−1,...,d}

of the inelastic linearized collision operator, for small ρ, α close to 1 and a given ω ∈ Sd−1. Indeed,
on the one hand, for j ∈ {2, . . . , d}, we take λ = λω(ρ, α) for |ρ| ≤ ρ̄0 and α ∈ (α4, 1] given by
Proposition 3.1 and choose in (3.12) x0 = xd+1 = 0 and any vector x ∈ ω⊥. The relation (3.10)
then allows us to construct the eigenvectors h(j)

(ρ, ω, α) associated to the conservation of momentum.
On the other hand, for j ∈ {−1, 0, 1}, we pick a solution λ = λ(j)(ρ, α) for |ρ| ≤ ρ̄1 and

α ∈ (α5, 1] to the dispersion relation D(λ, ρ, α) = 0 given by Proposition 3.2 and choose the
vector (x0, x · ω, xd+1) to be a solution to the system (3.21)–(3.24)–(3.23) corresponding to this
eigenvalue. We then set x = (x · ω)ω and recover through (3.12)

Ph(j)
(ρω, α)(v) = x0(ρ, α) + (x · v)(ρ, ω · v, α) + xd+1(ρ, α)

(
|v|2 − cν

)
.

Inserting this expression in (3.10) finally gives us the eigenvalue, depending on ρ, α (as a C∞
function), |v| and v · ω. With this procedure, we have constructed three independent solutions
(corresponding to the acoustic waves and the kinetic energy) h(j) = h

(j)
(ρω, α) ∈ L1(m−1) to the

eigenvalue problem

(−iρ(ω · v) + Lα)h(j) = λ(j) h(j), ∀ j ∈ {−1, 0, 1}.

3.4. Higher Order Expansion. We are interested in this section to give an expression for the
expansion of the eigenvalues with respect to the spatial coordinate γ = ρω. We have seen in
Remark 3 that for a fixed ω ∈ Sd−1, the eigenvalues λ(j)(ρ, α) and eigenvectors h(j)

(ρω, α) are
analytic functions of the radial coordinate ρ and the inelasticity 1 − α. Hence, we have for any
v ∈ Rd

λ(j)(ρ, α) =
∑
n≥0

λ(j)
n ρn + (1− α)e(j)

1 +O
(
(1− α)2 + (1− α)ρ

)
,(3.36)

h
(j)
(ρω, α)(v) =

∑
n≥0

h(j)
n (ω)(v)ρn + (1− α)f (j)

1 (v) +O
(
(1− α)2 + (1− α)ρ

)
.(3.37)
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According to the computations of the previous subsection, the first order components of this
expansion are given by

λ
(j)
0 = 0, ∀ j ∈ {−1, . . . , d},

λ
(j)
1 = j i

√
T̄1 + 2T̄ 2

1
d
, ∀ j ∈ {−1, 0, 1}, λ

(j)
1 = 0, ∀ j ∈ {2, . . . , d},

e
(0)
1 = − 3

T̄1
, e

(j)
1 = 0, ∀ j ∈ {−1, 1, . . . , d}.

We also have for any v ∈ Rd

h
(0)
0 (v) = c0

(
|v|2 − d T̄1

)
F1,

for a nonnegative normalizing constant c0. Since the triple
(
ρω, λ(j)(ρ, α), h(j)

(ρω, α)

)
is solution to

the eigenvalue problem (1.20), we can equate the power of ρ and 1− α in (3.36)–(3.37) to obtain

(3.38)



L0 h
(j)
0 (ω) = 0, ∀ j ∈ {−1, . . . , d},

L0 h
(j)
1 (ω) =

(
λ

(j)
1 + i(ω · v)

)
h

(j)
0 (ω), ∀ j ∈ {−1, . . . , d},

L0 h
(j)
n (ω) =

(
λ

(j)
1 + i(ω · v)

)
h

(j)
n−1(ω) +

n∑
k=2

λ
(j)
k h

(j)
n−k(ω), ∀ j ∈ {−1, . . . , d}, n ≥ 2,

where we also used the smoothness of Lα with respect to 1− α (Proposition A.2).
Hence, the coefficients of the expansion can be computed by induction. For example, to compute

λ
(j)
2 , we can integrate the eigenvalue problem (1.20) with respect to |v|2 and use the equations (3.38)

with n = 2 to obtain

(3.39) λ
(j)
2 = − i

2 d c0 T̄ 2
1
ω · q

(
h

(j)
1 (ω)

)
,

where we have set

q(h) :=
∫
Rd
h(v) v |v|2 dv.

Now, using again (3.38) for n = 1, we know that

L0 h
(j)
1 (ω) =

(
λ

(j)
1 + i(ω · v)

)
h

(j)
0 (ω).

Since λ(j)
1 is an imaginary number and h

(j)
0 a real number (it is the elastic, space homogeneous

eigenvector), we have that h(j)
1 (ω)(v) is also imaginary for all v ∈ Rd. Gathering this information

with the explicit representation (3.39), we obtain that for any j ∈ {−1, . . . , d}, the second order
expansion in ρ of λ(j), denoted by λ

(j)
2 is nonpositive7. The higher order expansions can be

computed by the same induction process.
This concludes the proof of Theorem 1.2.

Acknowledgment

The research of the author was granted by the ERC Starting Grant 2009 #239983 (NuSiKiMo),
NSF Grants #1008397 and #1107444 (KI-Net) and ONR grant #000141210318. The author
would like to thanks F. Filbet and C. Mouhot for their careful reading and fruitful comments on
the manuscript.

