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Abstract.

A single particle tracking technique for studying nondsffte transport is implemented in a new
particle-in-cell gyrokinetic simulation of the entropy dwin a Z pinch geometry. Radial transport
is characterized in terms of the time dependence of the negiaf displacements. The vertical
zonal flow dynamics of the nonlinear phase of the instabdégm to cause subdiffusive transport
for ions during the simulation lengths used here. Electfoliew subdiffusive transport, except
for later times in the case of the largest gradient, wherettttiesport becomes superdiffusive.
The probability distribution of displacements shows a fissiskew and long tails relative to the
Gaussian distribution for both ions and electrons.
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INTRODUCTION

The transport of particles and heat in a turbulent plasmaniaraa of research with
relevance to fusion energy and astrophysical topics. Ibleas proposed [1, 2, 3, 4] that
the nature of the transport is more complex than allowed bgnple Brownian random
walk. In particular, it may be necessary to relax the Markowand Fickian assumptions
of locality in time and space to explain the nondiffusivensport of particles inferred
in some magnetic fusion devices. Here, we examine the seBistent transport of
particles driven by the gyrokinetic entropy mode in a Z piffgh6] as an example
of a simplified geometry with curvature afniB drifts without the added complexity of
trapped particles. We look at equal temperature kinetictelas and ions in the recently
developed gyrokinetid f particle-in-cell code, GSP [7]. A density gradient is used t
drive the entropy mode, which displays a fast linear growtage with streamers in the
radial direction followed by a nonlinear zonal flow statetwiadial transport inhibited.
The metric used here for nondiffusive transport is the valug for the scaling of the
variance of particle displacements in the radial directimf(t) ~ t¥. The value ofy is
related to the parameters of certain models for nondifeus@nsport [8, 3].

Z PINCH ENTROPY MODE

The Z pinch, in which a straight vertical current creates Andyically symmetric
magnetic field, is a useful intermediate step between slabt@kamak geometry. It



FIGURE 1. Geometry for the Z pinch is a mapping of tliey,z) code coordinates to th@,z )
coordinates of the Z pinch. The current is in thdirection, and thé field in purely in the— ¢ direction.

requires less computational expense because of peridicthe field direction and,
thus, elimination of one spatial dimension. At the same tithe Z pinch includes both
the OB and curvature drifts that produce important instabilitrea tokamak. As shown
in Fig. 1, the Z pinch is essentially a cylinder wrapped arbea that theB field lines
are periodic. The static magnetic field is in the toroidagdiion,By = — @, with a radial
dependenc® ~ 1/r. A combination of thellB and curvature drifts gives a drift that
is always perpendicular to both theafd ¢ directions and depends on the sign of the
charged patrticle. Th& x B drift, on the other hand, is generally in both theridZ
directions.

The entropy mode in the Z pinch has been studied by Reétel, [6, 9] using gyroki-
netic theory and nonlinear calculations with the continugyrokinetic code GS2 [10].
This mode exists at weaker pressure gradients than thertegietohydrodynamic in-
terchange mode, and can have growth rates comparable tadgbhbmode when the
density gradient scale length, = —n’/n is in the proper range (Z < Ln/R; < 11/2,
whereR; is the radius of curvature). It was shown that the entropy emréates radial
E x B flows in the linear phase, which break up into zonal flows inztigection during
the nonlinear phase because of a Kelvin-Helmholtz instalfiKKHI).

CODE METHODOLOGY

Particle-in-cell (P1C) methods for numerical solution leétgyrokinetic-Poisson system
are in wide use [11, 12]. Several groups have developed sigdted PIC codes with
a range of capabilities, some with the evolution of the fuditiibution function (full

F = Fy+ o) and some that evolve only the differende (13]) between a Maxwellian
background distribution/y). We use the recently developed and benchmatdkedy-
rokinetic PIC code, GSP [7]. GSP employs the flux tube appnation and computes



the nonlinear evolution of particle weights, = %h?ivVLhVHi’ using the method of char-

acteristics. Here() is the gyro-average at fixed gyro-center positiorNormalization
of the perpendicular coordinate is given byp], the parallel coordinate by/a, ¢ by
ga/Tip and time byvr j /a. Here,p; is the singly-charged ion Larmor radius;; is the
ion thermal velocity, q is the charge on the ions and elesteondT; is the ion tempera-
ture. Notably, in gyrokinetics, parallel (t5) wavelengths are (¢ 1) larger than perpen-
dicular wavelengths. The order parameter for the gyroldrepansion i€ = p;/a [14],
wherea is a typical macroscopic length scale. The gyrokinetic équnas taken to'(€)
in this work.

GSP has been benchmarked against GS2 and has been showagobdyaralleliza-
tion for both strong and weak scaling. Two important advame& SP, which distinguish
it from otherd f PIC codes, are the implementation of a pitch-angle scagg@ollision
operator and a spectral-space evaluation of the gyro-gesraltilization of the collision
operator is not within the scope of this exploratory studywdver, explicity(k, v, /Q)
evaluation for a more efficient and exact gyro-average igitital importance for the
entropy mode. Many PIC codes use a discrete ring averadgefaut points to represent
the ring, which is only accurate for valueslafp < 1. This is insufficient for the entropy
mode in a Z pinchdf. [15]), for which a significant portion of the turbulent engrig
contained in short-wavelength structures.

