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Abstract.
A single particle tracking technique for studying nondiffusive transport is implemented in a new

particle-in-cell gyrokinetic simulation of the entropy mode in a Z pinch geometry. Radial transport
is characterized in terms of the time dependence of the variance of displacements. The vertical
zonal flow dynamics of the nonlinear phase of the instabilityseem to cause subdiffusive transport
for ions during the simulation lengths used here. Electronsfollow subdiffusive transport, except
for later times in the case of the largest gradient, where thetransport becomes superdiffusive.
The probability distribution of displacements shows a positive skew and long tails relative to the
Gaussian distribution for both ions and electrons.
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INTRODUCTION

The transport of particles and heat in a turbulent plasma is an area of research with
relevance to fusion energy and astrophysical topics. It hasbeen proposed [1, 2, 3, 4] that
the nature of the transport is more complex than allowed by a simple Brownian random
walk. In particular, it may be necessary to relax the Markovian and Fickian assumptions
of locality in time and space to explain the nondiffusive transport of particles inferred
in some magnetic fusion devices. Here, we examine the self consistent transport of
particles driven by the gyrokinetic entropy mode in a Z pinch[5, 6] as an example
of a simplified geometry with curvature and∇B drifts without the added complexity of
trapped particles. We look at equal temperature kinetic electrons and ions in the recently
developed gyrokineticδ f particle-in-cell code, GSP [7]. A density gradient is used to
drive the entropy mode, which displays a fast linear growth phase with streamers in the
radial direction followed by a nonlinear zonal flow state with radial transport inhibited.
The metric used here for nondiffusive transport is the valueof γ for the scaling of the
variance of particle displacements in the radial direction, σ2

r (t) ∼ tγ . The value ofγ is
related to the parameters of certain models for nondiffusive transport [8, 3].

Z PINCH ENTROPY MODE

The Z pinch, in which a straight vertical current creates a cylindrically symmetric
magnetic field, is a useful intermediate step between slab and tokamak geometry. It



FIGURE 1. Geometry for the Z pinch is a mapping of the(x,y,z) code coordinates to the(r,z,φ)
coordinates of the Z pinch. The current is in the ˆz direction, and theB field in purely in the−φ̂ direction.

requires less computational expense because of periodicity in the field direction and,
thus, elimination of one spatial dimension. At the same time, the Z pinch includes both
the∇B and curvature drifts that produce important instabilitiesin a tokamak. As shown
in Fig. 1, the Z pinch is essentially a cylinder wrapped around so that theB field lines
are periodic. The static magnetic field is in the toroidal direction,B̂0 =−φ̂ , with a radial
dependenceB ∼ 1/r. A combination of the∇B and curvature drifts gives a drift that
is always perpendicular to both the ˆr and φ̂ directions and depends on the sign of the
charged particle. TheE×B drift, on the other hand, is generally in both the ˆr and ẑ
directions.

The entropy mode in the Z pinch has been studied by Ricci,et al [6, 9] using gyroki-
netic theory and nonlinear calculations with the continuumgyrokinetic code GS2 [10].
This mode exists at weaker pressure gradients than the idealmagnetohydrodynamic in-
terchange mode, and can have growth rates comparable to the ideal mode when the
density gradient scale length,Ln = −n′/n is in the proper range (2/7 < Ln/Rc < π/2,
whereRc is the radius of curvature). It was shown that the entropy mode creates radial
E×B flows in the linear phase, which break up into zonal flows in theẑ direction during
the nonlinear phase because of a Kelvin-Helmholtz instability (KHI).

