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Abstract. We introduce a new framework for studying two-dimensional conservation
laws by compensated compactness arguments. Our main result deals with 2D conserva-
tion laws which are nonlinear in the sense that their velocity fields are a.e. not co-linear.
We prove that if uε is a family of uniformly bounded approximate solutions of such equa-
tions with H−1-compact entropy production and with (a minimal amount of) uniform
time regularity, then (a subsequence of) uε convergences strongly to a weak solution. We
note that no translation invariance in space — and in particular, no spatial regularity
of u(·, t) is required. Our new approach avoids the use of a large family of entropies; by
a judicious choice of entropies, we show that only two entropy production bounds will
suffice. We demonstrate these convergence results in the context of vanishing viscosity,
kinetic BGK and finite volume approximations. Finally, the intimate connection be-
tween our 2D compensated compactness arguments and the notion of multi-dimensional
nonlinearity based on kinetic formulation is clarified.

Key Words: Conservation laws, entropy bounds, compensated compactness, kinetic for-
mulation.
AMS subject classification: Primary 35L65, 76P05; Secondary 65M12, 65M60.

1. Introduction and statement of main results

Currently, there are four main approaches to study the existence of solutions for qua-
silinear hyperbolic conservation laws. First was the standard tool of compactness based
on a priori BV bounds. Then, from the mid-eighties through the mid-nineties, the other
three approaches of compensated compactness, measure valued solutions and kinetic for-
mulations were developed, all of which appeal to a priori entropy production bounds.

Compactness arguments based on BV bounds were proven as the most effective tool for
studying general one-dimensional systems of conservation laws. The long line of results
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in this direction is stretched from Glimm’s celebrated result [Gli] to the recent general
existence result of Bianchini and Bressan [BB]. Applications to finite difference approxi-
mations — from Glimm’s scheme to high-resolution scalar schemes, e.g. [Har, Tad02] and
the references therein, are primary numerical examples for the success of the compact-
ness approach. The approach is limited, however, to essentially one-dimensional systems.
Moreover, the multidimensional BV-based scalar existence theory of Krushkov, [Kru],
hinges in an essential manner on the translation invariance of the underlying solution
operator. An alternative approach is offered by the compensated compactness theory de-
veloped by Tartar [Tar79, Tar83] and Murat [Mur78, Mur87]. Here, the hard-to-get BV
estimates are replaced with L2-type entropy production bounds (L2-type for quadratic
entropies and likewise, for general strictly convex entropies). The example of spectral ap-
proximations is in order; rather than using BV bounds which are difficult to realize in the
dual spectral space, the convergence of the spectral viscosity approximation introduced
in [Tad89, Tad93] is achieved by adapting L2-type entropy bounds. A similar situation
is encountered with hyper-viscosity limits, where lack of monotonicity excludes simple
derivation of a priori BV-bounds. Instead, convergence (of uniformly bounded solutions)
follows by compensated compactness arguments, e.g., [Tad04]. So far, existence results
based on compensated compactness arguments were restricted to one-dimensional conser-
vation laws. DiPerna’s theory of measure valued solutions for nonlinear conversation laws
is a third approach to construct entropy solutions. This approach applies to multidimen-
sional problems by appealing to all entropies associated with the nonlinear conservation
laws. The examples of finite volume schemes on irregular multidimensional grid is in
order. Lack of translation invariance exclude BV bounds (even in the L1-contractive 1D
case!); instead, convergence follows from entropy consistency, see [CCL, EGGH] for exam-
ple. This argument depend in an essential manner on having a large family of entropies
and hence its applications are so far restricted to scalar equations. The fourth and last
approach for studying the existence (and regularity) of solutions, introduced in [LPT], is
based on application of averaging lemmas for the underlying kinetic formulations. Here,
the example of convergence for FV scheme [WN] is in order. These kinetic arguments ap-
ply to scalar as well as systems which admits a kinetic formulation and are not necessarily
restricted to one space dimension. Our discussion of the analytical methods available for
studying multidimensional conservation laws is by no means inclusive and we mention
in passing the examples of compensated compactness and regularity in Hardy spaces,
[CLMS], or the geometrical optics studies, e.g., [CJR], . . . . We refer to [Che] for an
extensive bibliography.

Our purpose in this paper is three fold. First, we present a framework for implementing
compensated compactness arguments in two space dimensions, thus extending the current
framework beyond the 1D applications. Second, our new approach avoids the use of a
large (one-parameter) family of entropies; in section §3 we show that by a judicious
choice of entropies, only two entropy production bounds will suffice, in analogy to the
one-entropy in the 1D case discussed in section §2. Finally, a third aspect is to highlight
the role of nonlinearity in excluding oscillations in the 2D case. Specifically, our main
result in theorem 3.1 below deals with 2D conservation laws ut + f1(u)x1 + f2(u)x2 = 0,
which are nonlinear in the sense that their velocity field (f1, f2) is a.e. not co-linear,
consult (3.11) or (3.15) below. Let uε is a family of uniformly bounded approximate
solutions with H−1-compact entropy production (here rε are the corresponding residuals,
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rε := uε
t + f1(u

ε)x1 + f2(u
ε)x2)

{η′(uε)rε} ∈ Lp([0, T ];X) with X ↪→ H−1
loc (R

2
x) and p ≥ 1, for η = f1, f2.

