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Abstract 

 

Shape fluctuations in nanoparticles strongly influence their stability. Here, we introduce a 

quantitative model of such shape fluctuations and apply this model to the important case of Pt-

shell/transition metal-core nanoparticles. By using a Gibbs distribution for the initial shapes, we 

find that there is typically enough thermal energy at room temperature to excite random shape 

fluctuations in core/shell nanoparticles, whose amplitudes are sufficiently high that the cores of 

such particles are transiently exposed to the surrounding environment. If this environment is 

acidic and dissolves away the core, then a hollow shell containing a pinhole is formed; however, 

this pinhole quickly closes, leaving a hollow nanoparticle. These results favorably compare to 

experiment, much more so than competing models based on the room-temperature Kirkendall 

effect. 
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There are a number of recent observations of hollow nanoparticles formed via the Kirkendall 

effect in annealed core-shell nanoparticles [1].  The origin of this effect is uncompensated high-

temperature bulk diffusion between the core and the shell, i.e., if A is the component in the core, 

and B is the component of the shell, then the diffusivity of a minority of A in B differs from the 

diffusivity of a minority of B in A and intermixing requires injection of vacancies at the exterior 

surface, which diffuse and collect in the core.  This effect is certainly operative in many annealed 

core-shell nanoparticles, because the final shell composition is an alloy mixture of the two 

components [2].  Recently, however, the Kirkendall effect has been implicated in the formation 

of hollow Pt-shell nanoparticles formed from Pt-shell, transition metal (e.g., Ni) core 

nanoparticles in electrolytes at room temperature [3].  This class of nanoparticles is useful in 

many low-temperature electrochemical reactions, such as oxygen reduction in fuel cells.  This 

“room temperature Kirkendall effect” (rt-KE) is invoked in systems that differ from the high-

temperature phenomena in an important way: the shell that is observed to remain after 

electrochemical processing, which serves to dissolve away any surface Ni, is comprised of pure 

Pt.   

In this Letter, we argue that the kinetics of vacancy-mediated diffusion in core-shell 

nanoparticles at room temperature are far too slow to justify attribution of the formation of Pt-

shell hollow nanoparticles in electrochemical environments to the rt-KE.  We present an 

alternative model (Fig. 1) in which thermal energy induces surface-diffusion mediated random 

fluctuations in the shape of Pt-shell nanoparticles, fluctuations whose amplitudes are high 

enough to expose the core, forming pinholes in the shell and allowing the cores to be dissolved 

away.  Once the cores are dissolved away, the mismatch of interior and exterior curvatures 

provides a new driving force for surface diffusion through the pinholes that closes them rapidly. 

In early studies of dealloying (dissolving the less noble component out of a two-component 

alloy), it was hypothesized that the less noble component might be transported to the surface via 

a bulk vacancy diffusion mechanism [4].  However, the site concentration of vacancies, v BG k T
e
 , 

where vG  is the vacancy formation energy ( 1.15 eVvG   for Pt), is orders of magnitude too 

low at room temperature (1 vacancy per 3x10
19

 atoms; equivalent to one vacancy in 8x10
14

 10 

nm-diameter Pt nanoparticles) [5].  Similarly, the bulk migration energy (~1.5 eV) yields bulk 

diffusion coefficients of order 10
-27

 cm
2
/sec [6]; this is geologically slow in comparison to the 
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minutes timescale of the rt-KE.  To account for higher vacancy concentrations in Pt-shell 

particles in acid electrolytes, it is hypothesized that experimental procedures lead to an excess of 

vacancies at the core/shell interface; similarly, fast vacancy diffusion can be induced in 

simulation, but only by imposing unrealistically high driving forces [7].  Dealloying has 

subsequently been shown to be controlled by surface diffusion [8], so it is reasonable to explore 

whether a similar mechanism can be invoked for core-shell nanoparticles at room temperature, 

without resorting to the rt-KE. 

