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We are concerned here with processing discontinuous functions from their
spectral information. We focus on two main aspects of processing such piece-
wise smooth data: detecting the edges of a piecewise smooth f , namely, the
location and amplitudes of its discontinuities; and recovering with high accu-
racy the underlying function in between those edges. If f is a smooth function,
say analytic, then classical Fourier projections recover f with exponential ac-
curacy. However, if f contains one or more discontinuities, its global Fourier
projections produce spurious Gibbs oscillations which spread throughout the
smooth regions, enforcing local loss of resolution and global loss of accuracy.
Our aim in the computation of the Gibbs phenomenon, is to detect edges
and to reconstruct piecewise smooth f ’s, while regaining the high accuracy
encoded in the spectral data.

To detect edges, we utilize a general family of edge detectors based on con-
centration kernels. Each kernel forms an approximate derivative of the delta
function, which detects edges by separation of scales. We show how such
kernels can be adapted to detect edges with one- and two-dimensional dis-
crete data, with noisy data, and with incomplete spectral information. The
main feature is concentration kernels which enable us to convert global spec-
tral moments into local information in physical space. To reconstruct f with
high accuracy we discuss novel families of mollifiers and filters. The main
feature here is making these mollifiers and filters adapted to the local region
of smoothness while increasing their accuracy together with the dimension of
the data. These mollifiers and filters form approximate delta functions which
are properly parameterized to recover f with (root-) exponential accuracy.



306 E. Tadmor

CONTENTS

1 Introduction 306
2 Spectral accuracy 311
3 Piecewise smoothness and the Gibbs phenomenon317
4 Detection of edges: concentration kernels 320
5 Examples 324
6 Extensions 328
7 Enhancements 339
8 Edge detection in two-dimensional spectral data 344
9 Reconstruction of piecewise smooth data 349
10 Spectral mollifiers 351
11 Spectral filters 365
References 376

1. Introduction

We are interested in processing piecewise smooth functions from their spec-
tral information. The prototype example will be one-dimensional functions
that are smooth except for finitely many jump discontinuities. The loca-
tion and amplitudes of these discontinuities are not correlated. Thus, a
piecewise smooth f is in fact a collection of several intervals of smoothness
which do not communicate among themselves. The jump discontinuities
can be viewed as the edges of these intervals of smoothness. Similarly,
two-dimensional piecewise smooth functions consist of finitely many edges
which lie along simple curves, separating two-dimensional local regions of
smoothness. We are concerned here with two main aspects of processing
such piecewise smooth data.

(i) Edge detection. Detecting the location and amplitudes of the edges.
Often, these are the essential features sought in piecewise smooth data.
Moreover, they define the regions of smoothness and are therefore es-
sential for the second aspect.

(ii) Reconstruction. Recovering the underlying function f inside its dif-
ferent regions of smoothness.

There are many classical algorithms to detect edges and reconstruct the data
in between those edges, based on local information. For example, suppose
that the values of a one-dimensional f are given at equidistant grid-points,
fν = f(ν∆x). Then, the first-order differences, ∆fν := fν+1 − fν , can
detect edges where ∆fν = O(1), by separating them from smooth regions
where ∆fν = O(∆x). Similarly, piecewise linear interpolants can recover
the point-values of f(x) up to order O

(
(∆x)2

)
. Of course, these are only
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asymptotic statements that may greatly vary with the dependence of the
O-terms on the local smoothness of f in the immediate neighborhood of x.
We may do better, therefore, by taking higher-order differences, ∆rfν , where
O(1)-edges are better separated from O

(
(∆x)r

)
-regions of smoothness, Sim-

ilarly, reconstruction of f using r-order approximations, with r = 2, 3, . . .
and so on. In practice, higher accuracy is translated into higher resolution
extracted from the information on a given grid. But, as the order of accu-
racy increases, the stencils involved become wider and one has to be careful
not to extract smoothness information across edges, since different regions
separated by edges are completely independent of each other. An effort to
extract information from one region of smoothness into another one, will re-
sult in spurious oscillations, spreading from the edges into the surrounding
smooth regions, preventing uniform convergence. This is, in general terms,
the Gibbs phenomenon, which is the starting point of the present discussion.

The prototype for spectral information we are given on f , is the set of
its N Fourier coefficients, {f̂(k)}|k|≤N . These are global moments of f . It
is well known that the Fourier projection, SNf =

∑
|k|≤N f̂(k)eikx forms a

highly accurate approximation of f provided that f is sufficiently smooth.
In Section 2 we revisit the classical spectral convergence statements and
quantify the actual exponential accuracy of Fourier projections,

|SNf − f | <∼ e−η
α√

N .

Here, the root exponent α is tied to global smoothness of f of order α ≥ 1.
But this high accuracy is lost with piecewise smooth f ’s, due to spuri-
ous oscillations which are formed around the edges of f . It is in this con-
text of the Fourier projections, that the formation of spurious oscillations
became known as the Gibbs phenomenon, originating with Gibbs’ letter
(Gibbs 1899). This is precisely because of the global nature of SNf , which
extracts smoothness information across the internal edges of f . The Gibbs’
phenomenon is also responsible for a global loss of accuracy: first-order
oscillations spread throughout the regions of smoothness. The highly accu-
rate content in the spectral data, {f̂(k)}|k|≤N , is lost in the Fourier projec-
tions, SNf . The local and global effects of Gibbs oscillations are illustrated
through a simple example in Section 3.

Our aim in the computation of the Gibbs phenomenon, is to detect edges
and reconstruct piecewise smooth functions, while regaining the high accu-
racy encoded in their spectral data. Here, we use two main tools.

(i) Concentration kernels. To detect edges, we employ a fairly general
framework based on partial sums of the form

Kσ
Nf(x) :=

πi

cσ

∑

|k|≤N

sgn(k)σ
( |k|

N

)
f̂(k)eikx, cσ :=

∫ 1

0

σ(ξ)
ξ

dξ.
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In Section 4 we show that Kσ
Nf(x) approximates the local jump function,

Kσ
Nf(x) ≈ f(x+) − f(x−). Consequently, Kσ

Nf tends to concentrate near
edges, where f(x+)− f(x−) 6= 0, which are separated from smooth regions
where Kσ

Nf ≈ 0. We can express Kσ
Nf(x) as a convolution with the Fourier

projection of f , that is,

Kσ
Nf(x) = Kσ

N ∗ (SNf)(x), Kσ
N(x) := − 1

cσ

N∑

k=1

σ
( |k|

N

)
sinkx.

Here, Kσ
N(x) are the corresponding concentration kernels which enable us to

convert the global moments of SNf into local information about its edges —
both their locations and their amplitudes. The choice of concentration fac-
tor, σ, is at our disposal. In Section 5 we discuss a few prototype examples of
concentration factors and assess the different behavior of the corresponding
edge detectors, Kσ

Nf . In Section 6 we turn to a series of extensions which
show how concentration kernels apply in more general set-ups. In Section
6.1 we discuss the discrete framework, applying concentration kernels as
edge detectors in the Fourier interpolants, INf =

∑
|k|≤N f̂keikx. In Section

6.2 we show how concentration kernels can be used to detect edges in non-
periodic projections, SNf =

∑
f̂(k)Ck(x), based on general Gegenbauer

expansions. In Section 6.3 we show how the concentration factors could be
adjusted to deal with noisy data, by taking into account the noise variance,
η � 1/N , in order to detect the underlying O(1)-edges. Finally, Section
6.4 deals with incomplete data: we show how concentration kernels based
on partial information, {f̂(k)}k∈K, can be complemented by a compressed
sensing approach to form effective edge detectors.

Concentration kernels, Kσ
N (x), are approximate derivatives of the delta

function. Convolution with such kernels, Kσ
N ∗ (SNf) yield edge detectors

by separation of scales, separating between smooth and nonsmooth parts of
f . In Section 7 we show how to improve the edge detectors by enhancement
of this separation of scales. In particular, in Section 7.1 we use nonlinear
limiters which assign low- and high-order concentration kernels in regions
with different characteristics of smoothness. The result is parameter-free,
high-resolution edge detectors for one-dimensional piecewise smooth func-
tions.

In Section 8 we turn to the two-dimensional set-up. Concentration kernels
can be used to separate scales in the x1 and x2 directions. Enhancements
and limiters are shown in Section 8.1 to greatly reduce, though not com-
pletely eliminate, the Cartesian staircasing effect. In Section 8.2 we show
how concentration kernels are used to detect edges from incomplete two-
dimensional data. So far, we have emphasized the role of separation of
scales in edge detectors based on concentration kernels, Kσ

N ∗(SNf)(x). But
how do we actually locate those O(1) edges? In Section 8.3 we discuss the
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approach which seeks the zero-level set x = (x1, x2) of ∇xKσ
N ∗ (SNf)(x).

Depending on our choice of the concentration factors, σ(·), this leads to
a large class of two-dimensional edge detectors which generalize the popu-
lar two-dimensional zero-crossing method associated with discrete Laplacian
stencils.

Next, we turn our attention to highly-accurate, Gibbs-free reconstruction
of f inside its regions of smoothness from its (pseudo-)spectral content.

(ii) Mollifiers and filters. We consider two interchangeable processes to
recover the values of a piecewise smooth f(x) with high accuracy. These
are mollification, carried out in the physical space, and filtering —
carried out in the Fourier space, i.e.,

Φp,δ ∗ (SNf)(x)←→
∑

|k|≤N

ϕp,δ

( |k|
N

)
f̂(k)eikx.

Filtering accelerates convergence when premultiplying the Fourier co-
efficients by a rapidly decreasing ϕp,δ(|k|/N). The rapid decay of
ϕp,δ(|k|/N)f̂(k) as |k| ↑ N in Fourier space, corresponds to mollifi-
cation with highly localized mollifiers, Φp,δ(x), in physical space.

Section 10 is devoted to mollifiers. There are two free parameters at
our disposal. The parameter δ is chosen so that the essential support of
Φp,δ∗(SNf)(x) does not cross edges of f . To this end we set δ as the distance
to the nearest edge, δ = dx := dist{x, singsuppf}/π, so that (x−πδ, x+πδ)
is the largest interval of smoothness enclosing x. It is here that we use
the information on the location of the edges of f . This leads to adaptive
mollifiers Φp,dx(x). The parameter p is responsible for the accuracy of the
mollifier. By properly tunning p = pN to increase with N , one obtains the
root-exponential accurate mollifiers discussed in Section 10.2:

ΦpN ,dx(x) :=
1
dx

ϕ
(πx

dx

)
DpN

( x

dx

)
, dx =

1
π

dist{x, singsuppf}, pN ∼ dxN.

Here,

Dp(x) :=
sin(p + 1/2)x
2π sin(x/2)

is the Dirichlet kernel of order p which ensures accuracy by having an in-
creasing number of (almost) vanishing moments,

∫
ynDpN

(y)dy ≈ 0 for
p = 1, 2 . . . , pN , and ϕ = ϕ2q is a proper C∞

0 (−1, 1) cut-off function1, e.g.,

ϕ2q(y) := e


 y2q

y2 − 1




1(−1,1)(y),

1 C∞
0 denotes the space of compactly supported C∞-smooth functions.
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which ensures that ΦpN ,dx are properly localized within the dx-neighborhood
of the origin. The result is an adaptive mollifier with root-exponential accu-
racy

|ΦpN ,dx ∗ (SNf)(x)− f(x)| <∼ e−η
√

dxN .

The corresponding root-exponential discrete mollifier is outlined in Section
10.3. The high accuracy of these mollifiers is adapted to the interior points,
away from the edges where dxN ∼ 1. It can be modified to gain polynomial
accuracy up to the edges. This is described in Section 10.4. In Section
10.5 we discuss mollifiers based on Gegenbauer expansion of SNf(πx), with
uniform root-exponential accuracy up to the edges.

Section 11 is devoted to filters of the form

Sϕ
pN

f(x); =
∑

|k|≤N

ϕpN

( |k|
N

)
f̂(k)eikx.

In Section 11.1 we show that by setting pN ∼
√

dxN , the resulting filter
is accurate (and hence its associated mollifier satisfies a moment condi-
tion) to order pN . Moreover, the choice of the filter ϕpN

yields a highly
localized mollifier which is essentially supported in the smoothness interval
(x− πdx, x + πdx). This yields the root-exponential convergence rate

|Sϕ
pN

f(x)− f(x)| <∼ e−η
√

dxN .

We conclude, in Section 11.2, revisiting the construction of the adaptive fil-
ters and mollifiers with a better localization procedure. Instead of enforcing
the compactly supported ϕ2q’s in either the physical or Fourier space, we
appeal to optimally space-frequency localized filters

ϕp(ξ) = ϕp,δ(ξ) := e
−

(δξ)2

2
p∑

j=0

1
2jj!

(δξ)2j.

We show that an adaptive parameterization, p = pN ∼ dxN and δx ∼
√

dxN ,
yields the exponentially accurate mollifier

|Sϕ
pN ,δx

f(x)− f(x)| <∼ e−ηdxN .

There is a rich literature on filters and mollifiers as effective tools for
Gibbs-free reconstruction of piecewise smooth functions. Different aspects
of this topic are drawn from a variety of sources, ranging from summability
methods in harmonic analysis to signal processing – and, in recent years, im-
age processing – and high-resolution spectral computations of propagation of
singularities and shock discontinuities. Given the space and time limitations,
we are unable to provide a complete road map but we limit ourselves to a few
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key references. For general references on harmonic analysis we refer to (Bary
1964, Dym and McKean 1972, Folland 1992, Grafakos 2004, Katznelson
1976, Kröner 1995, Stein 1993, Szego 1958, Torchinsky 1986) and (Zygmund
1959). For applications in signal processing, including wavelets, and re-
cent exciting developments in compressed sensing, we mention (Candes and
Romberg 2006, Candes, Romberg, and Tao 2006a, Candes, Romberg and
Tao 2006b, Donoho, Elad and Temlyakov 2006, Donoho 2004, Donoho and
Tanner 2005, Mallat 1989, Marr and Hildreth 1980, Tao 2005) and the ref-
erences therein. General reviews on spectral methods, edge detection and
the computation of Gibbs phenomenon can be found in (Abarbanel, Got-
tlieb and Tadmor 1986, Fornberg 1996, Gelb and Tadmor 2000b, Gelb and
Gottlieb 2007, Gottlieb and Hesthaven 1998, Gottlieb and Orszag 1977, Got-
tlieb and Shu 1997, Mhaskar and Prestin 2000, Majda, McDonough and
Osher 1978, Tadmor 1989, Maday, Ould-Kaber and Tadmor 1993) and
(Tadmor 1994). We also had to leave out numerous other approaches for
edge detection and reconstruction of piecewise smooth data. We mention for
example, (Eckhoff 1995, Eckhoff 1998, Eckhoff and Wasberg 1995, Bruno,
Han and Pohlman 2006, Srinivasa and Rajgopal 1992) and most notably,
two-dimensional reconstructions which couple Radon representation with
spectral and wavelet-based ridgelets, e.g., (Donoho 1998) and (Candes and
Guo 2002).

2. Spectral accuracy

2.1. The spectral Fourier projection

Let SNf denote the Fourier projection of a 2π-periodic function,

SNf(x) =
∑

|k|≤N

f̂(k)eikx, f̂(k) :=
1
2π

∫ π

−π
f(y)e−ikydy. (2.1)

It enjoys the well-known spectral accuracy, that is, the decay rate of the
error, SNf − f , is as rapid as the global smoothness of f(·) permits. The
error in this case amounts to the truncation error,

TNf(x) :=
∑

|k|>N

f̂(k)eikx,

which is spectrally small in the sense that for any s > 1 we have

|SNf(x)− f(x)| ≤
∑

|k|>N

|f̂(k)| <∼ ‖f‖Cs · 1
N s−1

, for all s > 1. (2.2)

Here

‖f‖Cs := max
k≤s
‖f (k)(·)‖L∞ ,
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measures the global smoothness of f . The interplay between the global
smoothness of f and spectral convergence of its Fourier projection is reflected
through Parseval’s relation,

‖f‖2Hs = 2π
∑

k

(
1 + |k|2s

)
|f̂(k)|2, ‖f‖2Hs :=

∫ π

−π

(
f(y)

)2 +
(
f (s)(y)

)2
dy,

which in turn, is linked to the spectral decay of the Fourier coefficients,

|f̂(k)| <∼ ‖f‖Cs
1

1 + |k|s , s ≥ 1. (2.3)

Indeed, the latter follows by noting ‖f‖Cs−1
<∼ ‖f‖Hs <∼ ‖f‖Cs, or by re-

peated integration by parts.
The spectral decay rate (2.3) and its related convergence rate (2.2) are

asymptotic statements. The actual decay rate (as functions of k and N)
depends on the growth of ‖f‖Cs . To quantify the precise spectral accuracy of
C∞ functions, it is therefore convenient to classify such functions according
to the growth of their Cs-bounds: f belongs to Gevrey class Gα, α ≥ 1, if
there exists η = ηf > 0 such that

Gα =
{

f
∣∣∣ ‖f‖Cs <∼

(s!)α

ηs
, s = 1, 2 . . .

}
. (2.4)

Two examples of Gevrey classes are in order.

(i) Analytic functions. By Cauchy’s integral formula, analytic f ’s belong
to G1, with 2ηf being the width of their analyticity strip.

(ii) The C∞
0 cut-off functions,

ρp(x) := e

( cxp

x2 − π2

)

1(−π,π)(x), c > 0, p even, (2.5)

belong to G2. Indeed, a straightforward computation shows that there
exists a constant, λ = λρ (which may depend on p but is otherwise
independent of s), such that

|ρ(s)
2 (x)| <∼

s!
(λρ|x2 − π2|)s

e

( cxp

x2 − π2

)

, (2.6)

and the upper bound on the right, which is maximized at x = xmax

with x2
max− π2 ∼ −π2c/s, implies the G2-bound (2.4) with η = cλρπ

2,

sup
x∈(−1,1)

|ρ(s)
2 (x)| <∼ s!

(s

η

)s
e−s <∼

(s!)2

ηs
, s = 1, 2, . . . .

We can now combine the spectral decay (2.3) with the Gα-bound (2.4).
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It follows that the decay rate of the Fourier coefficients of Gα-functions is
exponential to a fractional order,

|f̂(k)| <∼ min
s

( sα

ηeα|k|

)s
∼ e−α(η|k|)1/α

, f ∈ Gα≥1,

and consequently the truncation error of their Fourier projection does not
exceed,

|SNf(x)− f(x)| <∼ Ne−α(ηN)1/α
, f ∈ Gα≥1.