Assuming the time regularity bound, ∂tu
ε ∈ Lq

loc(Rt;M(R2
x)), q > 1, then (a subsequence

of) uε convergences strongly to a weak solution. We note in passing that no translation
invariance in space — and in particular, no spatial regularity of u(·, t) is required beyond
the necessary uniform bound. In this context we clarify, in section §4 below, the intimate
connection with the notion of multi-dimensional nonlinearity introduced in [LPT] and we
bring closer the relation between our 2D compensated compactness arguments and the
multi-dimensional kinetic arguments.

2. Strong convergence – a single entropy suffices in the 1D case

We consider the scalar conservation law

∂tu+ ∂xf(u) = 0,(2.1)

subject to initial conditions, u(x, 0) = u0. The entropy solution of (2.1) could be realized
by the vanishing viscosity limit, u = s limuε where uε satisfies the viscosity equation

∂tu
ε + ∂xf(uε) = ε∂xxu

ε.(2.2)

In the usual approach of compensated compactness developed by Tartar [Tar79, Tar83]
and Murat [Mur78], theH−1-compact entropy production for the whole family of Krushkov
entropies is sought, in order to conclude the strong convergence uε → u,

∂t

[
|uε − c|

]
+ ∂x

[
sgn(f(uε) − f(c))f(uε) − f(c))

]
↪→ H−1

loc (Rx,Rt),(2.3)

Here one makes use of two a priori estimates:

{A1} A uniform bound, ‖uε‖L∞
loc(Rx,Rt) ≤ Const.

{A2} An entropy production bound
√
ε‖∂xu

ε‖L2
loc(Rx,Rt) ≤ Const.

Granted these two a priori bounds, Tartar [Tar87] and independently Chen and Lu
(consult [Che, Theorem 2.7]), have shown that the H−1-compact entropy production
of a single entropy is sufficient to enforce strong convergence to a weak solution of
(2.1). A similar ‘single entropy’-approach was initiated by Rascle for 1D systems, consult
[Ras86a, Ras86b]. Since the above references are not readily available, the three-step
convergence argument is sketched below. First, the viscous term on the right of (2.2)
is clearly H−1-compact (vanishing of order

√
ε). For the second step we integrate (2.2)

against f ′(u) obtaining, with F ′(w) := (f ′(w))2,

∂tf(uε) + ∂xF (uε) = εf ′(uε)∂xxu
ε ≡ ε∂xxf(uε) − εf ′′(uε)(uε

x)
2 =: Iε + IIε(2.4)

The a priori bounds {A1}, {A2}, imply that the first term on the right is H−1
loc (Rx,Rt)-

compact,

‖Iε‖H−1
loc (Rx,Rt)

≤
√
ε‖f ′(uε)‖L∞ ×

√
ε‖∂xu

ε‖L2
loc(Rx,Rt) ≤ Const.

√
ε −→ 0;

the second term is L1-bounded

‖IIε‖L1
loc(Rx,Rt) ≤ ‖f ′′(uε)‖L∞ × ε‖∂xu

ε‖2
L2

loc(Rx,Rt)
≤ Const.
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and hence by standard embedding, it is compact in W−1
loc (Lr(Rx,Rt)) for r < 2. We now

argue along the lines of Murat [Mur81]. The sum on the right of the (2.4) is W−1
loc (Lr)-

compact while by {A1} the gradient on the left side is bounded in W−1
loc (L∞), and hence by

interpolation, these terms are compactly embedded in H−1
loc . Thus, the right hand sides of

both (2.2) and (2.4) are H−1
loc -compact. In fact, this H−1

loc -compactness remains valid if we
replace uε, f(uε) and F (uε) on the left hand sides (2.2) and (2.4) with uε−u, f(uε)−f(u)
and F (uε) − F (u), respectively, where u := wlim uε. In the third step, we consider the
expression

D(w) := (w − u) ×
(
F (w) − F (u)

)
−

(
f(w) − f(u)

)2
.

Granted the above H−1
loc -compactness, we can now invoke the the div-curl lemma which

states that by extracting subsequences if necessary, the weak-* limit of D(uε) is given by

wlimD(uε) = wlim(uε − u) × wlim
(
F (uε) − F (u)

)
−

(
wlim

(
f(uε) − f(u)

))2

=

= −
(
f − f(u)

)2 ≤ 0, f := wlim f(uε).(2.5)

But on the other hand, recalling F is the primitive of (f ′)2 implies that D(·) is non-
negative, for by Cauchy-Schwarz inequality
(
f(w) − f(u)

)2

=
( ∫ w

u

f ′(v)dv
)2

≤ (w − u) ×
∫ w

u

(f ′(v))2dv = (w − u) × (F (w) − F (u)).

