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Abstract
Theoretical approaches to low-frequency magnetized turbulence in collisionless
and weakly collisional astrophysical plasmas are reviewed. The proper starting
point for an analytical description of these plasmas is kinetic theory, not fluid
equations. The anisotropy of the turbulence is used to systematically derive
a series of reduced analytical models. Above the ion gyroscale, it is shown
rigourously that the Alfvén waves decouple from the electron-density and
magnetic-field-strength fluctuations and satisfy the reduced MHD equations.
The density and field-strength fluctuations (slow waves and the entropy mode in
the fluid limit), determined kinetically, are passively mixed by the Alfvén waves.
The resulting hybrid fluid-kinetic description of the low-frequency turbulence
is valid independently of collisionality. Below the ion gyroscale, the turbulent
cascade is partially converted into a cascade of kinetic Alfvén waves, damped
at the electron gyroscale. This cascade is described by a pair of fluid-like
equations, which are a reduced version of the electron MHD. The development
of these theoretical models is motivated by observations of the turbulence in the
solar wind and interstellar medium. In the latter case, the turbulence is spatially
inhomogeneous and the anisotropic Alfvénic turbulence in the presence of a
strong mean field may coexist with isotropic MHD turbulence that has no mean
field.

1. Introduction

Rapid progress in astronomical instrumentation has made it possible to observe astrophysical
plasmas with ever greater spatial resolution. This has allowed astronomers to probe not only
the bulk, large-scale motions and fields but also to measure, either directly or via line-of-
sight integrated quantities associated with the emission and propagation of light, the small-
scale fluctuations in plasma velocity, density, magnetic and electric fields. These turbulent
fluctuations existing in a broad range of scales are a common property of astrophysical plasmas.
While astrophysical turbulence occurs in a variety of vastly differing conditions, its physical
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characterization is based on a number of universal features. In most cases, the source of energy
is in the form of random stirring or instabilities associated with the scale of the astrophysical
object of interest. The energy injected at large scales cascades to much (typically many orders
of magnitude) smaller scales to be dissipated into heat. A signature property of the turbulent
cascade that connects these vastly disparate scales is power-law spectra of the fluctuating
quantities. These have been observed in the solar wind (SW), e.g. [2, 24, 36], the interstellar
medium (ISM) [1, 35, 42], galaxy clusters [53, 57], etc. In all the cited examples, the reported
spectra had, or were consistent with, Kolmogorov scaling k−5/3.

In this paper, we shall concentrate on the SW and ISM and outline both the qualitative
understanding that currently exists of the turbulence in these media and a formal mathematical
description of this turbulence that must underlie the future analytical and numerical
investigations of it. The proper starting point for such a description is the kinetic plasma
theory because the turbulent plasmas we are interested in are either collisionless (in the SW,
the particle mean free path is comparable to the distance from the Sun to the Earth) or only
weakly collisional, meaning that the mean free path λmfp exceeds the ion gyroradius ρi (in the
ISM, λmfp ∼ 1012 cm, ρi ∼ 109 cm).

In many cases, it is plausible to think of plasma turbulence at scales much smaller than
the energy-injection scale as an ensemble of interacting MHD waves propagating along a
dynamically strong background magnetic field (the mean field) associated with the large scales
[32]. Goldreich and Sridhar [20] (henceforth, GS) conjectured that in such a turbulence, (i) all
electromagnetic perturbations are strongly anisotropic, so that the characteristic wavenumbers
along the field are much smaller than those across it, k‖ � k⊥; and (ii) the interactions
between the Alfvén waves are strong, i.e. the Alfvén time and the nonlinear interaction time
are comparable to each other:

ω ∼ k‖vA ∼ k⊥u⊥, (1)

where ω is the typical frequency of perturbations, vA is the Alfvén speed and u⊥ is the velocity
fluctuation perpendicular to the mean field. This assumption, known as the critical balance,
removed dimensional ambiguity from the MHD turbulence theory and led to the Kolmogorov
scaling of the Alfvén-wave energy spectrum, k−5/3

⊥ and to the relation k‖ ∼ k
2/3
⊥ (for a historical

review, see [50]; in appendix A, we give a brief outline of the GS theory and related scaling
arguments for MHD turbulence).