In particular, an analytic f(·), with analyticity strip of width 2η, is charac-
terized by an exponential rate corresponding to α = 1, (see e.g., (Tadmor
1986)), that is,

|f̂(k)| <∼ e−η|k|, |SNf(x)− f(x)| <∼ Ne−ηN , f analytic; (2.7a)

while for G2-functions, such as the cut-off ρp(x), for example, the rate is
root-exponential, corresponding to α = 2:

|f̂(k)| <∼ e−
√

η|k|, |SNf(x)− f(x)| <∼ Ne−
√

ηN , f ∈ G2. (2.7b)

Remark 2.1. (Notations). Throughout the paper, we use η to denote
different Gevrey constants of fractional-exponential orders. The same η in
different equations stands for different constants. In section 6.3 η is also
used to denote the noise variance.

2.2. Optimal space-frequency decay

The previous examples tell us that if f is a C∞ compactly supported func-
tion, then |f̂(k)| decay at an exponential rate of a fractional order but no
faster; indeed, if the |f̂(k)|’s decay exponentially fast then f is analytic and
hence it cannot decay sufficiently fast to become compactly supported. The
question of optimal joint decay in both physical and Fourier spaces brings
us to the classical Heisenberg uncertainty principle, which places a lower
threshold on the joint space-frequency localization. This lower-threshold
manifests itself in a variety of different forms. In the context of the Fourier
transform for example, one seeks to minimize the joint variance:

min
x0

‖(x− x0)Φ(x)‖L2(Rx) ·min
ξ0

‖(ξ − ξ0)ϕ(ξ)‖L2(Rξ), Φ(x) :=
∫

R
ϕ(ξ)e−iξxdξ.

It admits a lower threshold which is achieved by the quadratic exponentials
ϕ(ξ) = ec(ξ−ξ0)2 . For space-frequency localization in related discrete frame-
works we mention recent examples of (Donoho and Huo 2001), (Tao 2005)
and (Candes and Romberg 2006). In the present context of Fourier expan-
sions, we now construct a large family of 2π-periodic functions, {fN(x)},
with optimal exponential decay in both physical and Fourier space; consult
(Hoffman and Kouri 2000) and the references therein.
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The starting point is the family of functions with quadratic exponential
decay

ϕ(ξ) := e
−

ξ2

2 ×




p∑

j=0

1
2jj!

ξ2j


 . (2.8a)

Their inverse Fourier transform can be expressed in terms of Hermite poly-
nomials, H2j(x), that is,

Φ(x) = e
−

x2

2 ×




p∑

j=0

(−1)j

4jj!
H2j

( x√
2

)

 . (2.8b)

Observe that with fixed p, each Φ(x) is an entire function and the quadratic
exponential decay of its Fourier transform, ϕ(ξ), corresponds to ‘ηΦ =∞’.

We need to ’tweak’ Φ(x) in two ways.

(1) Dilation. We need to dilate Φ(x) in order to control its localization,

Φδ(x) :=
1
δ
Φ
(x

δ

)
←→ ϕδ(ξ) = ϕ(δξ)

(2) Periodization. We need a 2π-periodic version of the entire function
Φ(x). To this end, fix N and set2

Sϕ
N(x) :=

1
2π

∞∑

k=−∞
ϕ
( |k|

N

)
eikx. (2.9a)

Another way to express this ’periodization’ of Φ is given by the Poisson
summation formula, (see e.g., (Katznelson 1976), (Torchinsky 1986))

Sϕ
N(x) =

N

2π

∞∑

j=−∞
Φ(N(x + 2πj)). (2.9b)

We can combine both dilation and periodization into one scaling in-
volving N/δ,

Sϕδ
N (x) =

1
2π

∞∑

k=−∞
ϕδ

( |k|
N

)
eikx =

1
2π

∞∑

k=−∞
ϕ
(δ|k|

N

)
eikx ≡ Sϕ

N/δ(x).

We are ready to state our next result.

2 Observe that the function Sϕ
N (x) is different from the partial sum operation, SN . The

reason for this notation will become clear when we link these two different aspects in
our discussion on mollifiers and filters in Section 11.
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Lemma 2.2. (Space-frequency exponential decay) Fix p, set δN :=√
βN and consider the 2π-periodic functions,

fN (x) := SϕδN
N (x) =

1
2π

∞∑

k=−∞
ϕ
(√ β

N
|k|
)
eikx, ϕ(ξ) = e

−
ξ2

2
p∑

j=0

ξ2j

2jj!
.

(2.10)

Then, there exists η1, η2 > 0 such that, for all |x| ≤ π,

|fN (x)| =
∣∣∣Sϕ√

βN

N (x)
∣∣∣ <∼ 2p

√
N

β

(
e−η1Nx2/β + e−η2N/β

)
. (2.11a)

Moreover, for all |k| > N ,

|f̂N(k)| <∼ cp,N · e−β|k|/2, cp,N :=
p∑

j=0

1
j!

(βN

2

)j
. (2.11b)

Remark 2.3. We conclude, since cp,N has at most pth-order polynomial
growth with N , that fN should have exponential decay in both physical
and frequency space. Observe that the detailed structure of the pth-order
polynomial factors inside the square brackets on the right of (2.8a) and
(2.8b) are not important at this stage, but they will be later on, in Section
11.2 below, when we link the increase of p with N .

Proof. To verify (2.11a) we bound |H2j(x)| <∼ jj+ 1
2 (4/e)jex2/2, in order to

estimate the exponential decay of Φδ(x) = 1
δ Φ
(

x
δ

)
in (2.8b),

|Φδ(x)| <∼
1
δ
e
−

x2

2δ2
p∑

j=0

1
4jj!
·
∣∣∣H2j

( x√
2δ

)∣∣∣ <∼
2p

δ
e
−

x2

4δ2 . (2.12)

We appeal to the Poisson representation of Sϕδ
N in (2.9b)

Sϕδ
N (x) =

N

2π
Φδ(Nx) +

N

2π

∑

j 6=0

Φδ(N(x + 2πj)). (2.13)

It follows that all term except the zeroth are exponentially negligible for
|x| ≤ π,

∑

j 6=0

|ΦδN
(N(x + 2πj))| <∼

2p

δN

∞∑

j=1

e
−

((2j − 1)πN)2

4δ2
N

<∼
2p

√
βN

e−η2N/β, |x| ≤ π. (2.14a)
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The zeroth term has double exponential decay (in x)

|ΦδN
(Nx)| <∼

2p

√
βN

e−η1Nx2/β, (2.14b)

and the last two bounds yield the first half of (2.11).

The second half of (2.11) is straightforward:

|f̂N(k)| =
∣∣∣ϕ
(√ β

N
|k|
)∣∣∣ <∼ cp,N · e

−
(β|k|2

2N

)
,

cp,N = max
ξ≤δN

p∑

j=0

1
2jj!

ξ2j , (2.15)

and (2.11b) follows for |k| > N .

2.3. The pseudo-spectral Fourier projection

If we replace the integrals on the right of (2.1) with the quadrature sampled
at the equidistant points,

yν := −π + νh, h :=
2π

2N + 1
,

we obtain the discrete Fourier coefficients
{
f̂k

}
, which form the N -degree

trigonometric interpolant of f at these (2N + 1) grid-points, that is3,

INf(x) :=
∑

|k|≤N

f̂keikx, f̂k :=
h

2π

2N∑

ν=0

f(yν)e−ikyν , (2.16)

so that INf(xν) = f(xν), ν = 0, . . .2N . IN is known as the pseudo-spectral
projection. The dual statement of interpolation in physical space is the
Poisson summation formula in Fourier space, expressing the f̂k’s in terms of
the f̂(k)’s,

f̂k = f̂(k) +
∑

j 6=0

f̂(k + j(2N + 1)). (2.17)

Thus, the sum of all the Fourier coefficients located at k[mod(2N + 1)]
have a discrete “alias”, f̂k. This follows at once by substituting f(yν) in
(2.16) as the sum

∑
j f̂(j)eikyν . We conclude that the interpolation error

3 There is a slight difference between the formulae based on an even and an odd number
of points; we have chosen to continue with the slightly simpler notation associated with
an odd number of points.
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INf(x)−f(x) consists of two contributions: the truncation error, TNf(x) =∑
|k|≥N f̂(k)eikx, and the aliasing error,

ANf(x) =
∑

|k|≤N

( ∑

|j|≥1

f̂(k + j(2N + 1))
)
eikx. (2.18)

Both TNf and ANf involve modes higher than N and if f is sufficiently
smooth they have exactly the same spectrally small size, (e.g., (Tadmor
1994)), that is,

‖ANf(x)‖Hs ∼
∑

|k|≥N

(
1 + |k|2s

)∣∣∑

j 6=0

f̂(k + j(2N + 1))
∣∣2

≤ Cs

∑

|k|≥N

(
1 + |k|2s

)
|f̂(k)|2 <∼ Cs‖TNf(x)‖2Hs, s >

1
2
. (2.19)

We conclude with similar spectral and fractional-exponential convergence
rate estimates:

|INf(x)− f(x)|

≤
∑

|k|>N

|f̂(k)|+
∑

|k|≤N

∑

|j|≥1

|f̂(k + j(2N + 1))| <∼





1
Ns−1 , f ∈ Cs

Ne−(ηN)1/α
f ∈ Gα.

We close this section by commenting on the discrete Fourier coefficients of
the exponentially localized fN ’s in (2.10). The quadratic exponential decay
of f̂N (k) for |k| > N in (2.15), implies that the aliasing error, ANfN (x), is
exponentially negligible, and hence (f̂N )k ≈ f̂N (k), that is,

|(f̂N)k| <∼ cp,N ·


e

−
βk2

2N + O
(
e
−

βN

2
)

 , |k| ≤ N. (2.20)

3. Piecewise smoothness and the Gibbs phenomenon

Both the spectral and the pseudo-spectral Fourier projections, SNf and
INf , provide highly accurate approximations of f , whose order is limited
only by the global smoothness of f . What happens when f lacks sufficient
smoothness? This will be our main concern in the remaining sections.

We begin with a classical example. Consider an f which is piecewise
smooth in the sense that it is sufficiently smooth except for finitely many
jump discontinuities, say at x = c1, c2, . . . , cJ , where

[f ](cj) := f(cj+)− f(cj−) 6= 0, j = 1, 2, . . .J.

It is natural to measure piecewise smoothness in the space of functions of
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bounded variation,

‖f‖BV := ‖f ′‖L1[−π,π] <∞,

that is, f ′ is a smooth function together with finitely many Dirac masses.
The finite variation of f implies (via integration by parts) the first-order
decay rate of |f̂(k)|,

|f̂(k)| <∼ ‖f‖BV
1

1 + |k| . (3.1)

Indeed, the decay is precisely first order, |f̂(k)| ∼ 1/|k|, since a faster decay
would imply that f is continuous, (Zygmund 1959). A similar first-order
decay occurs in the discrete case: summation by parts of the discrete Fourier
coefficients in (2.16) yields

f̂k =
h

2π

2N∑

ν=0

f(yν)
e−ikyν − e−ikyν+1

1− e−ikh

=
h

4πi sin kh
2

2N∑

ν=0

(
f(yν+1)− f(yν)

)
e−ikyν , (3.2)

and hence ‖f̂k | <∼ ‖f‖TV /(1 + |k|), where ‖f‖TV denotes the total variation
of f .

The first order decay of the (discrete) Fourier coefficients is too weak (as it
should be!) to enforce uniform convergence of SNf(x) and INf(x). Instead,
we turn to examine the local convergence of SNf(x), which is expressed in
terms of the Dirichlet kernel, DN(·),

SNf(x) =
∫ π

−π

f(y)DN(x− y), DN(y) :=
1
2π

∑

|k|≤N

eiky ≡
sin(N + 1

2)y
2π sin(y/2)

.
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Figure 3.1: Dirichlet kernel with N = 32 and N = 128 modes.
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The Dirichlet kernel DN(·), is depicted in figure 3.1. It has a sequence of
successive local peaks at

(k + 1/2)π
N + 1/2

, k = 1, 2, . . .

which accumulate a total mass of diverging order ‖DN‖L1 ∼ log N and which
in turn, are responsible for the failure of uniform convergence of SNf(x).
As an example, consider the spectral projection of the Heaviside function
H(x) := sgn(x). Since DN (·) is an even function, we have

SNH(x) =
∫ π

0

[
DN (x− y)−DN(x + y)

]
dy =

=
−i

π

∑

|k|≤N

eikx

∫ π

0
sin(ky)dy =

−2i

π

∑

{|k|≤N :k odd}

eikx

k
.

At x = 0, we find that SNH(x) assumes the average value,

SNH(x)∣∣x=0
= 0.

But the convergence is not uniform for x ≈ 0: for example

SNH(x)∣∣x=± π
N

=
±2
π

∑

{1≤k≤N :k odd}

sin(kπ/N)
kπ/N

· 2π

N
≈ ±2

π

∫ π

0

sin y

y
dy.

Thus, the spectral projection SNH(x) magnifies the amplitude of the orig-
inal jump [H ](0) = 2, forming a ‘spurious’ oscillation with 18% larger am-
plitude:

SNH(x)∣∣x= π
N

− SNH(x)∣∣x=− π
N

≈ 4
π

∫ π

0

sin y

y
dy = 1.179× [H ](0). (3.3)

This behavior is called the Gibbs phenomenon after (Gibbs 1899) (consult
(Carslaw 1952), (Kröner 1995) or (Hewitt and Hewitt 1979) for a historical
perspective). The lack of uniform convergence is depicted in figure 3.2 by
spurious oscillations which concentrate near the jumps at x = 0 and x = ±π.
For another example, consult figure 5.1(b) below. This is a local effect of
the Gibbs phenomenon. But the Gibbs phenomenon also has a global effect:
although the error SNH(x)−H(x) decays as x moves away from the jumps,
the decay rate is limited to first-order, owing to a series of linearly decaying
spurious peaks at kπ/N where

(
SNH(x)−H(x)

)
∣∣x=± kπ

N

∼ 1
N

.

Thus, the existence of one or more discontinuities slow down the convergence
rate throughout the domain. Spectral accuracy is lost.
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Figure 3.2: Fourier projection of the square-wave function. Left : N = 32
modes. Right : N = 128 modes.

4. Detection of edges: concentration kernels

Given the Fourier coefficients,
{
f̂(k)

}N

k=−N
, we are interested in detecting

the edges of the underlying piecewise smooth f , namely, to detect their
location, c1, . . . , cJ and the amplitudes of the jumps, [f ](c1), . . . , [f ](cJ).
Extensions to the discrete and non-periodic set-ups will follow in the next
sections.

We begin by considering the prototype case of a discontinuous f which
is, say, C2, except for a single jump at x = c. The fact that f experiences a
jump of size [f ](c) dictates the decay of its Fourier coefficients: integration
by parts yields,

f̂(k) = [f ](c)
e−ikc

2πik
+ O

(
1
|k|2

)
. (4.1)

We want to extract information about the location of the jump from the
phase of the leading term. To this end we use the localization of the Dirichlet
kernel near the origin:

π

N
DN(x− c) =

1
2N

N∑

k=−N

eik(x−c) ≈ 1
1 + N |x− c| .

It follows that the derivative of the Fourier projection SNf , satisfies

π

N
SN (f)′(x) =

π

N

∑

|k|≤N

ik

{
[f ](c)

eik(x−c)

2πik
+ O

(
1
|k|2

)}

= [f ](c) · 1
2N

∑

|k|≤N

eik(x−c) +
π

N

∑

|k|≤N

O
(

1
|k|

)
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=
[f ](c)

1 + N |x− c| +O
(

logN

N

)
=





[f ](c) + O
(

logN

N

)
, x ≈ c

O
(

logN

N

)
, |x− c| � 1

N .

We see that πSN(f)′(x)/N concentrates in the immediate neighborhood
of x = c where it approaches the desired amplitude of the jump, [f ](c) 6= 0,
while it decays to order O(log N/N) as it moves away from this neighbor-
hood, |x− c| � 1/N . Thus, we can detect the edge at x = c by separation
of scales: a jump of size |[f ](c)| � 1/N is separated from the region of
smoothness where πSN(f)′(x)/N ≈ 1/N . This result goes back to Fejér
(Zygmund 1959, Theorem 9.3).

We turn to consider a general set-up of edge detection based on separation
of scales. To this end we introduce a family of concentration kernels

Kσ
N(y) := − 1

cσ

N∑

k=1

σ

(
k

N

)
sinky,

σ(ξ)
ξ
∈ C2[0, 1]. (4.2a)

Here, cσ is a normalization constant

cσ :=
∫ 1

0

σ(ξ)
ξ

dξ, (4.2b)

so that, as will be shown in (4.6) below,
∫ π
0 K

σ
N (y)dy ≈ −1. We set4

Kσ
Nf(x) := Kσ

N ∗ f(x) =
πi

cσ

∑

|k|≤N

sgn(k)σ
(
|k|
N

)
f̂(k)eikx. (4.3)

Our purpose is to choose the concentration factors, σ(|k|/N), such that
Kσ

Nf detects the O(1)-edges, [f ](cj), j = 1, . . . , J , by separating them from
a much smaller scale of Kσ

Nf(x) in regions of smoothness. It turns out that
all σ’s can serve as admissible concentration factors.

Theorem 4.1. (Concentration kernels) (Gelb and Tadmor 1999, Gelb
and Tadmor 2000a) Assume that f(·) is piecewise smooth such that

ωf (y) = ωf (y; x) :=
f(x + y)− f(x− y)− [f ](x)

y
∈ BV [−π, π] (4.4)

Let Kσ
N(x) be an admissible concentration kernel (4.2). Then,

Kσ
Nf(x) = Kσ

N ∗ (SNf)(x) =
πi

cσ

∑

|k|≤N

sgn(k)σ
(
|k|
N

)
f̂(k)eikx

4 Observe that Kσ
Nf is the operator associated with, but otherwise different from, the

concentration kernel Kσ
N (x).
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satisfies the concentration property,

Kσ
Nf(x) ∼





[f ](cj) +O
( logN

N

)
, x ∼ cj , j = 1, . . . , J

O
( logN

N

)
, dist

{
x, {c1, . . . , cJ}

}
� 1

N
.