Therefore, the weak limit of D(uε) is nonnegative, which is reconciled with (2.5) when
the desired convergence of the approximate flux holds, namely, wlim f(uε) = f = f(u).
Passing to the limit in (2.2) we conclude that u is a weak solution, ∂tu+ ∂xf(u) = 0.

Is u the entropy solution? in general, the convergence wlim uε = u need not be a strong
limit and the u limit need not be the entropy solution, but more can be said provided
additional information on the nonlinearity of f is available. In the convex case, for
example, f = f(u) implies strong convergence of uε → u and a single entropy inequality
implies u is the entropy solution of (2.1), [Pan] or [LOW]. The statement of strong
convergence can be extended to any interval of nonlinearity of f , either by the arguments
of [Tar83], or by using the above Cauchy-Schwarz inequality as in [Ras83],[RS]. Indeed,
our arguments above show the a.e. strong convergence of (a subsequence of) D(uε) −→ 0.
Therefore, if we quantify the nonlinearity of f , assuming that

f(u) is not affine on any nontrivial interval(2.6)

we conclude that (a subsequence) uε −→ u and that u is the unique entropy solution,
consult [CR].

3. Strong convergence – two entropies suffice in the 2D case

In this section we turn our attention to the two-dimensional case. Here we introduce a
proper notion of multidimensional nonlinearity and relate it to the strong convergence of
approximate solutions. Our reasoning is based on compensated compactness arguments
and as in the one-dimensional case, these arguments do not involve a priori spatial BV
estimates.
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3.1. Compensated compactness in 2D conservation laws. We begin with the pro-
totype viscous approximation. Let uε be solution of the 2D viscous conservation law

∂tu
ε + ∂x1f1(u

ε) + ∂x2f2(u
ε) = ε∆uε,(3.1)

subject to uε(x, 0) = uε
0(x). As before, we utilize two a priori bounds associated with

(3.1),

{A1} A uniform bound, ‖uε‖L∞
loc(R2

x,Rt) ≤ Const., and

{A2} An entropy production bound,
√
ε‖∇xu

ε‖L2
loc(R2

x,Rt) ≤ Const.;

we add a third type of a time regularity bound,

{A3} ‖∂tu
ε‖Lq

loc(Rt;M(R2
x)) ≤ Const., with q > 1.

Since the solution operator associated with (3.1) is L1-contractive, ‖∂tu
ε(·, t)‖M(R2

x) ≤
‖∂tu

ε(·, 0)‖M(R2
x) and {A3} with q = ∞ holds for sufficiently regular initial data, say

‖uε
0‖BV + ε‖∇xu

ε
0‖BV ≤ Const.(3.2)

We note that the {A3}-bound hinges on the translation invariance in time. In typical
cases, this requires BV bounded initial data (and in fact, BV bounded initial total flux
so that ‖f1(u

ε
0)x1 + f2(u

ε
0)x2‖M(R2

x) < Const. will do), but otherwise it is independent of a
priori spatial BV bound ‖uε(·, t)‖BV < Const.

We begin by multiplying (3.1) against f1
′(uε) and f2

′(uε), obtaining

(f1
′(uε))2∂x1u

ε + (f1
′(uε)f2

′(uε))∂x2u
ε = f1

′(uε)ε∆uε − ∂tf1
′(3.3)

(f1
′(uε)f2

′(uε))∂x1u
ε + (f2

′(uε))2∂x2u
ε = f2

′(uε)ε∆uε − ∂tf2
′,(3.4)

The entropy production bound (A2) implies for arbitrary φ ∈ C2, that the prod-
uct φ′(uε)ε∆uε can be decomposed as the sum of two terms,

√
ε∇ · (φ′(uε)∇uε) in

L2([0, T ],X ) with “X =
√
εH−1

loc (R2
x))” which is H−1-compact, and −

√
εφ′′(uε)|∇xu

ε|2
in L1

loc(Rt,M(R2
x)); likewise, the bounds assumed in {A1}, {A3} imply that ∂tφ(uε) is

L1
loc(Rt,M(R2

x))-bounded. Thus, if we let F11, F22 and F12 denote the (indefinite) primi-
tives of (f1

′(u))2, (f2
′(u))2 and f1

′(u)f2
′(u), respectively, then (3.3),(3.4) tell us that each

of the gradients,

∂x1F11(u
ε) + ∂x2F12(u

ε) and ∂x1F12(u
ε) + ∂x2F22(u

ε)

is the sum of two terms — one is bounded in L2([0, T ];X ↪→ H−1
loc (R2

x)) and the other in
L1

loc(Rt,M(R2
x)). In addition, by {A1} these gradients are bounded in L∞([0, T ];W−1

loc (L∞(Ω))).
Moreover, the time regularity bound {A3} implies that the gradients in (3.1) are bounded
in Cλ([0, T ];W−1

loc (L1(R2
x))) with λ = 1/q′ and therfore, recalling that q > 1, that their

W−1
loc (L1)-norms are equi-continuous in time. We can now invoke the following ’time-

dependent’ version of Murat lemma, [Mur81], consult lemma 6.1 below for the pre-
cise statement, which states that equi-continuity and the L∞-bounds together with the
L2([0, T ],X ) + L1(Rt,M) decomposition yield H−1

loc (R2
x)-compactness,
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∂x1F11(u
ε) + ∂x2F12(u