We start with a deterministic model of nanoparticle shape evolution.  The cause of shape 

changes in a nanoparticle is distinct from the kinetic growth problem of Mullins and Sekerka [9], 

in which fluctuations in the surface of particles grow because of coupled thermal and 

concentration gradients.  In contrast, in our model the nanoparticle volume is constant, fixed by 

the equilibrium (spherical) shape.  We focus on small fluctuations around this equilibrium shape.  

Such small fluctuations have long been observed in experiment [10], and resemble vesicle 

deformations analyzed as a free-boundary problem [11].  We assume uniform surface energy  , 

leading to a spherical Wulff shape.  The assumption regarding kinetics is that the shape evolves 

only via surface diffusion, so that the normal velocity nv  of the surface is [12] 

n Sv M    .          (1) 

Here,  1 2 2     is the mean curvature (the arithmetic mean of principal curvatures 1  and 

2 ), S  is the surface Laplacian, and 
2

surf BM C D k T   is the mobility associated with 

surface diffusion, where 
surfC  is the areal concentration of diffusers, D  is the surface diffusion 

coefficient and   is the atomic volume. 

Our approach relies on using Eq. (1) with random initial nanoparticle shapes.  We consider 

an ensemble of initial axisymmetric shapes that form small perturbations of a sphere of radius 

0R ; these remain axisymmetric by evolution under Eq. (1).  In the spirit of [11], let  ,s t  be 

the distance of any point on the surface from the axis (say, z axis) of rotation, where s  is the 

arc length of the contour that generates the surface and t  is time;   0 ms s t   and 

  , 0ms t t  .  Initially (at 0t  ),    0 0 0sinR s R s   , 0 1 ; as a result, we expect 
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that at any later time, 0t  ,            1 22

0 0, sin , ,s t R s R s t s t       , where each 

 k
  ( 1,2,k  ) has units of length.  For our purposes, it suffices to compute only    1

,s t , 

which we determine via the mean curvature expansion      1

0, 1 ,s t R s t    .  By Eq. 

(1), this    1
,s t  satisfies [11]      1 12 2

0 0 02 2t M R         , where 0  is the Laplacian 

on the sphere of radius 0R ,  1

0 0 0cotss sR s R     , 00 s R   and s  denotes the partial 

derivative s  .  We apply an expansion of  1
  in spherical harmonics  0lY   with mode 

amplitudes lK  viz., 

     
 2 4

021 2

0 0

2

,
l Mt R

l l

l

s t R K Y e


 






  ,       (2) 

where     2 1 1 2l l l l l     , 2l   and 00 s R     ( :  polar angle).  By definition of 

the mean curvature, we obtain 
     1 1 12

02 sinR       , which yields the time-dependent 

shape of the perturbed particle [11]: 

     
 2 4

021

2

ˆ,
l Mt R

l l

l

s t C e


  






 , 2l lC K  ;     (3) 

lC  has units of length and the (non-dimensional)  ˆ
l   is the l th-mode shape function, 

      2

0 0

0 0

ˆ cos ' sin ' ' sin ' sin 'cos ' 'l l lY d Y d

 

              .   (4) 

Equations (3) and (4) describe the leading-order correction for the shape function given the 

amplitudes lC , which can be extracted from  0 s  or 
   1

,0s .  Stochastic fluctuations in 

   1
,s t  are induced by imposing random lC  via the Gibbs distribution.  By writing the total 

energy of the perturbed particle as    2

04E t R t  E , where  0E  depends on  0 s , we 

assume that the probability distribution of initial shapes  0 s , or mode amplitudes  
2l l

C



, is 

     0

0
Bk T

Ze



E

P  ( :Z  normalization constant).  The statistics of shape fluctuations then stem 

from Eq. (3).  To express P  in terms of  
2l l

C



, consider the formula [12] 
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  2 n
S

E dE t dt v dS     , where S  is the nanoparticle surface.  By Eqs. (1) and (2), we 

compute          
2 4

0

2
12 2 4 2

02 1 2 1 l Mt R

S llS
E t M dS M R l l l C e

     
         , which 

is integrated to yield 

     
2 4

0
1 2

2

2 1 1 2 l Mt R

l

l

t l l l C e



 



     E .     (5) 

In the (equilibrium) limit,   2

04E t R   , we recover the surface energy of the unperturbed 

shape (the sphere).  In Eq. (5), we set 1  , requiring that lC  be small compared to 0R . 