(4.5)

Remark 4.2. We will show below that, up to scaling and modulo small
“manageable” residual terms, all the different Kσ

N(y)’s amount to the same
conjugate Dirichlet kernel,

Kσ
N(y) ∼ σ(1)

cσ
D̃N(y) + lower order terms, D̃N (y) :=

cos(N + 1
2)y

2 sin(y/2)
.

Accordingly, we refer to Kσ
Nf(x) as a conjugate sum. The lemma shows

that all these conjugate sums concentrate near the edges. Different σ s
yield different concentration kernels Kσ

N(y), and we will explore the role of
different σ s in the following sections.

Proof. The key to our proof is to observe thatKσ
N is an approximate deriva-

tive of the delta function. In particular, since Kσ
N(·) is odd

Kσ
N ∗ f(x) = −

∫ π

0
Kσ

N (y)
(
f(x + y)− f(x− y)

)
dy

= −
∫ π

0
Kσ

N(y)
(
f(x + y)− f(x− y)− [f ](x)

)
dy − [f ](x)×

∫ π

0
Kσ

N(y)dy.

The rectangular quadrature rule and the normalization (4.2b) yield

∫ π

0

Kσ
N(y)dy =

1
cσ

N∑

k=1

σ

(
k

N

)
(−1)k − 1

k
=

= − 1
cσ

N∑

k odd≥1

σ(ξk)
ξk

2
N

= −1 + O
(

1
N2

)
, ξk :=

k

N
, (4.6)

and we end up with the error estimate

∣∣Kσ
Nf(x)− [f ](x)

∣∣ <∼

∣∣∣∣
∫ π

0
yKσ

N (y)ωf(y; x)dy

∣∣∣∣+ O
(

1
N2

)
. (4.7a)

It remains to upperbound the first moment of Kσ
Nωf . To this end we use

the identity −4 sin2(y/2) sin(ky) ≡ sin
(
(k + 1)y

)
− 2 sin(ky) + sin

(
(k− 1)y

)

and twice summation by parts to find

4 sin2
(y
2
)
cσKσ

N(y) ≡ 2σ(1) sin
(y
2
)
cos
(
N +

1
2

)
y
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+

I1(y)︷ ︸︸ ︷∑

1≤k≤N−2

(
σ(ξk)− 2σ(ξk+1) + σ(ξk+2)

)
sin (k + 1)y

+

I2(y)︷ ︸︸ ︷(
σ(ξN−1)− σ(1)

)
sin Ny +

I3(y)︷ ︸︸ ︷(
σ(ξ2)− 2σ(ξ1)

)
sin y .

This leads to the corresponding decomposition of Kσ
N(y) as the sum of a

conjugate Dirichlet kernel, D̃N(y), plus a residual term, RN(y) (which is
negligible in the precise sense to be outlined below),

Kσ
N(y) =

σ(1)
cσ

D̃N (y)︷ ︸︸ ︷
cos (N + 1

2)y
2 sin(y/2)

+
1
cσ

RN(y), RN(y) :=
3∑

j=1

Ij(y)
4 sin2(y/2)

. (4.7b)

The conjugate Dirichlet kernel has a small moment due to cancelation. In-
deed, if we let Ωf denote

Ωf (y) ≡ Ω(y; x) :=
y

4 sin(y/2)
ωf (y; x),

then the upper-bound
∣∣∣∣
∫ π

0

yD̃N(y)ωf(y)dy

∣∣∣∣ =
∣∣∣∣
∫ π

0

cos
(

(N +
1
2
)y
)

Ωf (y)dy

∣∣∣∣ <∼
‖ωf (·)‖BV

N
, (4.8a)

follows from (3.1), since ‖Ωf‖BV
<∼ ‖ωf‖BV . The logarithmic upper bound

of the Dirichlet kernel, ‖Dk‖L1 ∼ log k, implies

∣∣
∫ π

0
y
I1(y)ωf(y)
4 sin2(y/2)

dy
∣∣ <∼

1
N2
‖σ‖C2

N−2∑

k=1

log k · ‖Ωf‖L∞ <∼
logN

N
, (4.8b)

∣∣
∫ π

0
y
I2(y)ωf(y)
4 sin2(y/2)

dy
∣∣ <∼

1
N
‖σ‖C1 · logN · ‖Ωf‖L∞ <∼

logN

N
. (4.8c)

Finally, since |σ(ξ)| <∼ ξ we have

∣∣
∫ π

0

y
I3(y)ωf(y)
4 sin2(y/2)

dy
∣∣ <∼

(∣∣∣σ
( 1

N

)∣∣∣+
∣∣∣σ
( 2

N

)∣∣∣
)
‖Ωf‖L∞ <∼

1
N

, (4.8d)

and the desired result, (4.5), follows from (4.7a),(4.7b) and (4.8).

We conclude this subsection with a couple of remarks.

Remark 4.3. (The behavior of σ and improved concentration) The
bounds in (4.8) show that their the overall error does not exceed

log N

N
‖σ‖C2 +

∣∣∣σ
( 1
N

)∣∣∣+ 1
N
|σ(1)|. (4.9)
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Thus, the concentration error (4.5) of order O(1/N) becomes smaller if σ(ξ)
decays sufficiently fast at ξ = 0 and ξ = 1. This issue will be explored in the
next section, in the context of the exponential concentration factors, consult
(5.4) below.

Remark 4.4. (Concentration kernels: general set-up) The proof of
theorem 4.1 reveals that the concentration property holds for arbitrary ker-
nels, {KN(y)}, as long as they satisfy the three key properties:
(i) KN are odd, KN (−y) = −KN(y);
(ii) KN are properly normalized so that

∫
y≥0KN (y)dy = −1 + εN ; and

(iii) KN has a small first moment of order
∣∣∣
∫

yKN(y)ω(y)dy
∣∣∣ <∼ εN‖ω‖BV . (4.10)

Here, εN is a small scale associated with KN . If (i)-(iii) hold then we deduce,
along the lines of theorem 4.1 (consult (Gelb and Tadmor 2000a, Theorem
2.1)

|KN ∗ f(x)− [f ](x)| <∼ εN ;

hence, KN detect edges by separating, |KN ∗ f(cj) ≈ [f ](cj), from smooth
regions where KN ∗ f(x) ≈ εN � 1. A few examples are in order.

5. Examples

Compactly supported kernels. We consider a standard mollifier, namely
φεN

(y) := 1
εN

φ( y
εN

), based on an even, compactly supported bump function,
φ ∈ C1

0 (−1, 1) with φ(0) = 1. We then set

KεN
(y) =

1
ε
φ′
(

y

εN

)
. (5.1)

Clearly, KεN
is an odd kernel satisfying the proper normalization

∫

y≥0
KεN

(y)dy = −φ(0) = −1,

and its first moment is of order
∫

y≥0

|yKεN
(y)|dy = εN

∫ 1

0

|y| · |φ′(y)|dy = O(εN).

The concentration property, KεN
∗ f(x) = [f ](x)+O(εN) follows. As exam-

ples we mention edge detectors based on Haar and bi-orthogonal moments;
e.g., (Mallat 1989). Localized kernels are limited to finite order of accuracy,
no matter how smooth f is.
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Polynomial concentration kernels. Set σ(ξ) = ξ. Then Kσ
Nf recovers

the Fejér conjugate sum

Kσ
Nf(x) = π

∑

|k|≤N

ik

N
f̂(k)eikx =

π

N
SN(f)′(x), σ(ξ) = ξ. (5.2)

We note in passing that in this case, Kσ
N(y) does not concentrate near the

origin as the compactly supported KεN
’s do. Instead, (4.10) is fulfilled

thanks to the more intricate property of cancelation of oscillations. This
is the first member in the general family of polynomial concentration fac-
tors, σp(ξ) = ξp, introduced by Golubov (Golubov 1972, Kvernadze 1998,
Gelb and Tadmor 1999). Polynomial concentration factors of odd degree,
σ2p+1(ξ), correspond to differentiation in physical space, that is

K
σ2p+1

N f(x) = (−1)pπ(2p + 1)
N2p+1

d2p+1

dx2p+1
SNf(x), σ2p+1(ξ) = ξ2p+1.

Polynomial factors of even degree, σ2p(ξ), yield global conjugate sums which
convolve

H̃N(x) := i
∑

|k|≤N

sgn(k)eikx,

that is,

K
σ2p

N f(x) = (−1)p 2πp

N2p
H̃N ∗

d2p

dx2p
SNf(x), σ2p(ξ) = ξ2p.

We shall refer to this family of kernels based on the σp-factors as polynomial
concentration kernels.

Trigonometric concentration kernels. According to (3.3), the difference
SNf(x+π/N)−SNf(x−π/N) concentrates near the edges with 18% Gibbs
overshoot

SNf
(
x + π

N

)
− f
(
x− π

N

)

2Si(π)/π
≈ [f ](x), Si(π) :=

∫ π

0

sinx

x
dx. (5.3)

The difference in the numerator amounts to concentration factors σ(ξ) =
sin(πξ)

SNf(x + π/N)− SNf(x− π/N) = 2i
∑

|k|≤N

sin
(πk

N

)
f̂(k)eikx,

and the corresponding normalization, cσ = Si(π), recovers the denominator
in (5.3). This edge detector was advocated by (Banerjee and Geer 1997).
It is the first member in the family of trigonometric concentration factors
σα(ξ) = sin(αξ). We shall have to say more on the relation between con-
centration factors in Fourier space and their realization as differences in the
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physical space when we discuss edge detection in discrete data in Section
6.1.

Exponential concentration factors. Theorem 4.1 provides us with the
framework of general concentration kernels which are not necessarily limited
to a realization in the physical space. In particular, we seek concentration
factors σ(·), which vanish at ξ = 0, 1 to any prescribed order:

dj

dξj
σ(ξ)∣∣∣

ξ=0

=
dj

dξj
σ(ξ)∣∣∣

ξ=1

= 0, j = 0, 1, 2, . . . , p. (5.4)

The higher p is, the more localized Kσ
N(·) becomes, since

Kσ
N(y`) = − 1

cσ

N∑

k=1

σ

(
k

N

)
sin

2πk`

N
, y` :=

2π`

N
.

We observe that Kσ
N(y`)/N coincides with the `-discrete Fourier coefficient

of σ(·), and since σ(ξ) and its first p-derivatives vanish at both ends, ξ =
0, 1, the Cp-regularity of σ implies the rapid decay of these discrete Fourier
coefficients, |σ̂`| <∼ `−p, i.e.,

|Kσ
N(y`)| <∼ ‖σ‖Cp[0,1]

1
(Ny`)p

.

Thus, for y away from the origin, Kσ
N(y) is rapidly decaying for sufficiently

large N ’s. Moreover, we can show that an increasing number of moments
of Kσ

N (·) vanish: consult (Gelb and Tadmor 2000a, §2). As an example,
consider the exponential concentration factors,

σexp(ξ) = ξe

1
αξ(ξ − 1) , (5.5)

for which (5.4) holds for all p’s. Indeed, since σexp is based on a G2 cut-off
function, then Kσ

Nf becomes root-exponentially small away from the jumps,

|Kσexp

N f(x)| <∼ e−
√

ηN , dist
{
x,
{
c1, . . . , cJ

}}
� 1

N
. (5.6)

This leads to an improved separation of edges from regions of smoothness,
demonstrated in figure 5.1.

Figure 5.1 compares the Fejér and exponential concentration kernels,
Kσ1

N (x) and Kσexp

N (x) for

f(x) :=





cos(x− x
2 sgn(|x| − π

2 )), x < 0,

cos(5
2x + xsgn(|x| − π

2 )), x > 0.
(5.7)

In both cases, Kσ
Nf(x) concentrates near the two edges at x = ±π/2 with
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Figure 5.1: Top left: Piecewise smooth f(x) in (5.7). Top right: Gibbs
phenomenon for S40f(x). Bottom left : Edge detection in S40f using Kσ

40f ,
comparing the exponential concentration factors σexp(ξ) = exp( 1

6ξ(ξ−1)). vs.
Fejér factors σ(ξ) = ξ. Bottom right: Exponential concentration K

σexp

N f(x)
with N = 20, 40, 80 modes. Observe that the root-exponential decay of
K

σexp

80 f(x) becomes almost flat when x is well inside the intervals of smooth-
ness of f , which are well separated from the neighborhoods of the edges.
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amplitude ±
√

2 which are separated from the remaining smooth pieces of
f(x). It confirms the improved localization of the exponential concentration
factors.

6. Extensions

6.1. Discrete data

We are interested in the recovery of the location and amplitudes of the edges,
[f ](cj), j = 1, . . . , J , from the discrete Fourier coefficients,

f̂k =
h

2π

2N∑

ν=0

f(yν)e−ikyν , h =
2π

2N + 1
. (6.1)

As before, the regularity of f is revealed by the decay rate of f̂k : succes-
sive summation by parts implies the rapid decay of f̂(k) for smooth f ’s, in
analogy with (2.3), that is,

|f̂k | <∼ sup
ν

|∆sf(yν)|
hs

1
1 + |k|s , s ≥ 1; (6.2)

here h−s∆s are the usual divided differences of order s. On the other hand,
for the prototype case of an f which experiences a single jump at x = c,
(3.2) yields

f̂k =
(
f(yνc+1)− f(yνc)

)e−ikyνc

2πik
+ O

( 1
|k|2

)
,

where νc singles out the cell which encloses the location of the jump discon-
tinuity.

In the discrete case, however, every gridvalue experiences a jump disconti-
nuity: the jumps that are of order O(h) are acceptable as part of the smooth
region, whereas the O(1) jumps indicate edges of the underlying function
f(x). Hence, in the discrete case we can identify a jump discontinuity at
x = c by its enclosed gridcell, [xνc , xνc+1], which is characterized by the
asymptotic statement

f(xν+1)− f(xν) =





[f ](c) +O(h), for ν = νc : c ∈ [xν , xν+1],

O(h), for other ν ′s 6= νc.
(6.3)

Of course, this asymptotic statement (6.3) may itself serve as an edge
detector based on the given gridvalues, {f(xν)}Nν=−N . Higher-order differ-
ences, ∆pf(xν), yield edge detectors involving increasingly larger, but fi-
nite, stencils, with improved separation between cells containing O(1)-scale
jumps and smaller, but finite, O(hp)-cells in regions of smoothness. We now
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seek alternative edge detectors based on the discrete Fourier coefficients,
{f̂k}|k|≤N . Using proper concentration factors, we shall cover both local
and global edge detectors. For example, global edge detectors based on the
exponential concentration factors do not lend themselves to local stencils of
differences: they enjoy the root-exponential accuracy encountered in (5.6).

Our starting point is the discrete conjugate sum, an analog of (4.3):

Iτ
Nf(x) :=

πi

cτ

∑

|k|≤N

sgn(k)τ
( |k|h

π

)
f̂ke

ikx, (6.4a)

where τ(ξ) are the discrete concentration factors at our disposal and cτ is
the normalization coefficient

cτ :=
π

2

∫ 1

0

τ(ξ)
sin(πξ/2)

dξ. (6.4b)

It is convenient to link the discrete and continuous factors

τ(ξ) = σ(ξ)sinc
(πξ

2
)
, sinc(y) :=

sin y

y
,

where the normalization cτ becomes the usual cτ = cσ =
∫ 1
0 σ(ξ)/ξdξ.

To gain greater insight into the behavior of such detectors we use (6.1) to
express the f̂k ’s in terms of the f(xν)’s; (6.4a) then reads

Iτ
Nf(x) = − h

cτ

2N∑

ν=0

f(xν)
N∑

k=1

σ
(kh

π

)sinkh/2
kh/2

sink(x− xν)

= − 1
cσ

N∑

k=1

σ
(

kh
π

)

k

2N∑

ν=0

f(xν)2 sin
(kh

2
)
sink(x− xν).

Next, we write the last product on the right as a perfect difference and sum
by parts to find

Iτ
Nf(x) =

1
cσ

N∑

k=1

σ
(

kh
π

)

k

N∑

ν=0

(
f(xν+1)− f(xν)

)
cosk(x− xν+1/2). (6.5)

We claim that the second sum on the right is dominated by the discon-
tinuous cell(s) where f(xνc+1) − f(xνc) ∼ [f ](c), while the contributions of
the ’smooth’ cells are negligible, owing to cancelations of oscillations. To
make this statement precise, we first identify the discontinuous cell (and in
general, finitely many like it), by its mid-point, xνc+ 1

2
. We then find that

2N∑

ν=0

(
f(xν+1)− f(xν)

)
sinkxν+ 1

2
=
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=
(
[f ](c) +O(h)

)
sinkxνc+ 1

2
+O

( h

sin kh
2

)
. (6.6a)

The first term on the right of (6.6a) is the contribution of the single jump at
ν = νc. For the remaining terms, ν 6= νc, we use the identity sin kxν+1/2 ≡
−
(

coskxν+1−cos kxν

)
/2 sin(kh/2) to sum by parts once more, accumulat-

ing 2N−2 ∼ 1
h terms of order f(xν+1)−2f(xν)+f(xν−1) ∼ O(h2) and two

(or finitely many) ‘boundary terms’ of order f(xν+1)−f(xν) ∼ O(h). These
amount to the second term on the right of (6.6a). The same argument yields

2N∑

ν=0

(f(xν+1)− f(xν)) coskxν+ 1
2

=

=
(
[f ](c) + O(h)

)
cos kxν+ 1

2
+ O

( h

sin kh
2

)
. (6.6b)

Inserting (6.6) into (6.5) yields

Iτ
Nf(x) = [f ](c)× 1

cσ

N∑

k=1

σ
(

kh
π

)

k
cos k(x− xνc+1/2) +O(h| logh|).

Apply theorem 4.1 to the Heaviside function f(x) = H(x − c)/2: with
[f ](0) = 1 and f̂(k) = −e−ikc/(2πik) we find

1
cσ

N∑

k=1

σ( k
N )
k

cosk(x− c) =





1 + O(h| logh|), x ≈ c,

O(h| logh|), dist
{
x, c
}
� h,

(6.7)

and we obtain the following concentration property.

Theorem 6.1. (Discrete concentration kernels) (Gelb and Tadmor 2000b)
Assume that f(·) is piecewise C2-smooth and let Iτ

Nf(x) be an admissible
discrete conjugate sum (6.4). Then Iτ

Nf(x) satisfies the concentration prop-
erty

Iτ
Nf(x) ∼





[f ](cj) +O(h| log(h)|), x ∼ cj , j = 1, . . . , J,

O(h| log(h)|), dist
{
x, {c1, . . . , cJ}

}
� h.