ε) ↪→ L∞([0, T ];H−1
loc (R

2
x)),(3.5)

∂x1F12(u
ε) + ∂x2F22(u

ε) ↪→ L∞([0, T ];H−1
loc (R

2
x)).(3.6)

The div-curl lemma implies that the weak limits, F ij := wlimFij(u
ε(·, t)), satisfy

wlim
[
F11(u

ε)F22(u
ε) − F 2

12(u
ε)

]
= F11 · F22 − F12

2
,(3.7)

or equivalently,

wlim
[
(F11 − F11)(F22 − F22) − (F12 − F12)

2
]

= 0, Fij = Fij(u
ε).(3.8)

To proceed, we consider the nonnegative form

D(w) := (F11(w) − F11(c))(F22(w) − F22(c)) − (F12(w) − F12(c))
2

where c = c(x, t) denotes an arbitrary fixed state, independent of uε, which is yet to be
determined. Cauchy-Schwarz inequality shows that D(w) is indeed nonnegative,

(F12(w) − F12(c))
2 =

( ∫ w

c

f1
′(v)f2

′(v)dv
)2

≤
∫ w

c

(f1
′(v))2dv

∫ w

c

(f2
′(v))2dv

= (F11(w) − F11(c))(F22(w) − F22(c)).(3.9)

Using (3.8) we conclude

wlimD(uε) = wlim
[
(F11(u

ε) − F11(c))(F22(u
ε) − F22(c)) − (F12(u

ε) − F12(c))
2
]

=

= wlim
[
(F11(u

ε) − F11) + (F11 − F11(c)
]
·
[
(F22(u

ε) − F22)) + (F22 − F22(c))
]

−
[
(F12(u

ε) − F12)
2 + 2((F12(u

ε) − F12)(F12 − F12(c)) + (F12 − F12(c))
2
]

=

=
[
(F11 − F11(c))(F22 − F22(c)) − (F12 − F12(c))

2
]
.(3.10)

We now choose c = c(x, t) such that
∫ c

(f1
′(v))2dv = F11; such c(x, t) certainly exists

since 0 ≤ F11 ≤
∫ umax

umin
(f1

′(v))2dv. With this choice of c we find F11(c) − F11 = 0 and

(3.9),(3.10) tell us that 0 ≤ D(uε) ⇀ 0. Since D(uε) is bounded then wlimD2(uε) =
wlimD(uε) = 0 and hence D(uε) converges strongly, s limD(uε) = 0.

In fact, more is true. We first note that D(w) has a minimum at u = c for by (3.9)

D′(w) = (f1
′(w))2(F22(w) − F22(c)) +

+ (f2
′(w))2(F11(w) − F11(c)) − 2f1

′(w)f2
′(w)(F12(w) − F12(c))

{
≥ 0, w > c
≤ 0, w < c

.

Next, we assume that f1
′ and f2

′ are linearly independent in the sense that their linear
combinations s(ξ, v) := ξ1f1

′(v) + ξ2f2
′(v) do not identically vanish, i.e.,

∀|ξ| = 1 : s(ξ, ·) ≡6 0 on any nontrivial interval.(3.11)
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Then, the Cauchy-Schwarz inequality (3.9) is strict, which in turn implies that D(c) = 0 is
in fact a strict minimum, D(w) > D(c), ∀w 6= c. The strong convergence D(uε) → D(c) =
0 then implies that (a subsequence of) uε converges strongly, uε(·, t) → c(·, t) = u(·, t) and
the diagonal procedure coupled with equi-continuity in time, ‖uε(·, t‖M(R2

x) ∈ C1/q′([0, T ])
imply strong convergence in space-time. We summarize by stating

Theorem 3.1. Consider the 2D scalar conservation law

∂tu+ ∂x1f1(u) + ∂x2f2(u) = 0(3.12)

and assume it is nonlinear in the sense that (3.11) holds. Let uε be a family of uniformly
bounded approximate solutions of (3.12),

∂tu
ε + ∂x1f1(u

ε) + ∂x2f2(u
ε) = rε, rε ⇀ 0.(3.13)

Here, rε is the local residual, measuring the amount by which uε fails to satisfy (3.12),
with the following H−1-compact entropy production,

{η′(uε)rε} ∈ Lp([0, T ];X) with X ↪→ H−1
loc (R

2
x) and p ≥ 1, for η = f1, f2.(3.14)

Finally, assume the time regularity bound, {A3} holds, i.e., there exists q > 1 such that
∂tu

ε ∈ Lq
loc(Rt;M(R2

x)). Then a subsequence of uε converges, lim uε = u, to a weak
solution of (3.12).