By the Gibbs distribution 
   0 Bk T

Ze



E

P  with Eq. (5), ll
P P , where 

     
1 22 1 1 2 l Bl l l C k T

l e



     P .  Thus, the random fluctuation amplitudes lC  are independent, each 

with zero mean ( 0lC  ) and variance     2 1 2 2 1 1 2l BC l l l k T     .  In order for the 

linear theory to hold, a reasonable criterion is that   2

01 2 lC R , so we expect that this linear 

model is valid for modes l  such that  

 
1 3

2

04 Bl N R k T   .         (6) 

Equation (5) indicates that, for fixed perturbation amplitude lC , the probability lP  of finding the 

thl  fluctuation mode increases with l .  This is expected physically, as high- l   modes are 

associated with high spatial frequency fluctuations that require short-distance mass transport.  

However, for the problem at hand concerning the rt-KE, analysis of the lowest-mode fluctuations 

is most relevant.  An argument for this is simply that there is enough thermal energy to indeed 

excite the less (relatively) probable fluctuation modes.  By the exponential in Eq. (5), the lifetime 

of the thl  mode is estimated as 4 1 2

0l lR M   , and we can calculate this by using experimental 

values for the parameters. 

In electrochemical experiments involving Pt-shell nanoparticles, the exterior surface of the 

particles is often cycled between potentials that form a surface oxide, leaving a surface 

comprised of PtO, and reducing potentials that leave a pure Pt surface.  Values for the surface 

energies of Pt, PtO, and all other relevant parameters are listed in Table 1 (from [13] and [14], 
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and references therein).  We will focus our discussion on particles with radius near 0 6.5 nmR 

and shell thickness of 2 nm, at room temperature ( 298 KT  ), comparing to the data of Wang, 

et al. [3].  For these parameters, Eq. (6) yields an upper bound for l   near N≈25 (for PtO).  

Independent experimental measurements of surfC  and D  have not been made.  However, 

Martinez Jubrias, et al. [14] experimentally measured the morphological relaxation times for 

roughened Pt surfaces as a function of temperature and electrochemical potential, yielding a 

range for the product surfDC   from 0.023 to 0.44 1sec  over relevant electrochemical potentials 

from ~0.1 V (Pt) to ~1.1 (PtO) vs. RHE (RHE: reversible hydrogen electrode)  [15].  It is 

important to note that the PtO surface is significantly more mobile than Pt.  

Figure 2 shows the probability lP  of fluctuation versus mode number l  for different 

amplitudes lC , assuming the Gibbs distribution 
   0 Bk T

e



E

P  for the initial shapes, cf. Eq. (5).  

For an amplitude of 0.5 nmlC   (i.e., an ~1 nm thick shell), lP  rises to nearly unity by 10l   

for both Pt and PtO surfaces.  Even for an amplitude of 2.0 nmlC  (an ~4 nm thick shell), the 

probability lP  is greater than 40% at 10l  , although the probability is lower for Pt surfaces. 