NONDIFFUSIVE TRANSPORT INDICATIONS

For the results presented here, GSP is run with 20 milliotighas, which is equivalent
to 1220 particles pe(r, z, @) grid point for a 128< 128x 1 run. Assuming a 16x16 reso-
lution in velocity space, this is 4 particles per phase sgatle The box dimensions are
Lr =L, =12566,L, = 6.28 and the timestedt = 0.05 for the second-order predictor-
corrector method used for solving the ODEs from the metharhafacteristics. Two ki-
netic species are used: electrons and singly-charged ibmegual temperaturd; = Te
and mass ratime/m = 5.4 10~%. Since we are interested in following the trajectories
of unique particles, it is necessary to track their posgiafier they leave the box. This
is achieved by recording particle positions at a specifiee interval without taking the
modulus of the position with the box size. This allows padesdo travel further than one
box length but retains the periodicity @f We also output the particle weights after each
time interval and multiply the weight by the position to geétdensity of particles at
that position. A more thorough discussion of the physicahnieg of the displacement
of a simulation particle with a time-varying weight will begsented elsewhere.
Nondiffusive transport in the radial direction is charsizted the mearM(t) =
(Sr(t) xw(t)) and varianceg?(t) = ((dr(t) =w(t) — (dr(t) xw(t)))?) of particle dis-
placementsr(t) = r(t) — r(0) multiplied by the particle weightsy(t). For diffusive
transport, the distribution of step sizes for the randonkuwsbiven by a Gaussian dis-
tribution and the waiting times between steps are given bgissBn distribution. This
leads to a linear scaling in the variance and the mean, satMift) ~ t ando? ~ t. If
transport is nondiffusive, the distributions of step siaed waiting times are possibly
power laws. The scaling in the variance for power law disittitms would therefore be
o2(t) ~ t¥, wherey < 1 indicates subdiffusive transport apd- 1 indicates superdiffu-
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FIGURE 2. (Color online) Electrostatic potentiap, during the nonlinear phase at time points 150
andt = 250. The vertical zonal flow is apparent, but the~ 2T structure seems to allow some radial
transport. From left the right, as the gradientincreasasfr,/R; = {1.0,0.75,0.5}, the wavenumber for
the zonal flow decreases and the amplitude of the field becstrager.

sive transport.

The parameter we are varying in this study is the scale lewfgtine density gradient,
Ly, such that a larger scale length gives a weaker gradieniré@ shows the electro-
static field, g, for three different values df,/R:: 1.0, 0.75 and 0.5, at two time points
in the nonlinear phase, after the KHI has created the vértmaal flows. The wave
number of the zonal flow is alwaysp; ~ 1, but it decreases ds, decreases. This is
consistent with the result in Fig. 4 of [9]. Also consistenthwinear gyrokinetic theory
is the relative magnitude @f at a given time point, which shows that the growth rate of
the entropy mode increases with the strength of the gradiesgems that some struc-
ture appears in thk, direction atL,,/R; = 0.75. This may have an effect on the radial
transport since it opens gaps in the zonal flows.

Direct observation of the full particle distribution furmt (PDF) shows that the
spreading of particles is skewed in th€ direction. The tails of the PDF for the largest
gradient are extended beyond the Gaussian shape of ddftrsiasport, as shown in
Fig. 3. The second moment of the PDF indicates that the simgad displacements
are nondiffusive, as shown in Fig. 4. During the linear phafsithe entropy mode, the
variance of displacements grows extremely quickly becafisee radial streamers. As
the KHI appears in the nonlinear phase, the zonal flows sl@astireading for both
electrons and ions. The ion spreading is subdiffusive fahezlue of the gradient
studied, with two distinct values gfas listed in Table 1 and shown in Fig. 4.

CONCLUSIONS

Grid resolution for r-z space must be carefully checked f&PGimulations. Higher
spatial resolution will significantly increase the numbérparticles required in the
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FIGURE 3. (Color online) Probability distribution of radial dispkaments for 40 000 ions and 40
000 electrons in the Z pinch for the nonlinear phase of theopgtmode. Thedf particle positions
are multiplied by the weights. From outside to inside, thergjth of the gradient decreases, from
Ln/R.={0.5,0.75,1.0}. lons are on the right panel, electrons are on the left. Besyhents are measured
relative to the particle positions at the end of the lineawmgh phase of the instability. A positive skew is
seen for all values of the density gradient, and long tadsadso apparent.
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FIGURE 4. Variance of displacements in the radial direction durirgyrtbnlinear phase of the entropy
mode instability. Thé f particle positions are multiplied by the weights. Two distiregimes in time are
noticed, both with nondiffusive values @f The strength of the gradient decreases from top to bottom,
fromLy/Re = {0.5,0.75,1.0}. The electrons are shown by traces with markers and are slsdfted up
from the ions. Straight lines indicate the valuegdibted in Table 1.

simulation. If the weights are observed to be growing tot (lascause of large fluxes),
the pitch-angle scattering collision operator can be usembhtrol that growth without
being forced into using very large numbers of particles.



TABLE 1. Nondiffusive transport
exponents in the nonlinear phase
for electrons and ions separated into
two regimes in time.

Ln/Re Vi Vi Ve Yee

1.0 05 08 045 12
0.75 02 06 0.2 055
0.5 0.2 0.2 0.25 0.25

Fast growth of the radial variance in the linear phase conoas the presence of radi-
ally directed velocity streamers, which give way to vettmanal flows and subdiffusive
radial spreading. The nonlinear phase shows nondiffusaresport, with two distinct
values ofy at different times for stronger gradients, and only one edtu the weakest
gradient. The ions show strictly subdiffusive spreadinige Electrons in the strongest
gradient experience a transition from subdiffusive to sdiffeisive spreading. Future
work will show how collisions affect the nondiffusive tragt metrics, since collisions
tend to decrease the coherence of zonal flows [9].
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