Remark 3.1. The entropy production bound (3.14) is a realization of hypothesis {A2}
in the prototype case of vanishing viscosity which led to the above theorem; compare
(3.3),(3.4).

Remark 3.2. The nonlinearity assumption (3.11) can be found in the study of Engquist
and E [EE] on the large time-behavior of 2D conservation laws. It is the 2D extension
of one-dimensional notion of nonlinearity in (2.6). In its slightly stronger version, the 2D
nonlinearity assumption requires that f1

′ and f2
′ are almost everywhere linearly indepen-

dent in the sense that their linear combinations satisfy

meas
{
v

∣∣∣ |s(ξ, v)| = 0
}

= 0, ∀|ξ| = 1, s(ξ, v) := ξ1f1
′(v) + ξ2f2

′(v).(3.15)

This notion of nonlinearity can be found in the study of [LPT] on kinetic formulations for
conservation laws; consult (4.5) below for the corresponding multidimensional analogue.

Theorem 3.1 can be recast in terms of the general compensated compactness framework
which allows to relax the time regularity assumption {A3}.

Theorem 3.2. Let uε be a family of uniformly bounded solutions of the nonlinear, ap-
proximate 2D conservation law (3.13), (3.11). Assume it has H−1

loc -compact entropy pro-
duction in the sense of (3.14). Finally, assume that {∂tu

ε(·, ·)} is H−1
loc -compact. Then a

subsequence of uε converges, lim uε = u, to a weak solution of (3.12).
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We note in passing that by Murat lemma, {A3} implies the H−1-compactness of {∂tu
ε}.

The proof is based on classical Tartar-Murat compensated compactness theory, [Tar79,
theorem 11], [Mur87, theorem 3.2]. Let V denote the set

V :=
{
(λ, ξ) ∈ R4 × R3−{0}

∣∣∣ s.t. λ1ξ1 + λ2ξ2 = 0;λ3ξ1 + λ4ξ2 = 0;λ1ξ0 = 0;λ3ξ0 = 0
}
.

Arguing along the lines of theorem 3.1, our assumptions imply theH1
loc(R2

x,Rt)-compactness
of the four terms,

∂x1F11(u
ε) + ∂x2F12(u

ε), ∂x1F12(u
ε) + ∂x2F22(u

ε), ∂tF11 and ∂tF22.

It follows that Q(Fij(u
ε)) is weakly continuous for any quadratic Q(F11, F12, F12, F22)

which vanishes on the projection, Λ = {λ ∈ R4
∣∣ s.t. (λ, ξ) ∈ V}. A straightforward

computation shows that the latter is given by the cone λ1λ4 − λ2λ3 = 0, i.e., (3.7) or
equivalently, (3.8) hold. Expressed in terms of the Young measures νx,t(·) associated with
{uε}, (3.8) recast into the form

〈
νx,t(λ), (F11(λ) − F11) · (F22(λ) − F22) − (F12(λ) − F12)

2
〉

= 0.

One concludes with the proof of theorem 3.1.

3.2. 2D examples.

Example 3.1. Vanishing viscosity. The bound (3.14) can be viewed as a consistency
condition for general residual terms, which enable us to convert entropy production bound
into a compactness statement. As an example we consider the possibly nonlinear vanishing
viscosity approximation

∂tu
ε + ∂x1f1(u

ε) + ∂x2f2(u
ε) = ε∇x · c(uε,∇xu

ε), εc(uε,∇xu
ε) ⇀ 0.(3.16)

It follows that if ε‖c(uε,∇xu
ε)‖L2

loc(R2
x,Rt) → 0 and ε‖c(uε,∇xu

ε) · ∇xu
ε‖L1

loc(Rt,M(R2
x)) ≤

Const. then (3.14) holds. The special case, c(u,p) = b(u)p with 0 ≤ b(·) ∈ L∞ corre-
sponds to vanishing viscosity with the H−1-entropy bound ε‖b(uε)|∇xu

ε|2‖L1
loc(Rt,M(R2

x)) ≤
Const. L1 contraction and translation invariance in time implies that {A3} holds for
regular initial data (3.2) and theorem 3.1 implies that uε converges strongly to a weak
solution, uε → u.

Example 3.2. Kinetic BGK approximation. Let χw(c) denote the indicator function

χw(c) :=

{
sgn(w), if(w − c)c ≥ 0,
0 otherwise

}
. We consider the BGK kinetic approximation of

(3.12), e.g., [PT],

∂tn
ε + f1

′(c)∂x1n
ε + f2

′(c)∂x2n
ε =

1

ε
(χuε − nε),(3.17)

where nε is a microscopic distribution function depending on the additional kinetic vari-
able c with macroscopic average uε :=

∫
nε(x, t, c)dc, so that integration over phase space

yields
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∂tu
ε + ∂x1

∫

c

f1
′(c)nεdc+ ∂x2

∫

c

f2
′(c)nεdc = 0.