When a fluctuation on the surface appears with an amplitude such that the core is exposed, 

then two events can occur depending on the electrochemical potential.  If the electrochemical 

potential is high, then the core will be dissolved away; if the potential is low, dissolution may be 

slow, and the core and surface components can mix via surface diffusion as the fluctuation 

decays. At high potentials, dissolution of the core of 10 nm diameter particles is typically faster 

than one second.  For such dissolution to occur, the fluctuation lifetime must be longer.  Recall 

that the thl  mode lifetime is 4 1 2

0l lR M   .  The lifetime l  versus l  is plotted in Fig. 3 for Pt- 

and PtO-terminated surfaces.  For nearly all modes, the lifetime of fluctuations is greater than 

one second (with a still-high existence probability), rising to greater than 10
4
 seconds for the 

very lowest mode ( 2l  ) on Pt-terminated surfaces.  Certainly for thin shells ( 0.5 nmlC  ), we 

conclude that under reasonable conditions fluctuations are always long enough-lived to expose 

the core to the surrounding electrolyte, allowing the cores to be dissolved away.  For thick shells

 2.0 nmlC  , while the probability of the fluctuation is near unity on PtO surfaces (high 

potential), the probability drops off for the lower modes.  This is a reflection of the observation 
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that the PtO surface is significantly more mobile than Pt, and may explain why the hollow Pt 

shell nanoparticles in Co3Pt nanoparticles are seen only when the particles are subjected to high 

potential [16].  Regardless, for surfaces that are comprised of Pt, the model predicts that the shell 

must be quite thick in order to avoid a fluctuation that will expose the core to an acidic 

electrolyte able to dissolve it away. 

To this point we have argued that pinholes in the nanoparticle shells are inevitable, but they 

are not observed experimentally [3].  This is undoubtedly one of the reasons that the rt-KE is 

invoked to explain hollow particles, but a simple kinetic model shows that such pinholes should 

close quite quickly.  The central physical observation is that without the pinhole, curvature 

variations on the surface are relatively small, but once the core has been dissolved away, there is 

a significant new driving force for mass transport from the convex outer surface to the concave 

inner one; this driving force distinguishes this problem from that of pinhole closure in planar 

films [17].  Mass transport occurs via surface diffusion, with the following general 

characteristics:  In good approximation, the geometry of a shell with a pinhole is characterized 

by the mean curvature at three points (labeled A, B and C in Fig. 1).  According to the Gibbs-

Thomson relation, the chemical potential at each point is given by      , where   is the 

mean curvature as above, and   is the reference chemical potential of a planar surface.  Upon 

the formation of the pinhole, 01A R   and  01C R h    , leading to an overall gradient in 

chemical potential that provides a driving force for mass transport from the outer surface to the 

inner one.  At the pinhole edge   1 2 1 1B a r   , where r  is the radius of the pinhole and 

1 a  is the curvature of the edge of the pinhole (Fig. 1).  In principle, when the pinhole first 

opens, a  may be very small, so that    ,C and the pinhole will open.  However, his 

process will blunt the edge of the pinhole, quickly reducing the magnitude of a  to a value of 

order of the shell thickness h .  For small pinholes, the 1 r  term then will dominate the chemical 

potential of the pinhole. 

Next, we provide a simple analysis for the closure time of the pinhole.  Quantitatively, if h  is 

the shell thickness then the flux J   to the pinhole edge  is 

 

2 3

1 0 0

1 1 1 1 1

2

surfB A

B B

DCDC
J

k T x k T a r R R r

 




     

         
     

.   (7) 
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This is a minimum flux, because we assume the distance 1x  over which the gradient is 

measured is maximal, equal to the distance from the pinhole edge to the point A on the particle 

farthest away from the edge, i.e., 1 0x R r   , and we have related the volumetric 

concentration of diffusers C  to the surface concentration 
surfC  using 

1 3

surfC C  .  An 

expression similar to Eq. (7) can be written for the flux J   between the pinhole edge and the 

inner surface using  2 0x R h r    .  For small enough a , one finds that the net flux 

netJ J J    to the pinhole edge is always positive, consistent with the notion that pinholes 

should shrink.  In the limit of small 0r R  and 0h R , this net flux is given by 

   2 3

0 1 1net surf BJ DC R k T r a      .  Mass conservation relates the shrinkage rate dr dt  

of the pores to the net flux as netdr dt J   , allowing us to determine the closure time ct , i.e., 

the time elapsed during a change in pinhole radius from 0r r  to 0r  :  