(6.8)

As an example, consider the discrete concentration factors

τ2p+1(ξ) = ξ2p+1sinc
(πξ

2

)
, sinc(y) =

sin y

y
.

This corresponds to σ2p+1(ξ) = ξ2p+1 with cτ = cσ = 2p+1, and (6.5) yields

I
τ2p+1

N f(x) (6.9)
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= h
2N∑

ν=0

(
f(xν+1)− f(xν)

) N∑

k=1

(2p + 1)
(kh

π

)2p+1
·
cosk(x− xν+ 1

2
)

kh
.

For the first-order method, (6.9) with p = 0 reads

Iτ
Nf(x) = h

2N∑

ν=0

(f(xν+1)− f(xν))DN(x− xν+ 1
2
),

This tells us that the discrete concentration factors τ1(ξ) = ξsinc(πξ/2)
amount to interpolation of the first-order local differences, f(xν+1)− f(xν),
at the intermediate grid points, xν+ 1

2
. In a similar fashion, concentration

kernels associated with the higher order polynomial factors, τ2p+1(ξ), coin-
cide with higher-order derivatives of this interpolant. As p increases, how-
ever, the global dependence of interpolation may lead to deterioration of the
results, when compared with local edge detectors. An example with even
order p is illustrated in figure 6.1.

In contrast, if we choose the trigonometric concentration factor, τ(ξ) =
sin3(πξ/2) it gives the conjugate discrete sum (6.5) corresponding to σ(ξ) =
ξ sin2(πξ/2) with cτ = cσ = 2,

Iτ
Nf(x) =

h

2π

2N∑

ν=0

(
f(xν+1)− f(xν)

) N∑

k=1

sin2
(kh

2
)
cos k(x− xν+ 1

2
).

This conjugate discrete sum coincides with the local cubic difference (Gelb
and Tadmor 2002), Iτ

Nf(xν+ 1
2
) = 8∆3f(xν+ 1

2
),

Iτ
Nf(xν+ 1

2
) = 8

(
− f(xν+2) + 3f(xν+1)− 3f(xν) + f(xν−1)

)
.

The situation is analogous to the higher-order trigonometric factors σ(ξ) =
ξ2p+1: they have the advantage of being local but their order is finite.
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Figure 6.1: Left: Detection of edges in the interpolant of f in (5.7) using
polynomial concentration factors, Iτ2

N f , with N = 20, 40 and 80 modes.
Right: Logarithmic error of the fifth-order local trigonometric vs. the global
polynomial concentration factors Iτ5

80f(xν).

6.2. Non-periodic data

We begin with the Gegenbauer expansion of a piecewise smooth f(·):

SNf(x) =
N∑

k=0

f̂(k)Ck(x), f̂(k) :=
∫ 1

−1
f(x)Ck(x)ω(x)dx. (6.10)

Here
{
Ck(x) = C

(α)
k (x)

}
k≥1

are orthogonal families of Gegenbauer polynomi-

als, associated with different weight functions, ω(x) ≡ ωα(x) := (1−x2)α− 1
2 ,

∫ 1

−1

C
(α)
k (x)C(α)

` (x)ωα(x)dx = 0, k 6= `, ωα(x) := (1− x2)α− 1
2 . (6.11)

They are the eigenfunctions of the singular Sturm–Liouville problem

((1− x2)ω(x)
(
(C(α)

k )′(x)
)′ = −akω(x)C(α)

k (x), −1 ≤ x ≤ 1, (6.12)

with corresponding eigenvalues ak = a
(α)
k = k(k + 2α).

As in the periodic case, integration by parts against (6.12) shows that the
presence of a single jump discontinuity, [f ](c), dictates the linear decay rate
of its Gegenbauer coefficients,

f̂(k) = [f ](c)
(1− c2)ω(c)

ak
C ′

k(c) +O
(

1
a2

k

)
. (6.13)

To extract information about the location of the jump, we consider the
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conjugate sum

π
√

1− x2

N
SN(f)′(x) =

π
√

1− x2

N

N∑

k=1

f̂ (k)C ′
k(x)

= [f ](c)
π
√

1− x2(1− c2)ω(c)
N

N∑

k=1

{
1
ak

+ O
(

1
a2

k

)}
× C ′

k(c)C ′
k(x).

This is the non-periodic analog of the Fejèr conjugate sum (5.2) in the
periodic case.

We want to quantify the localization property of the last summation.
To this end, we simplify the computations by making the (non-standard)
normalization ‖C(α)

k (x)‖ωα = 1. Integration by parts of (6.12) against C
(α)
k

then yields
(
C

(α)
k

)′
(x) =

√
akC

(β)
k−1(x) with β = α + 1, where the scaling

factor
√

ak keeps the proper normalization ‖C(β)
k (x)‖ωβ

= 1. Substituting
in the leading term of the last conjugate sum, we end up with

π
√

1− x2

N
SN(f)′(x) ∼ [f ](c)

π
√

1− x2ωβ(c)
N

×K
(β)
N (x, c), (6.14)

where

K
(β)
N (x, y) =

N∑

k=1

C
(β)
k−1(x)C(β)

k−1(y)

is the Christoffel–Darboux kernel (see e.g., (Szego 1958, Thm. 3.2.2)),

K
(β)
N (x, y) =

kN−1

kN

C
(β)
N (x)C(β)

N−1(x)− C
(β)
N (y)C(β)

N−1(x)
x− y

,
kN−1

kN
∼ 1

2
.

(6.15)

The concentration property now depends on the localization of KN (c, x) (see
e.g., (Gelb and Tadmor 2000a, section 3)), i.e.,

π
√

1− x2ωβ(c)
N

K
(β)
N (c, x) ∼





√
ωα(c)√

ωα(xN)
× 1

N |x− c| ∼
1

N1−α
, x 6= c,

1, x = c, |c| < 1.

We summarize.

Corollary 6.2. Let SNf denote the truncated Gegenbauer expansion (6.10)
of a piecewise smooth f , associated with a weight function ωα = (1 −
x2)α− 1

2 , |α| ≤ 1/2. Then π
√

1− x2SN (f)′(x)/N admits the concentration
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property
∣∣∣∣∣
π
√

1− x2

N
SN(f)′(x)− [f ](x)

∣∣∣∣∣
<∼

logN

N
√

ωα(x)
, 1− |x| <∼

1
N2

.

We close this section with the example of a piecewise smooth f with
Chebyshev expansion,

SNf(x) ∼
∑

k

f̂(k)Tk(x).

Using a general family of concentration factors, λ(ξ) ∈ C2[0, 1] (correspond-
ing to σ(ξ)/ξ in the periodic case), we end up with

∣∣∣π
√

1− x2

Ncλ

N∑

k=1

λ
( k

N

)
f̂(k)T ′

k(x)− [f ](x)
∣∣∣ <∼

logN

N
, cλ :=

∫ 1

0
λ(ξ)dξ.

(6.16)

6.3. Noisy data

We consider the problem of detecting edges in a piecewise smooth f from
its spectral content, which is assumed to be corrupted by noise. We begin
with the simple case of an f which experiences a single jump discontinuity,
[f ](c). As in (4.1), this implies first-order decay of the Fourier coefficients:

f̂(k) = [f ](c)
e−ikc

2πik
+ ĝ(k) + n̂(k). (6.17)

Here, ĝ(k) are associated with the regular part of f after extracting the jump
[f ](c); their decay is of order ∼ |k|−2 or faster, depending on the smoothness
of the regular part g(·). The new aspect of the problem enters through the
n̂(k)’s, which are the Fourier coefficients of the noisy part corrupting the
smooth part of the data; we assume n(·) to be white noise with variance
E(|n̂(k)|2) = η. With (6.17), the conjugate sum (4.3) becomes

Kσ
Nf(x) = [f ](c)

2πi

cσ

N∑

k=1

σ
(

k
N

)

k
cos k(x− c)

−2π

cσ

N∑

k=1

σ
( k

N

)
ĝ(k) sinkx− 2π

cσ

N∑

k=1

σ
( k

N

)
n̂(k) sinkx.

We quantify the “energy” of each of the three sums on the right. EJ and
ER are associated with the discontinuous and regular parts of f ,

EJ :=
N∑

k=1

(σ
(

k
N

)

k

)2
≈ 1

N

∫ 1

0

(σ(ξ)
ξ

)2
dξ, (6.18a)
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ER :=
N∑

k=1

σ2
( k

N

)
|ĝ(k)|2 � 1

N3

∫ 1

0

σ2(ξ)
ξ4

dξ, (6.18b)

and Eη is associated with the noisy part of f which was assumed to have
variance η:

Eη :=
N∑

k=1

σ2
( k

N

)
E(|n̂(k)|2) ≈ ηN

∫ 1

0
σ2(ξ)dξ. (6.18c)

Following (Engelberg and Tadmor 2007), the key to detection of edges in
such noisy data is to treat the problem as a constrained minimization. We
seek a linear combination aJEJ + aRER + aηEη which minimizes the total
energy, thus making the conjugate sum Kσ

Nf as localized as possible, subject
to a prescribed normalization constraint (4.2b)

min
{
aJEJ + aRER + aηEη

∣∣∣
∫ 1

0

σ(ξ)
ξ

dξ = cσ

}
. (6.19)

This yields

σ(ξ) =
Cξ−1

aJN−1ξ−2 + aRN−3ξ−4 + ηaηN
=

CN3ξ3

aJN2ξ2 + aR + ηaηN4ξ4
.

We ignore the relatively negligible contribution of the regular part which
becomes even smaller as g(·) becomes smoother. Setting aR = 0 we end up
with concentration factors of the form

σ(ξ) =
C

aJ
· Nξ

1 + ηβ2N2ξ2
, β :=

√
aη

aJ
. (6.20)

It is worthwhile noting that the resulting concentration factor depends on
three parameters.
(i) The relative size of the amplitudes β = aη/aJ . Indeed, the normalization
factor is given by

cσ =
∫ π

0

σ(ξ)
ξ

dξ =
C

aJ
√

ηβ
tan−1(

√
ηβN).

The corresponding concentration factor

σ ≡ ση =
√

ηβN

tan−1(
√

ηβN)
· ξ

1 + ηβ2N2ξ2
, (6.21a)

yields

K
ση

N f(x) =
πi
√

ηβ

tan−1(
√

ηβN)

∑

|k|≤N

|k|
1 + ηβ2k2

f̂(k)eikx, β =
√

aη

aJ
. (6.21b)

(ii) The number of modes, N . General concentration factors may depend
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Figure 6.2: Detection of edges in noisy saw-tooth function corrupted with
various values of η, using the concentration kernel (6.21a) with β = πη−1/6.

on the wave number k and the number of modes N , σ = σk,N . It is useful
to rearrange this dependence, emphasizing the dependence on the relative
wave number, σ = σN

( |k|
N

)
. Clearly, theorem 4.1 (and likewise, theorem 6.1)

applies to such σN(ξ)’s. Here, one has to verify the precise dependence of
the error bound (4.5) on σN . In particular, in the present context of noisy
data this leads us to consider the following parameterization of the noise.
(iii) The variance of the noise η. We now have three scales involved — the
small “smoothness” of order h ∼ 1/N , the noise scale ∼ η and the O(1) scale
of jump discontinuities. We distinguish between two cases. If η is sufficiently
small, η � 1/N so that

√
ηβN � 1, then the noise can be sought as part

of the smooth variation of f ; indeed, (6.21a) recovers Fejér concentration
factor for noise-free data, ση(ξ) ≈ ξ (and in particular, ση(ξ) = ξ at the limit
of η ↓ 0). If on the other hand, η >∼ 1/N , then the O(1/N)-smoothness scale
is dominated by the O(η)-noise scale, which we assume to be still well-below
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the O(1)-scale of the jumps

1
N

<∼
√

ηβ � O(1).

In this case, we can ignore the bounded factor 1/ tan−1(
√

ηβN) and using
(4.9), we then find an error-bound of order

log N

N
‖ση‖C2 +

∣∣∣ση

( 1
N

)∣∣∣+ 1
N
|ση(1)| <∼

√
ηβ| log(

√
ηβ)|.

A careful examination of the various error-bounds involved in theorem 4.1
(e.g., (Engelberg and Tadmor 2007)), shows that all other ση-dependent con-
tributions to the error do not exceed the small scale of order

√
ηβ| log(

√
ηβ)|,

|Kση

N f(x)− [f ](x)| <∼
√

ηβ| log(
√

ηβ)|.

The resulting concentration kernel, K
ση

N f tends to de-emphasize both the
low frequencies which are “corrupted” by the jump discontinuity(-ies) and
the high frequencies which are corrupted by the noise. Different procedures
yield different policies for the choice of β. figure 6.2 demonstrates the edge
detected in noisy data using the concentration kernel (6.21) with the advo-
cated β ∼ η−1/6.

As an alternative approach, we may replace the L2-“averaged” effect of
the regular part taken in (6.18b) by the BV-like quantity

ER :=
N∑

k=1

∣∣∣σ
( k

N

)∣∣∣ · |ĝ(k)|,

In this case, the constrained minimization (6.19) with |ĝ(k)| ∼ 1/|k|2 yields

ση(ξ) =
1
cσ
· (Nξ − aR)+
1 + ηβ2N2ξ2

. (6.22)

Figure 6.3 quotes the results of (Engelberg and Tadmor 2007), with the
detection of edges in noisy data using these concentration factors which
were tuned with aR = 6π, cσ ∼ 3.

6.4. Incomplete data – compressed sensing

We are interested in the detection of edges in a piecewise smooth f from
an incomplete set of its spectral content, that is, we have access only to
f̂(k)’s (or f̂k’s) for k ∈ K, where K is a strict subset of {−N, . . . , N}. Our
methodology for edge detection in such cases is motivated by the compres-
sive sensing approach (Donoho and Tanner 2005, Candes, Romberg and
Tao 2006a, Candes, Romberg and Tao 2006b). Equipped with the partial
information of f̂(k), k ∈ K, one can form the incomplete concentration ker-
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Figure 6.3: Detection of edges in noisy saw-tooth function corrupted with
various values of η, using the concentration factors (6.22) with β = πη−1/6.

nel

Kσ
Nf(x) =

∑

k∈K

f̃(k)eikx, f̃(k) :=
πi

cσ
sgn(k)σ

( |k|
N

)
f̂(k). (6.23)

We follow (Tadmor and Zou 2007), seeking to recover a ’complete’ concen-
tration kernel, g(x) ∼ Kσ

Nf(x), of the form

g(x) =

prescribed data︷ ︸︸ ︷∑

k∈K

f̃(k)eikx +

missing data︷ ︸︸ ︷∑

k 6∈K

ĝ(k)eikx .

Here, f̃(k) are the conjugate coefficients corresponding to the prescribed
data for k ∈ K, while the missing conjugate coefficients, {ĝ(k)|k 6∈ K} at
our disposal, are sought as minimizers of the total variation ‖g(x)‖TV ,

g(x) = argmin
{
‖g‖TV

∣∣∣ g(x) = Kσ
Nf(x) +

∑

k 6∈K

ĝ(k)eikx
}
. (6.24)
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Similarly, in the discrete case we seek a ’complete’ concentration kernel

g(x) =
πi

cτ

∑

k∈K

sgn(k)τ
( k

N

)
f̂ke

ikx +
∑

k 6∈K

ĝke
ikx,

which is selected by the TV minimization principle,

g(x) = argmin
{
‖g‖TV =

∑

ν

|g(xν+1)− g(xν)|
∣∣∣ ĝk = f̃k , k ∈ K

}
. (6.25)

The complete concentration kernel, g(x), can be viewed as an approximation
to the ’ultimate’ jump function

Γf (x) :=
J∑

j=1

[f ](cj)1[xνcj
,xνcj +1 ](x),

where the missing
{
ĝk

}
|k 6∈K

complement the prescribed
{
f̃k

}
|k∈K

as the

approximate Fourier coefficients (Γ̂f)k. The rationale behind the TV mini-
mization in (6.24),(6.25) is to enforce the `1-minimization of the differences,
which imposes sparsity in the sense of maximizing the number of zero differ-
ences, (Candes, Romberg and Tao 2006a, Candes, Romberg and Tao 2006b).
Hence, it yields g(x) as an approximate jump function with a minimal num-
ber of piecewise components. The optimization model (6.25) can be solved
by the second order cone programs which takes time O(N3 logN).

The compressed sensing approach can be extended to noisy data (Donoho,
Elad and Temlyakov 2006, Candes, Romberg and Tao 2006a). Following
(Tadmor and Zou 2007), we assume that the observed (pseudo-)spectral
data may be contaminated by white noise with variance ≤ η. To recover
edges from such noisy and incomplete data, the following compressed sensing
model is sought:

g(x) = argmin
{
‖g‖TV

∣∣∣ g =
N∑

k=1

ĝke
ikx s.t. ‖ĝk − f̃k‖`2(k∈K) ≤ η

}
.

(6.26)

7. Enhancements

The detection of edges in theorems 4.1 and 6.1 is based on the asymptotic
behavior of the concentration kernels Kσ

N which separate between the large
and small scales as εN ∼ 1/N ↓ 0. To improve the edge detection, we want
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to enhance the separation of scales in (4.5). To this end we consider

N q
(
Kσ

Nf(x)
)2q =





∼ N q
(
[f ](cj)

)2q
, x ≈ {c1, c2, . . . , cJ},

O(N−q), dist
{

x,
{
c1, c2, . . . , cJ}

}
� 1

N .

The exponent q ≥ 1 is at our disposal: by increasing q, we enhance the
separation between the vanishing scale at the points of smoothness (of order
O(N−q)) and the amplified scale at the jumps (of order O(N q)).

Next, one must introduce a critical threshold to eliminate the unacceptable
jumps: only those edges with amplitudes larger than the critical threshold,
[f ](x) > J

1/2q
c /

√
N will be detected. Here, Jc is a measure which defines

the small scale in our computation of edge detection. We note that Jc is
data-dependent and is typically related to the variation of the smooth part
of f .