CODE METHODOLOGY

Particle-in-cell (PIC) methods for numerical solution of the gyrokinetic-Poisson system
are in wide use [11, 12]. Several groups have developed sophisticated PIC codes with
a range of capabilities, some with the evolution of the full distribution function (full
F = F0+δ f ) and some that evolve only the difference (δ f [13]) between a Maxwellian
background distribution (F0). We use the recently developed and benchmarkedδ f gy-
rokinetic PIC code, GSP [7]. GSP employs the flux tube approximation and computes



the nonlinear evolution of particle weights,wi ≡
〈δ f 〉R

F0
|Ri,v⊥i,v‖i

, using the method of char-
acteristics. Here,〈〉R is the gyro-average at fixed gyro-center positionR. Normalization
of the perpendicular coordinate is given by 1/ρi, the parallel coordinate by 1/a, φ by
qa/Tiρi and time byvT,i/a. Here,ρi is the singly-charged ion Larmor radius,vT,i is the
ion thermal velocity, q is the charge on the ions and electrons andTi is the ion tempera-
ture. Notably, in gyrokinetics, parallel (tôb) wavelengths areO(ε−1) larger than perpen-
dicular wavelengths. The order parameter for the gyrokinetic expansion isε ≡ ρi/a [14],
wherea is a typical macroscopic length scale. The gyrokinetic equation is taken toO(ε)
in this work.

GSP has been benchmarked against GS2 and has been shown to have good paralleliza-
tion for both strong and weak scaling. Two important advances in GSP, which distinguish
it from otherδ f PIC codes, are the implementation of a pitch-angle scattering collision
operator and a spectral-space evaluation of the gyro-averages. Utilization of the collision
operator is not within the scope of this exploratory study. However, explicitJ0(k⊥v⊥/Ω)
evaluation for a more efficient and exact gyro-average is of critical importance for the
entropy mode. Many PIC codes use a discrete ring average, with four points to represent
the ring, which is only accurate for values ofk⊥ρ ≤ 1. This is insufficient for the entropy
mode in a Z pinch (c.f. [15]), for which a significant portion of the turbulent energy is
contained in short-wavelength structures.

NONDIFFUSIVE TRANSPORT INDICATIONS

For the results presented here, GSP is run with 20 million particles, which is equivalent
to 1220 particles per(r,z,φ) grid point for a 128×128×1 run. Assuming a 16x16 reso-
lution in velocity space, this is 4 particles per phase spacecell. The box dimensions are
Lr = Lz = 125.66,Lφ = 6.28 and the timestepδ t = 0.05 for the second-order predictor-
corrector method used for solving the ODEs from the method ofcharacteristics. Two ki-
netic species are used: electrons and singly-charged ions with equal temperature,Ti = Te
and mass ratiome/mi = 5.4∗10−4. Since we are interested in following the trajectories
of unique particles, it is necessary to track their positions after they leave the box. This
is achieved by recording particle positions at a specified time interval without taking the
modulus of the position with the box size. This allows particles to travel further than one
box length but retains the periodicity ofφ . We also output the particle weights after each
time interval and multiply the weight by the position to get the density of particles at
that position. A more thorough discussion of the physical meaning of the displacement
of a simulation particle with a time-varying weight will be presented elsewhere.

Nondiffusive transport in the radial direction is characterized the meanM(t) =
〈δ r(t)∗w(t)〉 and varianceσ2

r (t) =
〈

(δ r(t)∗w(t)−〈δ r(t)∗w(t)〉)2
〉

of particle dis-
placementsδ r(t) = r(t)− r(0) multiplied by the particle weights,w(t). For diffusive
transport, the distribution of step sizes for the random walk is given by a Gaussian dis-
tribution and the waiting times between steps are given by a Poisson distribution. This
leads to a linear scaling in the variance and the mean, such that M(t) ∼ t andσ2 ∼ t. If
transport is nondiffusive, the distributions of step sizesand waiting times are possibly
power laws. The scaling in the variance for power law distributions would therefore be
σ2(t)∼ tγ , whereγ < 1 indicates subdiffusive transport andγ > 1 indicates superdiffu-