0
05 3

0

lnB
c

surf

aR k T a
t a r

DC a r





  
        

.      (8) 

Again, as we have taken the longest diffusion path possible, this expression is an 

approximate upper bound for the closure time.  Figure 4 shows the closure time ct  versus initial 

pinhole radius 0r  for 0 6.5 nmR  in shells comprised of Pt and PtO surfaces, for various values 

of the pinhole curvature a  ( 0r a ).  Pinholes in PtO-terminated surfaces close very quickly; 

except when the pinholes have radius greater than 1 nm, they will close up within of order 100 

sec., i.e., shorter than any experiment.  Pt terminated surfaces close more slowly, consistent with 

their smaller mobility, but even here we can expect pinholes of radius 0.5 nm to close up within 

of order 100 sec.  As it is reasonable to approximate 2a h , the data presented in [3], with a 

shell thickness of 2h   nm, leads to a fast closure time of at most 100 sec., so our model is 

consistent with their observation that pinholes were not observed in ex situ microscopy after the 

end of the nanoparticle synthesis.  

In this Letter, we have argued against the relevance of the room-temperature Kirkendall 

effect in core-shell nanoporous nanoparticles.  Especially for the technologically relevant case of 

Pt nanoparticles, we showed that surface fluctuations are highly probable and lead to exposure of 
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nanoparticle cores.  When these cores dissolve, any pinholes in the shell quickly close.  The 

theory here is very robust in the sense that the same conclusions will be reached even assuming 

significant variation in any of the input parameters listed in Table 1.  More broadly, this work 

confirms the dynamic nature of nanoparticle shape seen in microscopy and electrochemical 

measurements, and quantifies the degree to which thermal fluctuations can impact the stability 

and lifetime of structurally complex nanoparticles. 
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Table 1.  Kinetic and Thermodynamic Parameters for Pt shell nanoparticle surfaces [13,14]. 

Pt   215 eV/nm  

PtO/Pt   23.1 eV/nm  

Pt   2 31.5 10  nmx   

PtO   2 32.5 10  mx   

 
PtsurfC D  2 12.3 10 secx    (~0.1 V vs. RHE) 

 
PtOsurfC D  1 14.4 10 secx    (~1.1 V vs. RHE) 
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Figure 1.  Stages in the surface-diffusion driven formation of hollow nanoparticles.  (i) a core-

shell nanoparticle of radius 0R  and shell thickness h ;  (ii) shape fluctuations in the outer surface 

expose the core, allowing it to be dissolved away; (iii) a pinhole of radius r  exists in the shell, 

but quickly closes up because of a diffusional flux from the convex outer surface A  through the 

pinhole edge B  and into the inner concave surface C .  (iv) When the radius of curvature of the 

pinhole edge a  becomes sufficiently large, the net flux at the pinhole edge, J J   is positive, 

closing the pinhole and leaving a hollow nanoparticle. 
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Figure 2.  Fluctuation probability lP  versus fluctuation mode on 0 6.5 nmR   Pt-shell 

nanoparticle surfaces:  (upper shaded region) amplitude 0.5 nmlC  ; (lower shaded region) 

amplitude 2.0 nmlC  .  For each shaded region, the upper boundary is the probability on PtO-

terminated surfaces, and the lower boundary is the probability on Pt-terminated surfaces. 
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Figure 3.  Fluctuation lifetime l  versus fluctuation mode l .  (heavy line) Pt-terminated surfaces; 

(thin line) PtO-terminated surfaces. 
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Figure 4.  Pinhole closure time ct  versus initial pinhole radius 0r  for different values of the 

pinhole edge radius of curvature a .  PtO-terminated surfaces: thick lines; Pt-terminated surfaces:  

thin dashed lines. 