Given this critical threshold, we form our enhanced concentration kernel

Kσ
N,Jc

f(x) =





Kσ
Nf(x), if N q

∣∣Kσ
Nf(x)

∣∣2q
> Jc,

0, otherwise.
(7.1)

Clearly, with sufficiently large q, one ends up with a sharp edge detec-
tor where Kσ

N,Jc
f(x) = 0 at all but O(1/N)-neighborhoods of the jumps

x = c1, c2 . . . . In practical applications, q ≤ 3, will suffice. For exam-
ple, enhancing the local concentration kernel (5.1) KεN

(y) = φ′
εN

(y) with
q = 1 leads to the quadratic filter (e.g., (Firoozye and Sverak 1996)) where
(KεN

f(x))2 = (φ′
εN
∗ f(x))2→ [f ]2(x).

We can apply this nonlinear enhancement in conjunction with discrete
concentration kernels Iτ

N(y). The corresponding enhanced spectral concen-
tration kernel amounts to

Iτ
N,Jc

=





Iτ
Nf(x), if N q

∣∣Iτ
Nf(x)

∣∣2q
> Jc,

0, otherwise.
(7.2)

Observe that the use of concentration kernels, (4.5) and (6.8), actually
detects the O(εN )-neighborhoods of jump discontinuities rather than the
discontinuities themselves. Figure 7.1 demonstrates how the nonlinear en-
hancement of concentration kernels helps to pinpoint the location of edges
in the discrete and non-periodic set-ups.

7.1. Nonlinear limiter: minmod edge detection

Implementation of the enhanced edge detectors Kσ
N,Jc

f(x) and Iτ
N,Jc

f(x) re-
quires an outside threshold parameter, Jc, which should be properly chosen
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Figure 7.1: Top left : Jump value obtained by Kσ
40,Jc

f for f(x) in (7.1)
with q = 1 and σ(ξ) = sin(ξ). Top right : Iτ

80,Jc
f with τ(ξ) = ξ5 in (7.2).

Bottom: detection of edges in Chebyshev expansion of f(x/π) before and
after enhancement with q = 1 and Jc = 5.

to separate the specific scales associated with f . This becomes an imped-
iment for detecting edges in both small-scale problems and problems with
steep gradients and high variation. A second, related difficulty arises when
oscillations are formed in the neighborhood of the jump discontinuities. The
particular behavior of these oscillations depends on the specific concentra-
tion factors used, and it can be difficult to distinguish between a true jump
discontinuity and an oscillating artifact, particularly when several jump dis-
continuities are located in the same neighborhood, i.e. when there is limited
resolution for the problem. Wrong parameterization may lead to misiden-
tification of jump discontinuities that are located “too” close together. We
discuss an improved enhancement procedure based on the nonlinear limit-
ing of low- and high-order concentration factors. The rationale, outlined in
(Gelb and Tadmor 2006), is as follows.

Edge detectors based on a low-order concentration kernel Kσ
N with poly-

nomial factors σp(ξ), p ∼ 1, or trigonometric factors σα(ξ), have a relatively
slow, O(log(N)/N), decay away from the discontinuities, yet they yield only
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a few spurious oscillations (if any) in the immediate neighborhoods of the
discontinuities. In contrast, highly accurate kernels such as K

σexp

N rapidly
converge to zero away from the neighborhoods of discontinuities, but suffer
from severe oscillations within these immediate neighborhoods. The loss
of monotonicity with increasing order is, of course, the canonical situation
in many numerical algorithms; the passage from the first-order, monotone
Fejér kernel discussed in section 9 below, to the spurious oscillations in the
spectrally accurate Dirichlet kernel is a prototypical case.

We therefore take advantage of the different behavior of low- and high-
order edge detectors. Away from the jump discontinuities, we let the high-
order, possibly exponentially small kernel, dominate, by taking the (signed)
minimum,

KNf(x) = s ×min
{
|Kσhigh

N f(x)|, |Kσlow
N f(x)|

}
, s := sgn

{
K

σhigh

N f(x)
}
.

As we approach the jump discontinuity, however, high-order methods pro-
duce spurious oscillations which should be rejected: this could be achieved
through comparison with essentially monotone profiles produced by low-
order detectors. Thus, when the two profiles disagree in sign — indicating
spurious oscillations — then our detector is set to zero:

KNf(x) = 0, if sgn
{
K

σhigh

N f(x)
}
6= sgn

{
Kσlow

N

}
.

We end up with the so-called minmod limiter,

Kσmm
N f(x) := minmod

{
K

σexp

N f(x), Kσ1
N f(x)

}
, (7.3)

which plays a central role in non-oscillatory reconstruction of high-resolution
methods for nonlinear conservation laws, (see e.g., (Harten 1983, Tadmor
1998) and the references therein).
This adaptive algorithm can be extended to include several concentration
factors, e.g.

Iτmm
N f(x) := minmod

{
I

τexp

N f(x), Iτpol

N f(x), Iτtrig

N f(x)
}
, (7.4)

where the k-tuple minmod limiter takes the form

minmod
{
a1, . . . , ak

}
:=

{
s × min

1≤j≤k
|aj |, if sgn(a1) = . . . = sgn(ak) := s,

0, otherwise.

It retains the high order in smooth regions while “limiting” the high-order
spurious oscillations in the neighborhoods of the jumps by the less oscilla-
tory low-order detectors. By incorporating such a mixture of low-order and
high-order methods in different regimes of the computation, the resulting
minmod-based adaptive detection provides a parameter-free edge detector,
which in turn enables more robust nonlinear enhancements.

Figure 7.2 illustrates the improvement in using the minmod edge detec-
tor (7.4) when applied to a piecewise smooth f exhibited in the top part
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Figure 7.2: Top left : Piecewise f with adjacent edge. Top right : Kσmm
80 f(x).

Bottom left : Edge detection using first order I
τpol

N f(x) (dotted), I
τexp

N f(x)
(dashed) and the Iτmm

N f(x) algorithm (solid) with N = 80 grid-points. Bot-
tom right : The same with N = 160 points.

of figure 7.2. There is a ’clean’ detection of the jump discontinuities which
are located close together. It also compares the results of application of
the concentration kernels and the minmod algorithm. It is evident that
the polynomial factor τ2p+1 does not converge to zero sufficiently fast away
from the discontinuities; hence the steep gradients of the function might be
misinterpreted as jump discontinuities. On the other hand, the concentra-
tion method using τexp causes interfering oscillations in the neighborhoods
of the discontinuities, making it difficult to determine where the true jumps
are. The minmod algorithm ensures the convergence to the jump function
without interference of the oscillations. An early application of the minmod
enhancement to non-negative band pass filters can be found in (Bauer 1995,
§4).
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8. Edge detection in two-dimensional spectral data

8.1. Two-dimensional concentration kernels

Given the two-dimensional spectral data

f̂(k) :=
1

(2π)2

∫ π

−π

∫ π

−π
f(y)e−ik·ydy1dy2

we are interested in detecting the edges of the underlying piecewise smooth
f(·). We assume the generic case where these edges lie along simple curves,
and we proceed with a straightforward application of one-dimensional con-
centration kernels which apply dimension-by-dimension. Accordingly, we
have a 2-vector concentration kernel Kσ

N , of the form,

Kσ
Nf(x) =

[
Kσ

N,x1

Kσ
N,x2

]
f(x) :=

πi

cσ

∑

|k1 |≤N

∑

|k2 |≤N

[
sgn(k1)
sgn(k2)

]
σ
( |k|

N

)
f̂(k)eik·x.

(8.1)

Edges along the x1-axis with each fixed x2 ∈ [−π, π] are sought as ex-
tremal values of the first component Kσ

N,x1
f(x1, ·), while Kσ

N,x2
f(·, x2) pro-

cess edges along the x2-axis. Similarly, the discrete set-up is based on the
two-dimensional conjugate sums

Iτ
Nf(x) =

πi

cτ

∑

|k1 |≤N

∑

|k2|≤N

[
sgn(k1)
sgn(k2)

]
τ
( |k|h

π

)
f̂(k)eik·x. (8.2)

The approach is simple to implement, although it may suffer from the Carte-
sian preference when the edges lie along curves which do not align with the
axis, as illustrated in figure 8.1 for f(x) whose edges lie along the circle
|x| = 0.7π. We observe the familiar Cartesian-based phenomenon of stair-
casing; much of it is removed by nonlinear enhancement.

A parameter-free enhancement based on the minmod limiter (7.4) yields
improved results for edge detection in the Shepp-Logan brain image, shown
in figure 8.2.

8.2. Incomplete data

The extension of edge detection for incomplete data in two dimensions,{
f̂(k)

}
k∈K

where K ( [−N, N ]2, is straightforward. We shall focus on
the discrete case, where we set a rectangular grid xν,µ := (ν∆x1, µ∆x2).
We seek ĝk|k 6∈ K which produces an approximate concentration kernel

g(x) =
πi

cτ

∑

k∈K

[
sgn(k1)
sgn(k2)

]
τ
( |k|

N

)
f̂keik·x +

∑

k 6∈K

ĝkeik·x, (8.3a)
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Figure 8.2: Left : Contour plot of the Shepp-Logan brain image. Right :
Nonlinear enhancement procedure (7.4) applied to the Shepp-Logan brain
phantom image.
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with minimal total variation

‖g‖TV =
∑

ν,µ

|g(xν+1,µ)− g(xν,µ)|∆x1 + |g(xν,µ+1)− g(xν,µ)|∆x2. (8.3b)

Figure 8.3: Recovered phantom image from incomplete spectral data. Left:
The result by the back projection. Right: the recovered edges of Shepp-
phantom graph by compressive sensing edge detection (8.3).

Figure 8.3 illustrates edge detection for use of the compressive sensing
model of Kσ

Nf(x) for incomplete data of the two-dimensional Shepp-Logan
phantom image. Here, N = 256, we use Fejér concentration factors, σ(ξ) = ξ
and partial data are gathered along each of 100 radial lines in the spectral
domain.

8.3. Concentration kernels and zero-crossing

The zero-crossing method is one of the popular methods in edge detec-
tion in two-dimensional data: consult (Marr and Hildreth 1980) and the
references therein. It searches for zero crossings in the discrete Lapla-
cian of the function f , in order to find the underlying edges. This is in-
timately connected with the conjugate kernels. To clarify this point, we
begin with the one-dimensional example of the Fejér conjugate sum (5.2),
Kσ1

N f = πSN(f)′(x)/N . Recall that edges are sought as extremal values of
Kσ1

N f(x), and we therefore seek the zeros of Kσ1
N (f)

′′
(x), i.e.,

{
cj

∣∣∣ d

dx
Kσ1

N f(x)|x=cj ∝
d2

dx2
SNf(x)|x=cj = 0

}
. (8.4)
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This is the one-dimensional zero-crossing. We note that unlike the edges
sought as the extrema of Kσ1

N f(x), the zero-crossing in (8.4) may introduce
additional spurious inflection points. A similar situation occurs with general
concentration factors. Setting σ(ξ) := ξλ(ξ), then (4.3) amounts to

Kσ
Nf(x) =

π

Ncλ

∑

|k|≤N

ikλ
( |k|

N

)
f̂ (k)eikx, cλ =

∫ 1

0

λ(ξ)dξ.

Thus Kσ
Nf(x) with σ(ξ) = ξλ(ξ) is merely the derivative of a mollified

version of SN(f)(x),

Kσ
Nf(x) =

d

dx
ΛN ∗ SN (f)(x), ΛN(x) :=

1
2Ncλ

∑

|k|≤N

λ
( |k|

N

)
eikx,

and the zero-crossing procedure amounts to identifying edges as zeros of this
mollified spectral projection,
{
cj

∣∣∣ d2

dx2
ΛN ∗ SNf(x)∣∣x=cj

= 0, ΛN(x) :=
1

2Ncλ

∑

|k|≤N

λ
( |k|

N

)
eikx

}
.

(8.5)

By suitable choice of λ, we obtain a large class of “regularized” zero-crossings.
But once again, we need to augment (8.5) with a procedure to rule out in-
flection points which otherwise could be detected as spurious edges.

A similar set-up holds in the two-dimensional case. Here, we consider the
generic case of a piecewise smooth f(x) whose edges lie along simple curves
to be detected by the 2-vector of concentration kernels, Kσ

Nf(x), in (8.1).
To simplify matters, we set σ(ξ) = ξλ(ξ). The two-dimensional detection
based concentration approach now seeks the edges as extremal values of

∇xΛN ∗ SNf(x), ΛN(x) =
1

2Ncλ

∑

|k|≤N

λ
( |k|

N

)
eik·x. (8.6)

The zero-crossing method realizes these extremal values as the zeros of
{
c
∣∣∣ ∆xΛN ∗ SNf(x)∣∣x=c

= 0
}
, (8.7a)

We observe that the two-dimensional zero-crossing could add a consid-
erable number of spurious edges: e.g., (Ulupinar and Medioni 1988, Clark
1989). We can improve this deficiency, by augmenting (8.7a) with a more
careful zero-crossing criterion, e.g.,
{
c
∣∣∣ ∂2

∂x2
1

ΛN ∗ SNf(x) or
∂2

∂x2
2

ΛN ∗ SNf(x) changes sign at x = c
}

.(8.7b)

Following (Tadmor and Zou 2007), we can now combine the improved
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zero crossing (8.7b) with compressed sensing, in order to deal with incom-
plete (and possibly noisy...) data. Given the partial spectral information,{
f̂(k)

}
k∈K

, we seek to complement the missing data by the usual TV-
minimization

g(x) = argmin
{
‖g‖TV

∣∣∣ g(x) =
∑

k∈K

|k|2f̂(k)eik·x +
∑

k 6∈K

|k|2ĝ(k)eik·x}.(8.8)

Observe the sparsity of the TV-based compressive sensing of the zero-crossings
in the minimizer (8.8): it is tied to minimizing the number of zero compo-
nents of g ≈ ∆xKσ

Nf(x), that is, minimizing the number of piecewise linear
components of Kσ

Nf(x).

Figure 8.4: Edge detection in incomplete spectral data by zero crossing.
Left: Original image. Center: Image recovered from incomplete data zero
crossing. Right: Zero crossing combined with compressive sensing (8.8),
with Gaussian concentration factor Λ1 and threshold ζ = 3.

Figure 8.4, from (Tadmor and Zou 2007), illustrates edge detection from
incomplete data using (improved) zero-crossing with compressed sensing.
Here we use the normalized Gaussian,

Λβ(x) :=
1

2πβ2
e
− |x|2

2β2 ,

which is a typical choice of zero-crossing mollifier, ΛN .
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9. Reconstruction of piecewise smooth data

We want to reconstruct a piecewise smooth f from its spectral coefficients{
f̂(k)

}
|k|≤N

. To avoid the spurious Gibbs oscillations formed by the spectral
projection SNf , one may consider the classical Fejér partial sums

SF
Nf(x) :=

∑

|k|≤N

(
1− |k|

N

)
f̂(k)eikx,

which amount to a convolution against the Fejér kernel,

SF
Nf(x) = (FN ∗ f)(x), FN (y) :=

1
2π

∑

|k|≤N

(
1− |k|

N

)
eiky ≡ 1

2πN

( sin
(Ny

2

)

sin
(y

2

)
)2

.

Since FN ≥ 0, it follows that −1 ≤ SF
NH(x) ≤ 1; moreover, since H ′(x) ≥ 0

implies SF
N (H)′(x) ≥ 0, it follows that SF

NH(x) increases monotonically
between −1 and 1. Thus, Fejér partial sums avoid spurious oscillations; in
fact they are monotone, and converge uniformly whenever f is continuous.
But the monotonicity of Fejér partial sums comes at a price: according to
a classical theorem of Korovkin (e.g., (DeVore and Lorentz 1993)), every
family of linear positive operators such as the SF

N is at most second-order
accurate, that is

|SF
Nf(x)− f(x)| <∼

1
N2

, f ∈ C1

and this second-order convergence rate estimate does not improve for more
regular f ’s (since it is essentially dictated by f(x) = 1, x and x2).

It is possible to utilize the Fejér sums to regain spectral accuracy, while
still avoiding Gibbs oscillations. To this end, we consider the partial sum

Sϕ
Nf(x) :=

∑

|k|≤N

ϕ
( |k|

N

)
f̂(k)eikx, ϕ

( |k|
N

)
=





1, |k| ≤ N
2 ,

2− 2|k|
N , N

2 ≤ |k| ≤ N.

Although Sϕ
N is no longer positive, it is the difference of two positive Fejér

sums,

Sϕ
Nf(x) ≡ 2SF

Nf(x)− SF
N/2f(x),

and as such, it converges uniformly whenever f is merely continuous. At the
same time, the convergence rate of S

ϕ
N increases together with the global

smoothness of f , and we have the spectral error estimate

|Sϕ
Nf(x)− f(x)|

≤
∑

N
2
≤|k|≤N

∣∣∣1− 2|k|
N

∣∣∣ · |f̂(k)|+
∑

|k|>N

|f̂(k)| <∼ ‖f‖Cs
1

N s−1
, for all s > 1.
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Observe that the spectral accuracy of Sϕ
N lies in the fact that the first N/2

coefficients in Sϕ
N are left unchanged,

ϕ(ξ) =





1, 0 ≤ ξ ≤ 1
2 ,

2− 2ξ, 1
2 ≤ ξ ≤ 1.

(9.1)

But what happens when we apply Sϕ
Nf to piecewise smooth f ’s? As we

shall explore in the next few sections, the answer lies with the smoothness
of ϕ(·) or, equivalently, the decay behavior of the mollifier associated with
(9.1), Sϕ

N(x) = 2FN(x)− FN
2
(x).

The preceding examples demonstrate two interchangeable processes which
are available for recovering the rapid convergence in the piecewise smooth
case. These are mollification, carried out in the physical space, and filtering,
carried out in the Fourier space, i.e.,

Φ ∗ (SNf)(x)←→
∑

|k|≤N

ϕ
( |k|

N

)
f̂(k)eikx.

Filtering accelerates convergence when pre-multiplying the Fourier coeffi-
cients by a rapidly decreasing ϕ(|k|/N), as |k| ↑ N . This rapid decay in
Fourier space corresponds to mollification with highly localized mollifiers,
Φ(x) = Sϕ

N (x), in physical space5:

Sϕ
N(x) =

1
2π

∑

|k|≤N

ϕ
( |k|

N

)
eikx.

There is a rich literature on filters and mollifiers as effective tools for Gibbs-
free reconstruction of piecewise smooth functions. Different aspects of this
topic are drawn from a variety of sources, ranging from summability meth-
ods in harmonic analysis to signal processing – and in recent years, image
processing and high-resolution spectral computations of propagation of sin-
gularities and shock discontinuities.