7Some explicit computations are given in the L2 case in [8, Section 4].



28 THOMAS REY

Appendix A. Functional Toolbox on the Collision Operator

Let us present some important properties concerning the granular gases operator we heavily
used on this paper.

To be consistent with [15], we shall define for δ > 0 the regularized operator
L1,δ = L+

1,δ − L
∗ − Lν ,

where L+
1,δ is the regularization of the truncated gain term introduced in [17]. One of the key

properties of the regularized operator is that it converges towards L1 when δ → 0 in the norm
of graph of L1(m−1) (and also in the weighted Sobolev spaces W k,1

q (m−1)) but with a loss of
integration weights:

Proposition A.1 (Proposition 5.5 of [15]). For any k, q ∈ N, we have
‖(L1,δ − L1) g‖

Wk,1
q (m−1) ≤ ε(δ) ‖g‖Wk,1

q+1(m−1),

where ε(δ) is an explicit constant, going to 0 as δ → 0.

We then state a result about the Hölder continuity (in the norm of the graph) of the gain term
of the granular gases operator with respect to the restitution coefficient α.

Proposition A.2 (Proposition 3.2 of [15]). For any α, α′ ∈ (0, 1], and any g ∈ L1
1(m−1), f ∈

W 1,1
1 (m−1), there holds

∥∥∥Q+
α (g, f)−Q+

α′(g, f)
∥∥∥
L1(m−1)

≤ ε
(
α− α′

)
‖f‖

W 1,1
1 (m−1)‖g‖L1

1(m−1),∥∥∥Q+
α (f, g)−Q+

α′(f, g)
∥∥∥
L1(m−1)

≤ ε
(
α− α′

)
‖f‖

W 1,1
1 (m−1)‖g‖L1

1(m−1),

where we have set
ε(r) = C r

1
3+4s

for a constant s given by the weight function m(v) = exp (−a |v|s).

We also need to estimate the smoothness, the tail behavior and the pointwise lower bound
(uniformly with respect to the restitution coefficient α) of the equilibrium profiles Fα solutions to
(1.9). We have the following result.

Proposition A.3 (Propositions 2.1 and 2.3 of [16]). Let us fix α0 ∈ (0, 1). There exist some
positive constants a1, a2, a3, a4 (independent of α) and, for any k ∈ N a positive constant Ck such
that for all α ∈ [α0, 1)

‖Fα‖L1(ea1 |v|) ≤ a2, ‖Fα‖Hk(Rd) ≤ Ck,

Fα(v) ≥ a3 e
−a4|v|8 , ∀ v ∈ Rd.

Moreover, these profiles converge in L1
2 towards the elastic Maxwellian F1, with an explicit rate:

Proposition A.4 (Proposition 3.1 of [16]). For any ε > 0, there exists Cε such that

‖Fα − F1‖L1
2
≤ Cε(1− α)

1
2+ε .

We now define for ζ ∈ C and δ > 0 the operators

(A.1) Aδ := L+
1,δ − L

∗ and Bα, δ(ζ) := Lν1 + Iα + ζ −
(
L+

1 − L
+
1,δ

)
,

where Iα := L1−Lα is the difference between the elastic and inelastic linearized operators. We can
then write the problem of computing the inverse of resolvent operator of Lα as the perturbation
equation

Lα − ζ = Aδ −Bα, δ (ζ) .
We state a result of convergence of the linearized granular gases operator towards the linearized
elastic operator (which is a consequence of Proposition A.2), as well as estimates on the operator
Bα, δ.
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Lemma A.1 (Lemmas 5.9 of [15] and 5.2 of [16]). For any k, q ∈ N and any exponential weight
function m, the following properties hold:
(1) There exist a constructive α0 ∈ (0, 1] and some nonnegative constant C = C(k, q,m) such that

for any α ∈ (α0, 1],
‖Lα‖Wk+2,1

q+1 (m−1)→Wk,1
q (m−1) ≤ C,

‖Lα − L1‖W 3,1
3 (m−1)→L1(m−1) ≤ C (1− α).

(2) For any δ > 0, the operator Aδ : L1 → W∞,1∞
(
m−1) is a bounded linear operator (more

precisely, it maps function L1 into C∞ functions with compact support).
(3) There exists some constants δ∗ > 0 and α1 ∈ (α0, 1) such that for any ζ ∈ ∆−ν0, δ < δ∗ and

α ∈ [α1, 1] the operator

Bα, δ(ζ) : W k+2,1
q+1 (m−1)→W k,1

q (m−1)
is invertible. Moreover, its inverse operator satisfies∥∥∥Bα, δ(ζ)−1

∥∥∥
Wk,1
q (m−1)→Wk,1

q (m−1)
≤ C1
|ν0 −<e ζ|

,∥∥∥Bα, δ(ζ)−1
∥∥∥
Wk,1
q (m−1)→Wk+2,1

q+1 (m−1)
≤ C2
|ν0 − ζ|

for some explicit constants C1, C2 depending on k, q, δ∗, α1.

As a consequence of these results, we also have the following proposition.

Proposition A.5 (Proposition 3.8 of [15]). For any k, q ∈ N, any exponential weight function m,
and any α ∈ (α0, 1], ∥∥∥L+

α − L+
1

∥∥∥
Wk,1
q (m−1)→Wk,1

q+1(m−1)
≤ ε (1− α)

where ε has been defined in Proposition A.2.
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