We rewrite this as

∂tu
ε + ∂x1f1(u

ε) + ∂x2f2(u
ε) = rε, rε = ∇x · F ,

where F ≡ (F1,F2) =
∫

c
(f1

′(c), f2
′(c))(χuε(c) − nε)dc. If we prevent initial layers by

preparing consistent initial data so that ‖nε(·, 0) − χuε
0(·)‖M(R2

x;Rc) → 0, then ‖nε(·, t) −
χuε(·,t)‖M(R2

x;Rc) → 0, hence ‖F‖L2
loc(R2

x,Rt) → 0 and H−1-compactness of rε follows. We

note that the last argument, due to [PT, Theorem 3.7], depends on the translation in-
variance in time of (3.17) which is responsible for the M bound, ‖∂tn

ε(·, t)‖M(R2
x;Rc) ≤

‖∂tn
ε(·, 0)‖M(R2

x;Rc). The same argument implies the Lip-bound in time, i.e., {A3} holds
with q = ∞ and strong convergence follows under the nonlinearity assumption (3.11).

4. Kinetic formulation – the multidimensional case

How does the theorem 3.1 compare with the compactness statement derived by the
kinetic formulation arguments in [LPT]? we extend our discussion to the multidimensional
conservation laws

∂tu
ε + ∇x · f(u) = rε, f(u) =

(
f1(u), f2(u, . . . , fd(u)

)
.(4.1)

The Krushkov entropy condition associated with approximate solutions of (4.1) reads

∂tη(u
ε) +

d∑

j=1

∂xj
qj(u

ε) = η′(uε)rε := mε.(4.2)

Here, η(u) = η(u; c) is the family of Krushkov entropies, η(u; c) = |u − c| − |c| where
c is an arbitrary fixed contact at our disposal, qj are the corresponding entropy fluxes,
qj(u; c) = sgn(u − c)(fj(u) − fj(c)) and mε = mε(x, t; c) measures the corresponding
entropy production (more precisely, mε

+ and respectively mε
− measure the corresponding

entropy production and entropy dissipation).
Differentiation of (4.2) w.r.t c then yields the kinetic transport equation [LPT]

∂tχ
ε +

d∑

j=1

fj
′(c)∂xj

χε = ∂cm
ε, χε(x, t; c) ≡ χuε(x,t)(c)(4.3)

In the present context we rewrite this as a multidimensional spatial kinetic formulation

d∑

j=1

fj
′(c)∂xj

χε = ∂cm
ε − ∂tχ

ε.(4.4)

We seek the compactness of the averages, χε :=
∫
χε

uε(c)dc = uε. To apply the averaging
lemma along the lines of [LPT], we introduce the notion of nonlinearity in the sense that
the (linearized) symbol of the LHS is
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meas
{
v

∣∣∣ |s(ξ, v)| = 0
}

= 0, ∀|ξ| = 1, s(ξ, v) :=

d∑

j=1

ξjf
′
j(v).(4.5)

This is the multidimensional generalization of the notion of 2D nonlinearity encountered
earlier in (3.15), a slightly strengthened version of (3.11). Next, we ask the second term
on the right of (4.4) to be a bounded measure, χε

t ∈ M(Rd
x,Rt; Rc). If the approximate

method (4.3) is L1-contractive and translation invariant in time, then

‖χε
t(·, t; c)‖M(Rd

x;Rc) ≤ ‖χε
t (·, 0; c)‖M(Rd

x;Rc),

and the required bound follows for regular enough initial data. An example is provided by
the BGK approximation 3.2, which prevents possible initial boundary layer if the initial
data u0 ∈ BV so that ∇χε(·, 0; c) ∈ M(Rd

x;Rc) and χε
t ∈ M(Rd

x,Rt; Rc), consult [PT, §3,
remark 2]. Using the averaging lemma we conclude along the lines [LPT].

Theorem 4.1. Consider the multidimensional scalar conservation law (4.1), and assume
it is nonlinear in the sense that (4.5) holds. Let uε ∈ L∞

loc(R2
x,Rt) be a family of uniformly

bounded approximate solutions of (4.1),

∂tu
ε +

d∑

j=1

∂xj
fj(u

ε) = rε, rε ⇀ 0,(4.6)

with a negative entropy production so that η′(uε)rε ≤ 0 for all convex η’s. Finally, assume
the time regularity bound corresponding to {A3} holds, ∂tχuε(x,t)(c) ∈ Lq

loc(Rt;M(Rd
x; Rc))

with q > 1. Then, ∃s lim uε = u which is the unique entropy solution of (4.1).

Remark 4.1. The last result brings closer the convergence statements based kinetic for-
mulations and compensated compactness arguments. The kinetic formulation requires a
stronger consistency condition with the whole family of Krushkov entropies (compared
with the two entropies sought in (3.14)), and in return, it yields a stronger result of strong
convergence towards entropy solution.