Classical mollifiers of finite polynomial order, O(N−p), are dictated by
a moment condition of order p, (10.1), discussed in Section 10 below. By
properly tunning p = pN to increase with N , one obtains spectrally accu-
rate mollifiers, (Gottlieb and Tadmor 1985) and spectrally accurate filters
(Majda, McDonough and Osher 1978, Vandeven 1991). Improved results
are obtained by a further adaptation of pN to the distance from the edges
(Boyd 1995, Boyd 1996). By carefully tuning pN together with proper G2

cut-off functions, we obtain improved root-exponential accurate mollifiers,

5 Observe that Sϕ
N (x) is the mollifier function associated with, but otherwise different

from, the filtered sum, Sϕ
Nf .
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(Tadmor and Tanner 2002), which are discussed in Section 10.2 below, to-
gether with the corresponding discrete mollifiers in Section 10.3. The roo-
exponential accuracy of these mollifiers is adapted to the interior points,
away from the vicinity of the edges. It can be modified to gain polyno-
mial accuracy up to the edges; the details are outlined in Section 10.4. Fi-
nally, in Section 10.5 we discuss mollifiers based on Gegenbauer expansion
(Gottlieb, Shu, Solomonoff and Vandeven 1992, Gottlieb and Shu 1998, Gelb
and Tanner 2006), with uniform root-exponential accuracy up to the edges.
In Section 11 we revisit the construction of accurate mollifiers based on the
corresponding filters. We conclude in Section 11.2 with exponentially accu-
rate mollifiers (Tanner 2006), based on optimally space-frequency localized
filters.

We now turn to discuss these mollifiers and filters which enable the highly-
accurate, Gibbs-free reconstruction of f from its (pseudo-)spectral content.

10. Spectral mollifiers

10.1. Compactly supported mollifiers

We begin with classical compactly supported mollifiers. Fix p < q and let
Φ = Φp ∈ Cq

0(−π, π), be a unit mass kernel which possesses p− 1 vanishing
moments,

∫ π

−π
xnΦ(x)dx =





1, n = 0,

0, n = 1, . . . , p.
(10.1)

Example 10.1. (Mollifiers satisfying the moment condition). It is easy to
construct such Φ’s satisfying the moment constraints for small p’s. As an
example for arbitrary p, we can set Φp to be the ωα-weighted Gegenbauer
polynomial of degree p, (see (6.12)),

Φp(x) = cα,p

(
1−

(x

π

)2)α− 1
2
C(α)

p

(x

π

)
1(−π,π)(x), α > q.

(Clearly, such a Φp(x) is a Cp
0 -function, which can be normalized to have a

unit mass by a proper choice of cα,p.) The ωα-orthogonality of the C
(α)
k ’s,

(see (6.11)), implies that Φ(α)
p satisfies the moment condition (10.1).

Next, given a mollifier Φ(x) = Φp(x) satisfying (10.1), we form the family
of dilated mollifiers

Φp,δ(x) :=
1
δ
Φp

(x

δ

)
,
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with δ being a free dilation parameter at our disposal; by tuning δ we can
adjust the support of Φp,δ over the symmetric interval (−πδ, πδ). Observe
that Φp,δ retains the same p vanishing moments (10.1) over its restricted
support (−πδ, πδ). To reconstruct f from its spectral projection, we consider
the mollified Fourier projection

Φp,δ ∗ (SNf)(x) ≈ f(x).

We now turn to examine the error Φp,δ ∗ (SNf) − f . By orthogonality,
Φp,δ ∗ (SNf) = SN(Φp,δ) ∗ f , hence we can express the error as the sum of
two terms:

Φp,δ ∗ (SNf)(x)− f(x) ≡

truncation=TN (Φp,δ)∗f︷ ︸︸ ︷(
SN (Φp,δ)− Φp,δ

)
∗ f(x)+

regularization︷ ︸︸ ︷(
Φp,δ ∗ f(x)− f(x)

)

(10.2)

The first term on the right is the usual truncation error, which, by (2.2),
does not exceed

|TN(Φp,δ) ∗ f(x)| <∼ ‖f‖L1 · ‖Φp,δ‖Cq
1

N q−1
<∼ αp,q

1
δq+1N q−1

, (10.3a)

where αp,q = ‖Φp‖Cq .

The second term on the right of (10.2) represents the regularization error,

Φp,δ ∗ f(x)− f(x) =
∫ π

−π

[
f(x− δy)− f(x)

]
Φp(y)dy;

It does not involve any spectral content of f but depends solely on the
regularity of f in the interval (x − πδ, x + πδ). The moment condition
implies that Φp is orthogonal to the first p terms in the Taylor expansion of

f(x− δy)− f(x) =
p∑

n=1

(−1)n

n!
δnf (n)(x)yn +

1
(p + 1)!

δ(p+1)f (p+1)(. . .)yp+1,

and we are left with the following bound on the regularization error :

|Φp,δ ∗ f(x)− f(x)| <∼ βp‖f‖Cp+1(x−δ,x+δ)δ
p+1, (10.3b)

where βp =
1
p!

∫ π

−π

|y|p|Φp(y)|dy.

There are two ways to make both error bounds, (10.3a) and (10.3b), small.
(i) Fix p ∼ q and set δ = δN ∼ 1/

√
N . In this case, we recover f(x) from

the δN -neighborhood of it spectral projection SNf(x),

|Φp,δN
∗ (SNf)(x)− f(x)| <∼ γp

(
1 + ‖f‖Cp(x−δN ,x+δN )

) 1
Np/2

, δN =
1√
N

.
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Here, γp = αp,p + βp. This yields the locally supported mollifiers, Φp,δN
.

Their finite accuracy is determined by the finitely many vanishing moments
in (10.1). To gain spectral accuracy requires an increasingly smooth mollifier
Φp with an increasing number of (almost) vanishing moments. The result
is a family of local mollifiers, ΦpN ,δN

, whose degree p = pN is adjusted as
an increasing function of N . Local mollifiers do not make use of all the
information available in the interval of smoothness enclosing x, and are
therefore replaced by global mollifiers.

(ii) Fix δ by setting

δ = dx, dx :=
1
π

dist
{
x,
{
c1, . . . , cJ

}}
[mod π], (10.4)

so that (x−πδ, x+πδ) is the largest interval of smoothness enclosing x. We
pause here to make the following remark.

Remark 10.2. Note that dx can be calculated from the given (pseudo-
)spectral data. It is here that we use the information about the edges,{
c1, . . . , cJ

}
, detected from SNf and INf .

Once we set δ = dx, we let p vary as an increasing function of N : by choosing
p = pN (which necessarily has an increasing order of smoothness, qN > pN ),
we can try to enforce a spectrally small βpN

in (10.3b) while balancing a
spectrally small ratio αpN ,qN

N1−qN in (10.3a). This balancing act depends
of course on a careful study of the asymptotic behavior of ‖f‖Cp and Φp,
as p increases. The result is a family of adaptive mollifiers, ΦpN ,dx , whose
degree p = pN is adapted as an increasing function of N while their support,
dx, is adapted to the largest interval of smoothness enclosing x. The ΦpN ,dx

are global mollifiers; they achieve (root-)exponential convergence rate by
cancelation.

10.2. Adaptive mollifiers: root-exponential accuracy

Following (Gottlieb and Tadmor 1985), we consider the compactly supported
mollifiers

Φp(x) := ρ2(x)Dp(x), ρ2(x) = e

( cx2

x2 − π2

)

1(−π,π)(x), (10.5)

where ρ2 is the G2 cut-off function imported from (2.5) to localize the Dirich-
let kernel, Dp. Recall that after dilation, this family of mollifiers takes the
form

Φp,dx(x) =
1
dx

ρ2

( x

dx

)
Dp

( x

dx

)

where dx is set by (10.4) and the degree p is at our disposal.
Let us estimate the error, Φp,dx ∗ (SNf)(x) − f(x). Following (10.2),
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we proceed in two steps, starting with the truncation error, TN (Φp,dx)(x).
According to (10.3a), its decay is controlled by the Cq-regularity of Φp,dx .
As the product of a G2-function and the analytic Dirichlet kernel, we deduce
Φp,dx ∈ G2. But we still need to quantify the dependence of its G2-bound
on both p and dx, as we are going to let p increase with N . To this end, we
use the Leibniz rule and (2.6)

|Φ(s)
p (x)| ≤

s∑

k=0

(
s
k

)
|ρ(k)

2 (x)| · |D(s−k)
p (x)|

<∼ s!

(
s∑

k=0

ps−k

(s− k)!
1

(η|x2 − π2|)k

)
· e


 cx2

x2 − π2




<∼
s!

(λρ|x2 − π2|)s
e

(
pλρ|x2 − π2|+ cx2

x2 − π2

)

,

which after dilation reads

|Φ(s)
p,dx

(x)| <∼ s!
(

dx

|c(x)|

)s

· e

(
p|c(x)|

dx
2

+
cλρx

2

c(x)

)

, c(x) := λρ

(
x2 − π2dx

2
)
.

The upper bound on the right hand side is maximized at x = xmax with
x2

max−π2dx
2 ∼ −cπ2dx

2/s, which leads to the G2-regularity bound for Φp,dx

(here, η := cλρπ
2)

sup
x∈(−1,1)

|Φ(s)
p,dx

(x)| <∼ s!
(

s

ηdxe

)s

e

(
pη
s

)
<∼

(s!)2

(ηdx)s
e

(
pη
s

)
s = 1, 2, . . . (10.6)

Equipped with (10.6), we find that the truncation error (10.3a) does not
exceed

|TN(Φ)p,dx(x)| <∼
(s!)2

(ηdxN)s
e

(
pη
s

)
∼
(

s2

ηdxe2N

)s

e

(
pη
s

)
=: M(s, p), (10.7)

for all s > 1. We seek the minimizer, s = smin, such that

∂s(logM(s, p))|s=smin
= log(

s2
min

ηdxN
)− pη

s2
min

= 0.

This yields a rather precise bound on smin which turns out to be essentially
independent of p. Indeed, for the first expression on the right to be positive
we set smin =

√
βηdxN with a free β > 1 at our disposal. The corresponding

optimized p = pN(x) = s2

η log s2

ηδN |s=smin
amounts to

pN(x) = β logβ · dxN. (10.8)
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We conclude with an optimized choice of p = pN (x) of order O(dxN), which
is adapted to the distance between x and the singular support of f . The
resulting exponentially small truncation error bound, (10.7), now reads

|TN(ΦpN ,dx)(x)| <∼
(s!)2

(ηdxN)s
e

(
pN η

s

)
|s=

√
βηdxN ∼

√
dxN

(
β

e

)2
√

βηdxN

.

(10.9a)

In the second step, we turn our attention to the regularization error

Φp,dx ∗ f(x)− f(x)

=
∫ π

−π

F (y;x)︷ ︸︸ ︷
f(x− dxy)ρ2(y)Dp(y)dy− f(x) ≡ SpF (y; x)∣∣y=0

− F (0; x)

in (10.2). Assume that f(·) is piecewise smooth: to simplify matters,
we match its piecewise smoothness with that of ρ2, assuming that f is
a piecewise-G2 function. Our choice of δ = dx in (10.4) guarantees that
f(x− δy) is G2 in the range |y| ≤ π and, hence, so is its product with ρ2(y),
implying the G2-regularity of F (y; ·) = f(· − dxy)ρ2(y). When dealing with
local mollifiers, we use the moment condition (10.1) to bound their regular-
ization error in (10.3b). Instead, dealing with global mollifiers, we now use
the global root-exponential decay (2.7b), which yields η = ηρ,f such that

|ΦpN ,dx ∗ f(x)− f(x)| = |
(
SpF (y; x)− F (y; x)

)
|y=0
| <∼ p e−α

√
ηp.

The same choice of an adaptive p = pN made in (10.8) yields essentially the
same exponentially small bound on the regularization error,

|ΦpN ,dx ∗ f(x)− f(x)| <∼ dxN · e−2
√

β logβ·ηdxN . (10.9b)

The free β can now be further optimized by equilibrating the truncation
and regularization error bounds (10.9a) and (10.9b) where βopt logβopt ∼
1/
√

e. We summarize with the following theorem.

Theorem 10.3. (Root-exponential accurate mollifiers) (Tadmor and
Tanner 2002) Given the Fourier projection, SNf(·) of a piecewise smooth
function, f(·) ∈ piecewise−G2, we consider the 2-parameter family of spec-
tral mollifiers

Φp,δ(x) :=
1
δ
ρ2

(x

δ

)
Dp

(x

δ

)
, ρ2 := e


 cx2

x2 − π2




1(−π,π)(x), c > 0.

(10.10a)

Fix x inside one of the smoothness intervals of f and set the adaptive pa-
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Figure 10.1: Left: Function f(x) in (10.12). Right : Log error of its recon-
struction from SNf, N = 32, 64, 128 using the adaptive mollifier ΦpN ,δ in
(10.10) with pN = dxN/

√
e.

rameterization

δ = dx :=
1
π

dist
{

x,
{
c1, . . . , cJ

}}
[mod π], (10.10b)

p = pN(x) ∼ dxN/
√

e. (10.10c)

Then, there exists a constant η = ηρ,f such that ΦpN ,dx ∗SNf recovers f(x)
with the following root-exponential accuracy:

|ΦpN ,dx ∗ (SNf)(x)− f(x)| <∼ dxNe−0.84
√

ηdxN . (10.11)

Figure 10.1 illustrates the reconstruction of

f(x) =
{

(2e2x − 1− eπ)/(eπ − 1), x ∈ [0, π/2)
− sin(2x/3− π/3), x ∈ [π/2, 2π) (10.12)

using the mollifier (10.10). Although the error estimates which lead to theo-
rem 10.3 serve only as upperbounds for the errors, it is still remarkable that
the (close to) optimal parameterization of the adaptive mollifier is found to
be essentially independent of the properties of f(·).

We conclude this section with several remarks on the root-exponential
accuracy behind the mollifiers ΦpN ,dx in (10.10).

Remark 10.4. (Spectral vs. root-exponential decay) The two-parameter
family of mollifiers, Φp,δ, was introduced by (Gottlieb and Tadmor 1985).
They used spectral decay bounds of the regularization and truncation errors,

|Φp,δ ∗ f(x)− f(x)| <∼ ‖ρ2‖Cs‖f‖Cs(x−δ,x+δ)

(2
p

)s
,

|TNΦp,δ(x)| <∼ ‖ρ2‖Cs

(1 + p

δN

)s
,
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Figure 10.2: Left: Regularization errors (dashed) and truncation errors
(solid) using the spectral mollifier Φp,δ of degree p ∼

√
N with δ. Right:

The same using the adaptive mollifier ΦpN ,dx with pN = dxN/
√

e.

which led to the spectral decay

|Φp,δ ∗ SNf(x)− f(x)|p∼√
N ≤ Consts,dx

1
N s/2

. (10.13)

Although this estimate yields the desired spectral convergence rate sought
for by (Gottlieb and Tadmor 1985), it suffers from coupling the regular-
ization and truncation through the same dependence of p on s and on δ,
which in turn leads to their balance at the pessimistic estimate of pN ∼

√
N .

Indeed, the results in figure 10.2 clearly indicate that the contributions of
the truncation and regularization terms are equilibrated only when p ∼ N .
Moreover, figure 10.2 illustrates that a non-adaptive choice of p = pN

which is independent of dx, e.g., p ∼
√

N , leads to a loss of convergence
in a larger O(N−1/2)-neighborhood of the discontinuity, compared with the
adaptive parameterization pN ∼ dxN , which achieves, in figure 10.1(b),
root-exponential accuracy up to the immediate, O(1/N) vicinity of these
discontinuities.

Remark 10.5. (Piecewise smooth f ’s) The root-exponential error es-
timate (10.11) originates with the (piecewise-)smoothness of f and ρ2 mea-
sures in G2. Similar results apply in general cases when f ∈ piecewise−Gα

or f ∈ piecewise − Cs. In this case, the convergence rate is, respectively,
root-α exponential and s-order polynomial.

Remark 10.6. (Gevrey regularity) Optimal parameterization of ΦpN ,dx

depends in an essential way on the Gevrey regularity of the cut-off function
ρ2(·) ∈ G2. This G2-regularity is reflected for example, in the log-error in
figure 10.1.

Remark 10.7. (Approximate moment condition) To achieve root-exponential
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accuracy, we give up the exact moment condition. Instead, it is satisfied up
to an exponentially small error (see (10.17)). Relaxing the side constraints
imposed on an “approximate identity” will turn out to be a key feature
which enables us to maintain (root-)exponential accuracy.

10.3. Root-exponential accurate reconstruction of pseudo-spectral data

We are interested in reconstruction of a piecewise smooth f(x) from its
Fourier interpolant, INf(x). To this end we consider the discrete convolution

ΦpN ,dx ∗ INf(x) = h

2N∑

ν=0

ΦpN ,dx(x− yν)f(yν), (10.14)

corresponding to (10.11). The overall error, ΦpN ,dx ∗INf(x)−f(x), consists
of aliasing and regularization errors. According to (2.18), the former is
upper bounded by the truncation of f ′, which retains the same piecewise
analyticity properties as f does. We conclude with the following result.

Theorem 10.8. (Reconstruction of piecewise smooth discrete data)
(Tadmor and Tanner 2002). Given equidistant grid-values, {f(xν)}2N

ν=0 of
f(·) ∈ piecewise −G2, we consider the spectral mollifiers (10.10),

Φp,δ(x) :=
1
δ
ρ2

(x

δ

)
Dp

(x

δ

)
, ρ2 := e


 cx2

x2 − π2




1(−π,π)(x), c > 0,

with adaptive parameterization, δ = dx := 1
πdist

{
x,
{
c1, . . . , cJ

}}
[mod π]

and pN (x) ∼ dxN/
√

e. Then, there exists a constant η = ηρ,f , such
that the discrete convolution (10.14) recovers f(x) with the following root-
exponential accuracy:

∣∣∣h
2N∑

ν=0

ΦpN ,dx(x− yν)f(yν)− f(x)
∣∣∣ <∼ (dxN)2e−0.84

√
ηdxN . (10.15)

Observe that, by forming the discrete convolution (10.14), we completely
bypass the need to compute the discrete Fourier coefficients, f̂k . Instead, we
recover f(x) with root-exponential accuracy directly from the given gridval-
ues in the dx-smooth neighborhood enclosing x,

{
f(yν) | |x− yν | ≤ dx

}
.