FIGURE 2. (Color online) Electrostatic potential,φ , during the nonlinear phase at time pointst = 150
andt = 250. The vertical zonal flow is apparent, but thekz ∼ 2π structure seems to allow some radial
transport. From left the right, as the gradient increases fromLn/Rc = {1.0,0.75,0.5}, the wavenumber for
the zonal flow decreases and the amplitude of the field becomesstronger.

sive transport.
The parameter we are varying in this study is the scale lengthof the density gradient,

Ln, such that a larger scale length gives a weaker gradient. Figure 2 shows the electro-
static field,φ , for three different values ofLn/Rc: 1.0, 0.75 and 0.5, at two time points
in the nonlinear phase, after the KHI has created the vertical zonal flows. The wave
number of the zonal flow is alwayskrρi ∼ 1, but it decreases asLn decreases. This is
consistent with the result in Fig. 4 of [9]. Also consistent with linear gyrokinetic theory
is the relative magnitude ofφ at a given time point, which shows that the growth rate of
the entropy mode increases with the strength of the gradient. It seems that some struc-
ture appears in thekz direction atLn/Rc = 0.75. This may have an effect on the radial
transport since it opens gaps in the zonal flows.

Direct observation of the full particle distribution function (PDF) shows that the
spreading of particles is skewed in the+r̂ direction. The tails of the PDF for the largest
gradient are extended beyond the Gaussian shape of diffusive transport, as shown in
Fig. 3. The second moment of the PDF indicates that the spreading of displacements
are nondiffusive, as shown in Fig. 4. During the linear phaseof the entropy mode, the
variance of displacements grows extremely quickly becauseof the radial streamers. As
the KHI appears in the nonlinear phase, the zonal flows slow the spreading for both
electrons and ions. The ion spreading is subdiffusive for each value of the gradient
studied, with two distinct values ofγ as listed in Table 1 and shown in Fig. 4.

CONCLUSIONS

Grid resolution for r-z space must be carefully checked for GSP simulations. Higher
spatial resolution will significantly increase the number of particles required in the
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FIGURE 3. (Color online) Probability distribution of radial displacements for 40 000 ions and 40
000 electrons in the Z pinch for the nonlinear phase of the entropy mode. Theδ f particle positions
are multiplied by the weights. From outside to inside, the strength of the gradient decreases, from
Ln/Rc = {0.5,0.75,1.0}. Ions are on the right panel, electrons are on the left. Displacements are measured
relative to the particle positions at the end of the linear growth phase of the instability. A positive skew is
seen for all values of the density gradient, and long tails are also apparent.
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FIGURE 4. Variance of displacements in the radial direction during the nonlinear phase of the entropy
mode instability. Theδ f particle positions are multiplied by the weights. Two distinct regimes in time are
noticed, both with nondiffusive values ofγ. The strength of the gradient decreases from top to bottom,
from Ln/Rc = {0.5,0.75,1.0}. The electrons are shown by traces with markers and are always shifted up
from the ions. Straight lines indicate the values ofγ listed in Table 1.

simulation. If the weights are observed to be growing too fast (because of large fluxes),
the pitch-angle scattering collision operator can be used to control that growth without
being forced into using very large numbers of particles.



TABLE 1. Nondiffusive transport
exponents in the nonlinear phase
for electrons and ions separated into
two regimes in time.

Ln/Rc γ1,i γ2,i γ1,e γ2,e

1.0 0.5 0.8 0.45 1.2
0.75 0.2 0.6 0.2 0.55
0.5 0.2 0.2 0.25 0.25

Fast growth of the radial variance in the linear phase comes from the presence of radi-
ally directed velocity streamers, which give way to vertical zonal flows and subdiffusive
radial spreading. The nonlinear phase shows nondiffusive transport, with two distinct
values ofγ at different times for stronger gradients, and only one value for the weakest
gradient. The ions show strictly subdiffusive spreading. The electrons in the strongest
gradient experience a transition from subdiffusive to superdiffusive spreading. Future
work will show how collisions affect the nondiffusive transport metrics, since collisions
tend to decrease the coherence of zonal flows [9].
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