Remark 4.2. In this context we note that one can relax the negative entropy production
assumption in theorem 4.1, requiring that the analog of (3.14), η′(uε)rε ∈ Lp([0, T ];X)
withX ↪→ H−1

loc (Rd
x), holds for allC2−η’s. The regularity of χuε(c) implies the Lq(Rt;L

1(Rd
x))

bound of ∂tu
ε and one conclude by the averaging lemma as in [LPT, Theorem B].

Remark 4.3. A kinetic formulation argument yields, in particular, a regularizing effect

statement: quantifying the nonlinearity by requiring meas
{
v

∣∣∣ |s(ξ, v)| ≤ δ
}
≤ Const.δα,

is translated into a gain of regularity of the solution operator, S : L∞ 7−→ Bs with
order of regularity s depending on α (consult [LPT]). In the present context, however,
the requirement of time regularity requires BV initial data to begin with. It would be
desirable to utilize the present framework of compensated compactness in order to derive
an alternative argument for the regularizing effect, independent of the averaging lemma.
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5. Convergence of multidimensional finite volume schemes

We study the convergence of finite volume (FV) schemes for the approximate solution
of the initial value problem associated with the nonlinear d-dimensional conservation law
(3.12). The example of 2D convergence is brought up here as an application to demon-
strate the compensated compactness arguments outlined in §3. In fact, the classes of FV
schemes discussed below were shown to be entropic with all entropies which make the
kinetic arguments of §4 apply in the multidimensional case. The question of convergence
in the general multidimensional case based on kinetic formulation was already addressed
in [WN].

To begin, we let T be a finite volume mesh of Rd such that the common interface
between two cells of T is included in a hyperplane of Rd. We assume that there exist
h > 0 and α > 0 such that, for any control volume p ∈ T :

αhd ≤ |p|, |∂p| ≤ 1

α
hd−1, δ(p) ≤ h,(5.1)

where |p| denotes the d-dimensional Lebesgue measure of the cell p, |∂p| denotes the
(d− 1)-dimensional Hausdorff measure of its boundary and δ(p) denotes its diameter.
With these notations, the parameter h defines the size of the mesh and α its regularity.
We denote by N(p) the set of the neighbors of a control volume p, and if q ∈ N(p) then
σpq is the common interface between p and q and np,q stands for the unit normal vector
to σpq oriented from p to q.

Next, we consider a general family of locally Lipschitz numerical fluxes, g = gpq(u, v) :
Rd −→ R, satisfying the conservation property, gpq(u, v) = −gqp(v, u) and the consistency
property, gpq(u, u) = f(u) · np,q. We assume these fluxes are monotone, in the sense

∂g

∂uj
≥ 0,

∂g

∂vj
≤ 0, ∀uj, v

′
js.(5.2)

A larger class is provided by the E-fluxes, satisfying

gpq(u, v) − f(u) · np,q

u− v
≥ 0(5.3)

The Godunov and the Lax-Friedrichs are prototypes for monotone numerical fluxes. The
finite volume approximation based on the above family of numerical fluxes leads to the
following scheme

un+1
p = un

p − ∆t |∂p|
|p|

∑

q∈Np

gpq(u
n
p , u

n
q ).(5.4)

Here, the constant un
p should be considered as an approximation of the mean value of u

over the cell p at time tn := n∆t, un
p
∼=

∫
p
u(x, tn)dx/|p| and gpq is an approximation of

the (averaged values of the) flux across the interface σpq. The initial condition u0 provides
us with

u0
p =

1

|p|

∫

p

u0(x)dx.(5.5)
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The explicit finite volume scheme, (5.4), (5.5), is augmented with a CFL condition,

∆t sup
p∈T

|∂p|
|p| ‖f

′‖∞ ≤ 1, ‖f ′‖∞ = max
j

(
|f ′

j|L∞
)
.(5.6)

It follows, given (5.2),(5.6), that the discrete solution operator, {un
p} 7−→ {un+1

p } is
monotone and hence, by conservation, it is an L1 contraction. If in addition, the discrete
solution operator is translation invariant is space then convergence follows from BV com-
pactness. This line of argument applies to uniform grids. In the present context, however,
the possibly unstructured grid lacks spatial translation invariance and convergence argu-
ments based on BV bound break down. Instead, we appeal to compensated compactness
arguments in the 2D case and to the kinetic arguments in the general multidimensional
case.