Thus, by relaxing the property of exact interpolation, INf(x)|x=xν
= f(xν)

, the Fourier interpolant, INf(x), is replaced here by what we might call the
Fourier “expolant”, ΦpN ,dx ∗INf , a root-exponentially accurate approximant
which recovers smooth as well as piecewise smooth f ’s.
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10.4. Polynomial accuracy up to the edges

What happens in the neighborhood of jump discontinuities where dxN ∼ 1?
We observe that the error bound (10.11) is of order O(1) as reflected in figure
10.1. To understand the source of this loss of accuracy, we note that the
two ingredients involved in Φp,δ, namely, ρ2(x) and Dp(x), have essentially
different roles, associated with the two independent parameters δ and p: the
role of ρ2

(
x
δ

)
is to localize the support of Φp,δ(x) to the δ-neighborhood of

x; the Dirichlet kernel Dp(x) is charged, by varying p, with controlling the
increasing number of near vanishing moments of Φp,δ, and hence the overall
superior accuracy of our mollifier. Indeed, since

ρ(0) = 1, (10.16)

we find that the moments of ΦpN ,dx are of order
∫ πdx

−πdx

ynΦpN ,dx(y)dy =
∫ π

−π

(ydx)nρ2(y)DpN
(y)dy =

(
dx

)n
DpN

∗ (ynρ2)(y)|y=0

≈ δn0 +
(
dx

)n inf
n

{
‖ynρ2(y)‖Cn

1
pn−1

N

}
≈ δn0 +

(
dx

)n
e−

√
ηdxN . (10.17)

Consequently, ΦpN ,dx possesses exponentially small moments at all x’s ex-
cept for the immediate vicinity of the jumps where dxN ∼ 1, the same
O(1/N) neighborhoods where the error bound (10.11) is of order O(1). To
enforce a faster convergence in these neighborhoods of the jumps, we ask
that finitely many moments of SNΦpN ,dx vanish exactly,

∫ π

−π

yn(SNΦpN ,dx)(y)dy =





1, n = 0,

0, n = 1, 2, . . . , r.

This amounts to the vanishing moment constraint

unit mass︷ ︸︸ ︷∫ π

−π

ΦpN
(y)dy = 1,

vanishing moments︷ ︸︸ ︷∫ π

−π

SN(yn)ΦpN
(y)dy = 0, n = 1, 2, . . . , r. (10.18)

It follows that adaptive mollifiers satisfying (10.18) recover f(x) with the
desired polynomial order O(dx)r, i.e.,

ΦpN ,dx ∗ SNf(x) = f(x) + log(pN)O(dx)r+1.

The point to note here is that this error estimate holds up to the edges.
Indeed, noting that, for each x, the function f(x− dxy) remains smooth in
the neighborhood |y| ≤ π, the vanishing moments (10.18) imply
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ΦpN ,dx ∗ SNf(x)− f(x) =
∫ dx

−dx

ΦpN ,dxSNf(x− y)dy − f(x)

=
∫ π

−π
ΦpN

(y)SNf(x− dxy)dy − f(x) =
∫ π

−π

[
f(x− dxy)− f(x)

]
(SNΦpN

)(y)dy

∼ (dx)r+1

∫ π

−π
SN (yr+1)ΦpN

(y)dy <∼ log(pN)(dx)r+1.

To enforce (10.18) we modify the cut-off ρ2, setting

ρ̃2(x) =M0ρ2(x), M0 :=
1∫ π

π ΦpN
(y)dy

. (10.19a)

Observe that this normalizes ρ̃2 so that

Φ̃pN ,dx :=
1
dx

(ρ̃2

( x

dx

)
DpN

( x

dx

)
, ρ̃2(x) =M0ρ2(x), (10.19b)

has a unit mass and hence (10.18) holds, at the expense of an exponentially
negligible rescaling of ρ2 in (10.16):

ρ̃2(0) =M0 =
1

(DpN
∗ ρ2)(0)

= 1 + dxNe−2
√

ηpN , pN ∼ dxN/
√

e.

Moreover, since ΦpN ,dx is even, its odd moments vanish, i.e., (10.18) holds
for r = 1. We end up with the following corollary.

Corollary 10.9. (Uniformly quadratic, root-exponential mollifiers)
The adaptive mollifier Φ̃pN ,dx in (10.19) recovers piecewise smooth f(x)
with root-exponential accuracy at interior points of smoothness, and with
quadratic accuracy in the vicinity of jump discontinuities, i.e.,

∣∣Φ̃pN ,dx(x) ∗ (SNf)(x)− f(x)
∣∣ <∼ log(dxN)(dx)2 · e−0.84

√
ηdxN . (10.20)

In a similar manner, we can enforce higher vanishing moments by proper
normalization of the cut-off ρ2(·). To enforce (10.18) with r = 2, for exam-
ple, we use a rescaled cut-off, ρ̃2(x), given by

ρ̃2(x) =M2ρ2(x), M2(x) :=
m2(x)∫ π

−π
, m2(y)ΦpN

(y)dy

(10.21a)

where

m2(x) = 1 + a2x
2, a2 :=

−
∫ π

−π

SN

(
y2
)
ΦpN

(y)dy

∫ π

−π
SN

(
y2
)
y2ΦpN

(y)dy

. (10.21b)
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As before, the resulting mollifier

Φ̃pN ,dx(x) :=
1
dx

ρ̃2

( x

dx

)
DpN

( x

dx

)
, ρ̃2(x) =M2(x)ρ2(x), (10.21c)

is admissible in the sense of satisfying the normalization (10.16) modulo an
exponentially small error term, since the pre-factor M2(0) − 1 is equally
negligible. Now, Φ̃pN ,dx has a unit mass; moreover, the SN -projection of
Φ̃pN ,dx satisfies the exact second vanishing moment (10.18) with r = 2, for

∫ π

−π
SN

(
y2
)(

1 + a2y
2
)
ΦpN

(y)dy

=
∫ π

−π

SN

(
y2
)
ΦpN

(y)dy + a2

∫ π

−π

SN

(
y2
)
y2ΦpN

(y)dy = 0.

Finally, since SN Φ̃pN ,dx is even, its third moment vanishes as well, which
implies t the normalized mollifier (10.21).

Corollary 10.10. (Uniformly quartic, root-exponential mollifiers)
The adaptive mollifier Φ̃pN ,dx in (10.21) recovers piecewise smooth f(x) with
root-exponential accuracy at interior points of smoothness while maintain-
ing a fourth-order convergence rate in the immediate vicinity of the jump
discontinuities,

∣∣Φ̃pN ,dx(x) ∗ (SNf)(x)− f(x)
∣∣ <∼ log(dxN)(dx)4 · e−0.84

√
ηdxN . (10.22)

We can implement a similar upgrade up to the edges in the discrete case.
To this end, we consider the normalized mollifier

Φ̃pN ,dx(x) =
1
dx

ρ̃2

( x

dx

)
DpN

( x

dx

)
, ρ̃2(x) :=Mr(x)ρ2(x). (10.23a)

Here,Mr(x) is a pre-factor of the form

Mr(x) =
mr(x)

∑

ν

mr

(x− yν

dx

)
ΦpN ,dx(x− yν)h

, mr(x) = 1 + a1x + . . . + arx
r,

(10.23b)

whose r free parameters are sought so that the first r discrete moments of
Φ̃pN ,dx(y) vanish,

∑

{yν : |x−yν |≤dx}

(x− yν)nΦpN ,dx(x− yν)h =





0, n = 0,

0, n = 1, . . . , r.
(10.23c)

Observe that, unlike the moment constraint (10.18) associated with the con-
tinuous case, the discrete constraint (10.23c) is not translation invariant and
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Figure 10.3: Left : Log error of reconstructing f from SNf, N = 32, 64, 128
using the 4th-order normalized adaptive mollifier (10.21c) with pN =
dxN/

√
e. Right : Reconstruction of f from its discrete data, INf, N =

32, 64, 128, using the 4th-order normalized mollifier (10.23).

hence requires x-dependent normalizations. The additional computational
effort is minimal, however, due to the discrete summations which are local-
ized in the immediate vicinity of x.

Then, (10.15) is replaced by the improved error estimate

∣∣∣h
2N∑

ν=0

Φ̃pN ,dx(x− yν)f(yν)− f(x)
∣∣∣ <∼ (dx)r+1e−0.84

√
ηdxN , r ∼ Ndx.

(10.24)

Figure 10.3 illustrates the improvement using the normalized adaptive
mollifier (10.21) and its discrete version (10.23), in reconstructing the same
f(x) used in (10.12)

f(x) =
{

(2e2x − 1− eπ)/(eπ − 1), x ∈ [0, π/2),
− sin(2x/3− π/3), x ∈ [π/2, 2π).

Compared with the adaptive mollifier (10.10a) used in figure 10.1, the im-
provement of the error up to the edges is evident.

10.5. Gegenbauer-based mollifiers: exponential accuracy up-to the edges

We want to recover the values of a piecewise analytic f(x) inside each interval
of smoothness, with exponential accuracy, uniformly in x ∈ (cj−1, cj), j =
1, . . . , J . After a proper translation and dilation of each interval, we may
assume that f experiences a single jump discontinuity at |x| = π and we
seek exponential recovery of f(x), |x| ≤ π up to the boundary. We have now
come full circle, returning to out starting point, the Gegenbauer polynomials
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C
(α)
k (x), which formed the moment-satisfying mollifiers in example 10.1. Let

G
(α)
N f(x) :=

N∑

k=0

〈f, C
(α)
k 〉ωαC

(α)
k (x)

denote the truncated Gegenbauer expansion of f(x), x ∈ (−1, 1), where
〈f, C

(α)
k 〉ωα are normalized moments of f with respect to the weight function

ωα(x) = (1 − x2)α− 1
2 . The Gegenbauer reconstruction of f , (see (Gottlieb

and Shu 1998) and the references therein) is the reprojection of SNf(x),

G(α)
p

(
SNf)π(x), gπ := g(πx),

with a proper parameterization of p = pN and α = αN .

Remark 10.11. Observe that the Gegenbauer reconstruction can be eval-
uated in terms of a (non-translatory) convolution with the corresponding
Christoffel-Darboux mollifier (6.15),

G(α)
p

(
SNf)π(x) ∼

∫ 1

−1
K(α)

p (x, y)(SNf)π(y)dy.

To determine these parameters, we upper-bound the error in the standard
fashion, (10.2), by the sum of regularization and truncation errors,

G(α)
p

(
SNf)π(x)− fπ(x) =

regularization︷ ︸︸ ︷
G(α)

p fπ(x)− fπ(x)+

truncation︷ ︸︸ ︷
G(α)

p

(
SNf)π(x)− G(α)

p fπ(x) .

The regularization error does not involve any spectral information of f , but
depends solely on the regularity of f(x) over the interval (−π, π). Since
fπ is assumed to be analytic inside (−1, 1), its Gegenbauer projection is
exponentially accurate up to the boundary,

|G(α)
p fπ(x)− fπ(x)| ≤ cαe−ηp, for all x ∈ (−1, 1). (10.25)

We now come to the truncation error which was shown to be upper-bounded
by (Gottlieb, Shu, Solomonoff and Vandeven 1992):

∥∥G(α)
p

(
SNf)π(x)−G(α)

p fπ(x)
∥∥

L∞(−1,1)
<∼

(ηp

N

)α
.

Thus, to upgrade this polynomial decay in N , one has to increase α = αN

while carefully balancing the growth of cαN
in (10.25) by adjusting p =

pN . To this end, one sets α = θp ∼ N , to obtain exponentially small
regularization and truncation errors (Gottlieb and Shu 1997).

The superior accuracy of the resulting Gegenbauer reconstruction is illus-
trated in figure 10.4, from (Gelb and Gottlieb 2007). It comes with a price,
however: a sufficiently small θ needs to be carefully tuned (e.g., (Gottlieb
and Shu 1997)) so that θ−θη <∼ 1, where η = ηf measures the width of the el-
lipse of analyticity of f in the complex plane (corresponding to the width of
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Figure 10.4: Top: Error in log-log scale of the Gegenbauer reconstruction
G

(α)
p (SNf)π(x) with N = 16, 24, 36 and 52 modes for f(x) = cos(1.4π(x−

1)), x ∈ (−1, 1). Top left : αN = pN = N/4. Top right : αN =
pN = N/5. Bottom left : Gegenbauer reconstruction of I40f(x), where
INf = uN (x, t = 1.5) is a steady discontinuous solution of inviscid Burgers’
equation, computed using a smoothed pseudo-spectral Fourier projection,
∂tuN(xν , t)+∂x

(
IN (uN )2

2

)
(xν , t) = 0 and subject to uN(xν , t = 0) = sin(xν).

Bottom right : Log-log plot of the error.
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the analyticity strip in the periodic case: e.g., (Tadmor 1986)). This trans-
lates into tuning of pN , αN , depending on the different analyticity regions
for each smoothness interval of f . The overall Gegenbauer reconstruction
method becomes rather sensitive to its parameterization (Boyd 2005). The
superior accuracy is achieved at the expense of losing the robustness we had
with the reconstruction methods based on adaptive mollifiers. A more ro-
bust reconstruction was offered recently in (Gelb and Tanner 2006), where
the strongly peaked Gegenbauer weight, ωα(x) = (1 − x2)α− 1

2 , is replaced
by the Froud weight ωm(x) = e−cx2m

.

11. Spectral filters

11.1. Adaptive filters: root-exponential accuracy

In Section 10 we showed how to parameterize an optimal mollifier, ΦpN ,dx(x),
in order to gain the root-exponential convergence for piecewise analytic f ’s.
The key ingredient in our approach was adaptivity, where the δ = dx and
pN ∼ dxN were adapted to the maximal region of local smoothness. Here
we continue the same line of thought by introducing adaptive filters, which
allow the same root-exponential recovery of piecewise analytic functions.

We consider a family of general filters ϕ(·) ∈ Cq(R), operating in Fourier
space:

S
ϕ
N(x) :=

∑

|k|≤N

ϕ

(
|k|
N

)
f̂(k)eikx. (11.1)

They are characterized by two main properties.
(i) First, we seek the rapid smooth decay of ϕ(ξ) as ξ moves away from

the origin. Translated from Fourier to physical space, the operation of Sϕ
Nf

corresponds to mollification against the smoothing kernel Sϕ
N(x)6:

Sϕ
Nf(x) = Sϕ

N ∗ (SNf)(x), Sϕ
N (x) :=

1
2π

∞∑

k=−∞
ϕ
( |k|

N

)
eikx.

Then the rapid smooth decay of ϕ(·) is responsible for Sϕ
N(x), which is

strongly localized around x = 0.
(ii) Second, the mollifier Sϕ

N(x) associated with the filter ϕ(ξ) is required
to satisfy a moment condition, (10.1). This property drives the accuracy by
annihilating an increasing number of the moments of Sϕ

N . As observed in
remark 10.7, however, a key ingredient in the construction of exponentially
accurate mollifiers in Section 10.2 was giving up the exactness of (10.1). In a

6 As before, the function Sϕ
N (x) represents a smoothing kernel associated with but oth-

erwise different from the corresponding filtering operator, Sϕ
Nf .
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similar manner, in our quest for exponentially accurate filters, the moment
condition (10.1) is replaced with the accuracy condition

ϕ(n)(0) = δn0, n = 0, 1, . . . , p. (11.2)

It follows that if the filter ϕ is p-order accurate, then its associated mollifier,
Sϕ

N , satisfies the moment condition to order p.
We can quantify the above statements in a more precise manner, with a

couple of examples which are summarized in the following two claims.

Claim 11.1. (About the rapid decay of Sϕ
N (x)) Let ϕ be a Cq

0 [−1, 1]-
filter. Then, its associated mollifier,

Sϕ
N(x) :=

1
2π

∑

|k|≤N

ϕ
( |k|

N

)
eikx,

is strongly localized near the origin in the sense that

|Sϕ
N(x)| <∼ N‖ϕ‖Cq

1
(|x|N)q

, 0 < |x| ≤ π. (11.3a)

Thus, the smoother ϕ, the better Sϕ
N is localized. As an example, we state

as immediate consequence of (11.3a).

Example 11.2. If ϕ ∈ Gα then Sϕ
N(x) experiences the root-exponential

decay, namely, there exists η = η1 (depending on ϕ) such that, for all |x| ≤ π,

|Sϕ
N(x)| <∼ N min

q

(q!)α

(ηϕ|x|N)q
<∼ (1 + |x|N)e−η1

α
√

|x|N , ϕ ∈ Gα. (11.3b)

At the end of the ‘smoothness scale’, we find the entire function ϕ with
quadratic exponential decay (2.8a); the mollifier SϕδN

N (x), with δN =
√

βN ,
admits exponential decay (2.11a).

We turn to verify claim 11.1 in two different ways. First, we rewrite Sϕ
N(x)

in the form

Sϕ
N(x) =

∑

|k|≤N

ϕ(ξk)
ei(k+1)x − eikx

eix − 1
, ξk := kh, h =

1
N

.

Summation by parts yields

Sϕ
N(x) =

1
eix − 1

∑

|k|≤N

∆hϕ(|ξk|)eikx + a couple of boundary terms,

and by repeating this argument,

Sϕ
N(x) =

hq

(eix − 1)q

∑

|k|≤N

h−q∆q
hϕ(|ξk|)eikx + 2q boundary terms.
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We can safely neglect the small boundary terms (precisely because of (11.2))
and the Cq

0 -regularity of ϕ(·) implies (11.3a).
A second approach is to use the Poisson summation formula (2.9b), ex-

pressing Sϕ
N(x) in terms of Φ, the inverse Fourier transform of ϕ,

Sϕ
N(x) ≡ N

2π

∞∑

j=−∞
Φ(N(x + 2πj)), Φ(x) =

∫

R
ϕ(ξ)eiξxdξ.

This, together with the spectral decay estimate (2.3), yields (11.3a)

|Sϕ
N(x)| <∼ N1−q‖ϕ‖Cq

∞∑

j=−∞

1
|x + 2πj|q

<∼ N‖ϕ‖Cq
1

(N |x|)q
, 0 < |x| ≤ π.

Claim 11.3. (Accuracy and moment condition) If ϕ ∈ Cq
0 [−1, 1] sat-

isfies the accuracy condition of order p < q,

ϕ(n)(0) = δn0, n = 0, 1, . . . , p,

then Sϕ
N(x) satisfies the moment condition to order p,

∫ π

−π

ynSϕ
N(y)dy = δn0, n = 0, 1, . . . , p. (11.4a)

Moreover, Sϕ
N(x) concentrates in a neighborhood of the origin in the sense

that the contribution to its moments outside such a neighborhood is negli-
gible,

∣∣∣
∫ π

|y|≥r
ynSϕ

N(y)dy
∣∣∣ <∼ ‖ϕ‖Cp

1
(rN)p−1

, n = 0, 1, . . . , p. (11.4b)

Thus, the more accurate ϕ is, the better Sϕ
N satisfies the moment condition.

As an example we state the following immediate consequence of (11.4).

Example 11.4. If ϕ = ϕp is a Gα-filter which is accurate of order p =
pN ∼ (rN)1/α, then the unit mass Sϕ

N has vanishing moments to order pN .
Moreover, there exists η2 > 0 (depending on ϕ) such that
∫ π

|y|≥r
ynSϕ

N(y)dy = δn0 + O

(
min

p≤ α√rN

(p!)α

(η2rN)p

)
= δn0 + O

(
e−η2pN

)
, (11.5)

for n ≤ pN ∼ (rN)1/α, ϕ ∈ Gα.

To verify the first part of claim 11.3, we appeal again to the Poisson
formula (2.9b), expressing Sϕ

N(x) in terms of translates of Φ(x):
∫ π

−π
ynSϕ

N(y)dy =
N

2π

∫ π

−π
ynΦ(Ny)dy +

N

2π

∑

j 6=0

∫ π

−π
ynΦ(N(y + 2πj))dy
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=

I1︷ ︸︸ ︷
N

2π

∫ ∞

−∞
ynΦ(Ny)dy −

I2︷ ︸︸ ︷
N

2π

∫

|y|≥π
ynΦ(Ny)dy

+

I3︷ ︸︸ ︷
N

2π

∑

j 6=0

∫ π

−π
ynΦ(N(y + 2πj))dy .

The first term on the right equals I1 = (iN)−nϕ(n)(0), since Φ(x) is the
inverse Fourier transform of ϕ(ξ), and therefore, since ϕ is p-order accurate,
I1 = δn0, n ≤ p. The second and third terms cancel, and (11.4a) follows.
To verify the second part of the claim, we use the Poisson summation formula
again to write

∫

r≤|y|≤π
ynSϕ

N(y)dy =

I1︷ ︸︸ ︷
N

2π

∫

r≤|y|≤π
ynΦ(Ny)dy

+

I2︷ ︸︸ ︷
N

2π

∫

r≤|y|≤π
yn
(∑

j 6=0

Φ(N(y + 2πj))
)
dy .

The usual spectral decay rate |Φ(y)| <∼ ‖ϕ‖Cp · |y|−p implies

|I1| <∼ N1−p‖ϕ‖Cp

∫ π

|y|≥r
yn−pdy <∼ ‖ϕ‖Cp

1
(rN)p−1

n = 0, 1, . . . , p.

Similarly,

|I2| <∼ N‖ϕ‖Cp

∑

j 6=0

πn

(
(2j − 1)Nπ

)p <∼ ‖ϕ‖Cp
1

Np−1
, n = 0, 1, . . . , p,

and (11.4b) follows.

We note that it is rather simple to construct admissible filters satisfying
the last requirement for an arbitrary p; a prototype example is given by the
G2-filters

ϕp(ξ) = e

(
ξp

ξ2 − 1

)

1(−1,1)(ξ). (11.6)

This should be contrasted with the more intricate construction of mollifiers
satisfying the exact moment condition in example 10.1. We are now ready
to state a key result.

Theorem 11.5. (Root-exponential filters) (Tadmor and Tanner 2005)
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Assume that f(·) is piecewise analytic and let S
ϕp

N denote the filtered sum

S
ϕp

N f(x) :=
∑

|k|≤N

ϕp

(
|k|
N

)
f̂(k)eikx, ϕp(ξ) = e

(
ξp

ξ2 − 1

)

1(−1,1)(ξ). (11.7)

We set the order p = pN(x) ∼
√

dxN (pN even) where, as usual,

dx :=
1
π

dist
{

x,
{
c1, . . . , cJ

}}
[mod π],

so that (x − πdx, x + πdx) is the largest interval of analyticity enclosing x.
Then, the adaptive filter S

ϕpN
N f recovers the point values f(x) within the

following root-exponential accuracy:

|SϕpN
N f(x)− f(x)| <∼ dxN · e−η

√
dxN . (11.8)

Here, the constant η = ηϕ,f is dictated by the specific Gevrey and piecewise
analyticity properties of ϕ and f .

Proof. We begin by decomposing the filtering error into the usual trunca-
tion and regularization term (compare (10.2)),

S
ϕpN
N f(·)− f(·) =

truncation︷ ︸︸ ︷
Sϕ

pN
∗ SNf − Sϕ

pN
∗ f +

regularization︷ ︸︸ ︷
Sϕ

pN
∗ f − f .

Here, Sϕ
pN (x) ≡ SϕpN

N (x), is an abbreviated notation for the mollifier associ-
ated with ϕpN

,

Sϕ
pN

(x) :=
1
2π

∑

|k|≤N

ϕpN

( |k|
N

)
eikx.

Since Sϕ
pN is a trigonometric polynomial of degree ≤ N , the truncation error

vanishes:

Sϕ
pN
∗ SNf − Sϕ

pN
∗ f = (SNSϕ

pN
− Sϕ

pN
) ∗ f ≡ 0.

We remain with the regularization error, which we split into two terms:

regularization︷ ︸︸ ︷
Sϕ

pN
∗ f(x)− f(x) =

I1︷ ︸︸ ︷∫

θdx≤|y|≤π
Sϕ

pN
(y)
[
f(x)− f(x− y)

]
dy +

+

I2︷ ︸︸ ︷∫

|y|≤θdx

Sϕ
pN

(y)
[
f(x)− f(x− y)

]
dy . (11.9)

Here θ < 1 is a free parameter at our disposal. The first term on the
right of (11.9) is straightforward: the G2-regularity of ϕp implies the root-
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exponential decay of Sϕ
pN , namely, (11.3b) with pN =

√
dxN implies

|I1| <∼ (1 + θdxN) · e−η1
√

θdxN , η1 = ηϕ > 0. (11.10)

We turn to the second error term, I2. As before, it will be shown to be
small due to cancelation of oscillations with the increasing order p of Sϕ

pN .
To this end we use Taylor’s expansion of f(·)− f(· − y) to express I2 as

I2 =

I21︷ ︸︸ ︷∑

1≤n<θpN

(−1)n

n!
f (n)(x)

∫

|y|≤θdx

ynSϕ
pN

(y)dy

+

I22︷ ︸︸ ︷
(−1)θpN

(θpN )!
f (θpN )(·)

∫

|y|≤θdx

yθpNSϕ
pN

(y)dy . (11.11)

But since ϕpN
is accurate to order pN , (11.4a) and (11.5) with r = θdx and

pN =
√

rN , tell us that
∫

|y|≤θdx

ynSϕ
pN

(y)dy = −
∫ π

|y|≥r

ynSϕ
pN

(y)dy = δn0 + O(e−η2

√
θdxN ),

and hence

|I21| <∼

θpN∑

1

πn

ηn
f

e−η2
√

dxN <∼ e
√

dxN(κ1θ−η2

√
θ), κ1 := log(π/ηf). (11.12a)

Finally, the term I22 is exponentially small since near the origin, |Sϕ
N(y)| <∼

2pN , e.g., by (2.14), and by choosing sufficiently small θ,

|I22| <∼
1

(ηf)θpN
(θdx)θpN 2pN <∼

(
2
(θπ

ηf

)θ
)pN

<∼ e−η
√

dxN . (11.12b)

Result, (11.8), follows from (11.10) and (11.12) by choosing appropriately
small θ = θ(ηf , η1, η2).

Figure 11.1 illustrates the use of the adaptive filter (11.7) to reconstruct
the same function dealt earlier with the adaptive mollifier (10.10) illustrated
in figure 10.1.

11.2. Optimal filters: exponentially accurate reconstruction

To reconstruct piecewise analytic f ’s with exponential accuracy, we turn to
the filters based on the exponential optimality of space-frequency localiza-



The Gibbs phenomenon 371

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Figure 11.1: The function f(x) in (10.12) and the log-error in its reconstruc-
tion from SNf, N = 32, 64, 128 using the adaptive filter S

ϕpN
N in (11.7) with

pN = max(2,
√

dxN). .

tion discussed in Section 2.2,

ϕp,δ(ξ) := e
−

(δξ)2

2
p∑

j=0

1
2jj!

(δξ)2j.

The ϕp,δ are the truncated Hermite expansion of the weighted Gaussian, so
that they form (2p + 1)-order accurate filters in the sense that (11.2) holds.
Since we are going to use adaptive parameterization where both δ = δx and
p increase with N , we now explicitly specify the dependence of ϕ on both.
The corresponding ϕp,δ-filter reads

S
ϕp,δ

N f(x) =
∑

|k|≤N

ϕp,δ

( |k|
N

)
f̂(k)eikx.

It can be expressed in terms of the associated mollifier, Sϕp,δ

N (x),

S
ϕp,δ

N f(x) = Sϕp,δ

N ∗ (SNf)(x), Sϕp,δ

N :=
1
2π

∞∑

k=−∞
ϕp,δ

( |k|
N

)
eikx

We observe that, in this case, neither the filter nor its associated mollifier
are compactly supported. Relaxing the constraint of having compact sup-
port in either physical space — as for Φp = ρ2Dp in (10.5) — or the Fourier
space — as for Φp ↔ ϕp in (11.7), will enable us to obtain exponential
accuracy after appropriate adaptive choice of the free parameters,

δx :=
√

θdxN, pN := θ2dxN, (11.13)

where dx in (10.4) defines the usual analytic neighborhood enclosing x, and
with θ < 1 at our disposal. We use Sϕ

pN ,δx
(x) to abbreviate the notation of
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the corresponding mollifier

Sϕ
pN ,δx

(x) ≡ SϕpN,δx

N (x) =
1
2π

∞∑

k=−∞
ϕpN ,δx

( |k|
N

)
eikx.

To estimate the error,

S
ϕpN,δx

N f(x)− f(x) = Sϕ
pN ,δx

∗ (SNf)(x)− f(x),

we first need to quantify the exponentially rapid decay of Sϕ
pN ,δx

(x) in both
physical and Fourier space.

We appeal to (2.11). Our choice of δx =
√

θdxN corresponds to β = θdx

and the spatial exponential decay in (2.11a) yields

|Sϕ
pN ,δx

(x)| <∼ 2pN

√
N

dx

(
e
−η1

Nx2

θdx + e
−η2

N

θdx

)
, |x| ≤ π.

Since pN = θ2dxN , we have 2pN ≤ eκ2θ2dxN with κ2 := log(2), and the
last inequality confirms the exponential decay of ΦpN ,δx(x) outside the dx-
neighborhood of the origin. Indeed, by choosing sufficiently small θ < 1,

|Sϕ
pN ,δx

(x)| <∼

√
N

dx


e(κ2θ

2 − η1θ)dxN + e

(
κ2θ

2 − η2

θdx
2

)
dxN




<∼

√
N

dx
e−ηdxN, θdx ≤ |x| < π. (11.14)

Next, we consider decay the Fourier space decay of ϕpN ,δx

( |k|
N

)
. Appealing

to (2.11b) with β = θdx, we find

∣∣∣∣ϕpN ,δx

( |k|
N

)∣∣∣∣ <∼ cpN ,Ne
−

θdx

2
|k|

, cpN ,N =
pN∑

j=0

1
j!

(
δ2
x

2

)j

.

The pre-factor cp,N has exponential growth of order

cpN ,N =
θ2dxN∑

j=0

1
j!

(
θdxN

2

)j
<∼ e

ηθ
θdx

2
N

,

but with a coefficient ηθ, which can be made sufficiently small by decreasing
θ. Consequently, the last two inequalities imply that |ϕpN ,δx

( |k|
N

)
| decay

exponentially fast for |k| > N , i.e.,

∣∣∣∣ϕpN ,δx

( |k|
N

)∣∣∣∣ <∼ e
−
(
1− ηθ

N

|k|

)θdx

2
|k|

<∼ e−ηdx|k|, |k| > N. (11.15)
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Equipped with (11.14), (11.15) we are ready to prove the following theorem.

Theorem 11.6. (Exponentially accurate filter) (Tanner 2006) Assume
that f(·) is piecewise analytic, and let

S
ϕp,δ

N f(x) :=
∑

|k|≤N

ϕp,δ

(
|k|
N

)
f̂(k)eikx

denote the filtered Fourier projection, based on the quadratic exponential
filter

ϕp,δ(ξ) = ϕp(δξ) := e
−

(δξ)2

2
p∑

j=0

1
j!

( (δξ)2

2

)j
, (11.16a)

of degree p = pN := θ2dxN , with adaptive scaling δ = δx :=
√

θdxN . Here,

dx =
1
π

dist
{
x,
{
c1, . . . , cJ

}}
[mod π],

defines a πdx-neighborhood of analyticity around x. Then, for sufficiently
small θ < 1, there exists η = ηθ,f > 0 such that the adaptive filter S

ϕpN,δN
N f(x)

recovers f(x) with the following exponential accuracy:

|SϕpN,δx

N f(x)− f(x)| <∼

√
N

dx
e−ηdxN . (11.16b)

The constant η = ηθ,f > 0 is dictated by the specific piecewise analyticity
properties of f . The exponential adaptive filter takes the final form

S
ϕpN ,δx

N f(x) =
∑

|k|≤N




[θ2dxN ]∑

j=0

1
j!

(
θdxk2

2N

)j

 e

−
θdxk2

2N f̂(k)eikx.

Proof. We proceed with an error decomposition similar to (11.9):

S
ϕpN,δx

N f(x)− f(x) = Sϕ
pN ,δx

∗ f(x)− f(x) + Sϕ
pN ,δx

∗ SNf(x)− Sϕ
pN ,δx

∗ f(x)

=

I1︷ ︸︸ ︷∫

θdx≤|y|≤π
Sϕ

pN ,δx
(y)
[
f(x)− f(x− y)

]
dy (11.17)

+

I2︷ ︸︸ ︷∫

|y|≤θdx

Sϕ
pN ,δx

(y)
[
f(x)− f(x− y)

]
dy +

I3=truncation︷ ︸︸ ︷(
SNSϕ

pN ,δx
− Sϕ

pN ,δx

)
∗ f(x) .
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To recall, Sϕp,δ

N (x) abbreviates the mollifier associated with the filter ϕp,δ:

Sϕp,δ

N (x) =
1
2π

∞∑

k=−∞
ϕp,δ

( |k|
N

)
eikx.

We first observe the addition of a truncation error term, I3, which is due
to the fact that ϕp,δ(ξ) is no longer compactly supported on (−1, 1), i.e.,
Sϕp,δ

N (x) is no longer a trigonometric polynomial of degree ≤ N . But the
truncation error term is exponentially small because |ϕp,δ(|k|/N)| are; in-
deed, by (11.15) we have

|I3| <∼
∥∥SNSϕ

pN ,δx
− Sϕ

pN ,δx

∥∥
L∞

<∼
∑

|k|>N

e−ηdx|k| <∼ e−ηdxN . (11.18)

The first term in the error decomposition can be made exponentially small
because of the rapid decay of Sϕ

pN ,δx
(x). Indeed, since the support of the

first integrand is bounded θdx from the origin, we find, thanks to (11.14),

|I1| <∼

∫ π

|y|≥θdx

|Sϕ
pN,δx

(x)|dy <∼

√
N

dx
e−ηdxN . (11.19)

We now come to the second term I2. It can be made small because of the
accuracy of ϕpN ,δx(ξ), which in turn implies that Sϕ

pN ,δx
(x) has vanishing

moments to order pN , so that the local moments of ΦpN ,δx(x) equal
moments associated with I2︷ ︸︸ ︷∫

|y|≤θdx

ynSϕ
pN ,δx

(y)dy = −
∫ π

|y|≥θdx

ynSϕ
pN ,δx

(y)dy;

but the rapid decay of Sϕ
pN ,δx

(y) in (11.14) implies
∣∣∣
∫ π

|y|≥θdx

ynSϕ
pN ,δx

(y)dy
∣∣∣ <∼

√
N

dx
πpN e−ηdxN <∼

√
N

dx
edxN(κ3θ2−η), κ3 = log(π).

The estimate of I2 now follows the lines of theorem 11.5 using a similar
decomposition into two terms, I21 + I22, each of which is exponentially
small due to the rapid decay of Sϕ

pN ,δx
(y) outside the origin, (11.14).

Remark 11.7. (Exponentially accurate mollifier) Observe that the
mollifier Sϕp,δ

N (x) associated with the filter ϕp,δN
(ξ) in (11.16a) is exponen-

tially close to Φδ,p(Ny); consult (2.13) and (2.14a). Accordingly, we find
the exponentially accurate mollifier Φδ,p(Ny): with δ = δx := θ2dxN and
p = pN :=

√
θdxN

Φδx,pN
(Ny) =

1√
θdxN

e
−

Ny2

2θdx ×
[θ2dxN ]∑

j=0

(−1)j

4jj!
H2j

( √Ny√
2θdx

)
. (11.20a)
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Figure 11.2: Top left Function f(x) in (10.12).Top right : Log-error in its
reconstruction from SNf, N = 32, 64, 128 using the optimal filter (11.16b).
Bottom left : Log-error in reconstruction of f from INf, N = 32, 64, 128
using the 4th-order normalized adaptive mollifier (10.21c). Bottom right :
The same using the optimal pseudo-spectral mollifier (11.20b)

It is particularly useful to implement in the discrete case, where we end up
with the exponentially accurate discrete mollifier (Tanner 2006, Theorem
4.2)

∣∣∣h
2N∑

ν=0

Φδx,pN

(
N(x− yν)

)
f(yν)− f(x)

∣∣∣ <∼

√
N

dx
e−ηdxN . (11.20b)

Figure 11.2 from (Tanner 2006), illustrates the superior convergence rate
of the optimal filter (11.16b) (with θ ∼ 1/4) and its associated mollifier
(11.20b).
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