The underlying approximation uh takes the piecewise-constant form

uh(x, t) =
∑

p∈T

un
pIn(t)Ip(x),(5.7)

where In(t) and Ip(x) are respectively the characteristic function of [tn, tn+1) and p. We
revisit the three standard assumptions. Monotonicity implies uh is uniformly bounded.
Moreover, the so called “weak-BV” estimates [EGGH, Theorem 4.1] imply that the H−1-
entropy production bound (3.14) (and even a stronger W−1(L∞)-bound) holds; consult
also [CH99, CH00] for example. Finally, comparing the two discrete solutions {un+1} and
{un}, their L1 contraction implies the Lip-time bound (consult [EGGH, Lemma 3.2]),

‖∂tu
h(·, t)‖M(R2) =

∑

p∈T

|p|
|un+1

p − un
p |

∆t
≤

≤
∑

p∈T

|p|
|u1

p − u0
p|

∆t
=

∑

p

|∂p|
∑

q∈Np

gpq(u
0
p, u

0, q) ≤ Const., ∀n,(5.8)

so that {A3} with q = ∞ holds for smooth enough initial data, (3.2). Theorem 3.1 applies
and we conclude

Theorem 5.1. Consider the 2D scalar conservation law (3.12) subject to BV-bounded
initial data and assume it is nonlinear in the sense that (3.11) holds. Let uh =

∑
p∈T u

n
pIn(t)Ip(x)

be a family of consistent, conservative finite volume approximation, (5.4), (5.5), with
monotone numerical flux, (5.2). Then, ∃s lim uh = u which is a weak solution of (3.12).

The key for the convergence statement of theorem 5.1 hinges on the H−1-compactness
of entropy production. Our compensated compactness arguments require such entropic
bounds for only two prefered entropies. In fact, in the present context of FV schemes,
such entropic bounds hold to all convex entropies, consult [Noe95, Noe96, WN] and hence
the kinetic arguments apply in the general multidimensional setup of E-fluxes (and in fact
higher order cases, [Noe96]). We conclude by quoting

Theorem 5.2 ([WN]). Consider the multidimensional scalar conservation law (4.1) sub-
ject to BV-bounded initial data and assume it is nonlinear in the sense that (4.5) holds.
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Let uh =
∑

p∈T u
n
pIn(t)Ip(x) be a family of consistent, conservative finite volume approx-

imation, (5.4), (5.5), with E-numerical flux, (5.3). Then, ∃s lim uh = u which is the
entropy solution of (4.1).

6. Appendix

We use the time regularity assumption {A3}, in order to ‘raise’ 2D spatial compensated
compactness arguments to handle the time dependent 2D conservation laws. To this end
we prove the following ‘time-dependent’ generalization of Murat lemma, [Mur81].

Lemma 6.1. Consider the family {φε} which admits the following bounds

‖φε‖L∞([0,T ],W−1(L∞(Ω))) + ‖φε‖Cλ([0,T ],W−1(L1(Ω))) ≤ Const., λ > 0, Ω bounded.

Assume that φε can be expressed as φε = χε + ψε, where {χε} bounded in Lp([0, T ],X )
with X ↪→ H−1(Ω) while {ψε} is bounded in L1([0, T ],M(Ω)). Then (a subfamily of)
{φε} is compact in L∞([0, T ], H−1(Ω))

Proof. We start by noting that an Lp[0, T ]-bound of ‖wε(·, t)‖X implies — cf. [Lopes,
Theorem 3], that there exists a denumerable dense set of points, T := {tk}, such that
‖wε(·, tk)‖X is bounded. Thus, there exists such a denumerable dense set such that the
classical Murat lemma, [Mur81] applies to φε(·, tk) and diagonalization process enables us
to extract a subsequence such that {φε(·, t)} is compact in H−1(R2(Ω)) for all t ∈ {tk}.
We want to show that in fact, {φε(·, t)} contains an H−1

loc -Cauchy sequence uniformly for
all t’s. To this end we estimate

‖φε(·, t) − φδ(·, t)‖H−1(Ω) ≤ ‖φε(·, t) − φε(·, tk)‖H−1(Ω)

+ ‖φε(·, tk) − φδ(·, tk)‖H−1(Ω) + ‖φδ(·, t) − φδ(·, tk)‖H−1(Ω)(6.1)

By our assumption of time regularity, the φ’s are in Cλ([0, T ],W−1(L1(Ω)). This, together

with the interpolation bound ‖w‖H−1 ≤ ‖w‖1/2
W−1(L1)‖w‖

1/2
W−1(L∞) imply

‖φε(·, t) − φε(·, tk)‖H−1(Ω) ≤ Const.‖φε(·, t)‖1/2

W−1(L∞(Ω)) · |t− tk|λ/2.

A similar bound holds for φδ(·, t) − φδ(·, tk) and hence the first and third terms on the
right of (6.1) can be made arbitrarily small since {tk} is dense. The second term is made
arbitrarily small for proper (ε, δ) by the H−1-compactness of φε(·, tk) and we are done.
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[EGGH] Eymard, R. and Gallouët, T. and Ghilani, M. and Herbin, R., “Error estimates for the approx-
imate solutions of a nonlinear hyperbolic equation given by finite volume schemes”, IMA J. Numer.
Anal. 18 (1998), pp. 563–594.

[EE] B. Engquist and W. E, “Large time behavior and homogenization of solutions of two-dimensional
conservation laws”, CPAM 46 (1993), pp. 1-26.

[Gli] J. Glimm, “Solutions in the large for nonlinear hyperbolic systems of equations”, Comm. Pure Appl.
Math. 18 (1965), 697–715.

[Har] A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws”, JCP, 49, (1983), pp.
357-393.
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