The anisotropy of MHD turbulence is supported by observations of the SW, the ISM
(see reviews [24, 35]) and by numerical simulations [12, 13, 39, 43]. In what follows, this
anisotropy emerges as the key simplifying feature used to derive a reduced version of the
plasma kinetic theory that describes low-frequency MHD turbulence. This is done in section 2,
where our exposition is motivated by the observations of the collisionless SW. We show how
the descriptions known as reduced MHD (RMHD), kinetic MHD (KMHD), electron MHD
(EMHD) and gyrokinetics fit into a single theoretical framework. In section 3, we explain how
the same approach works for the turbulence in parts of the ISM and how this type of turbulence
differs from the isotropic MHD turbulence, which does not have a mean field. We argue that
the latter kind of turbulence may also be present in the ISM and in galaxy clusters.

2. SW and the collisionless MHD turbulence

Spectra of electromagnetic fluctuations in the SW extend across a broad range of collisionless
scales. Above the ion gyroscale (ρi ∼ 100 km), the spectra of the electric and magnetic
field measured by spacecraft at 1 AU from the Sun fit the k−5/3 law and follow each other
with remarkable precision (figure 1). Since the electric field is directly related to the plasma



Interplanetary and interstellar plasma turbulence A197

Figure 1. Spectra of electric and magnetic fluctuations in the SW—adapted with permission from
figure 3 of [2] (copyright 2005 by the American Physical Society). The bold dashed (red) lines are
reference slopes added by us. We also inserted ‘KMHD’, ‘GK ions’ and ‘ERMHD’ to indicate the
scale intervals where these analytical descriptions are valid: k⊥ � ρ−1

i (see section 2.3), k⊥ ∼ ρ−1
i

(see section 2.6) and ρ−1
i � k⊥ � ρ−1

e (see section 2.7), respectively.

(This figure is in colour only in the electronic version)

velocity (at scales above ρi, it is the E × B drift velocity), this can be interpreted as a signature
of Alfvénic turbulence. How do we describe such a turbulence at collisionless scales? Let us
first consider scales larger than the ion gyroscale.

Note that the plasma beta βi is taken to be of the order of unity in what follows, as is
appropriate both for the SW and the ISM. It is useful to remember that in this regime, the ion
inertial scale is comparable to ρi.

2.1. Kinetic MHD

For kρi � 1, the magnetic field impedes free particle motion across the field lines and the
kinetic theory reduces to the so-called kinetic MHD (KMHD) [34], which has most features of
the MHD description, but allows for anisotropic pressure:

dρ

dt
= −ρ∇ · u, (2)

ρ
du
dt

= −∇
(

p⊥ +
B2

8π

)
+ ∇ · [b̂b̂(p⊥ − p‖)] +

B · ∇B
4π

, (3)

dB
dt

= B · ∇u − B∇ · u, (4)

where ρ is the mass density, u the velocity, B the magnetic field, b̂ = B/B, and d/dt =
∂/∂t + u · ∇. The pressure tensor is calculated kinetically: p⊥ = ∑

s ms

∫
d3v(v2

⊥/2)fs and
p‖ = ∑

s ms

∫
d3v

(
v‖ − u‖)2fs , where the distribution function fs(t, r, v⊥, v‖) satisfies

Dfs

Dt
+

1

B

DB

Dt

v⊥
2

∂fs

∂v⊥
−
(

b̂ · Du⊥
Dt

+
v2

⊥
2

b̂ · ∇B

B
− qsE‖

ms

)
∂fs

∂v‖
= 0, (5)
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where D/Dt = ∂/∂t + (u⊥ + v‖b̂) · ∇ and u⊥ = u − u · b̂b̂. In the above, ms and qs = ±e

are the mass and charge of the particles of species s (ions, electrons). The parallel electric
field E‖ is determined from the quasineutrality condition

∑
s qsns = 0, where ns = ∫

d3v fs

(the number density). Note that ρ = mini and u‖ = (1/ni)
∫

d3v v‖fi, so (2) and the parallel
component of (3) can be derived from (5).

We consider a uniform static equilibrium with a straight mean field in the z direction, so
B = B0ẑ + δB and ρ = ρ0 + δρ, p⊥ = p0 + δp⊥, p‖ = p0 + δp‖, where B0, ρ0, p0 are constant
in space and time.

2.2. The ordering

The anisotropy of the turbulence allows us to systematically expand (2)–(5) in ε ∼ k‖/k⊥.
The key step in setting up such an expansion is to estimate the strength of the fluctuations
by adopting the critical-balance conjecture (1), but as an ordering assumption rather than as a
detailed scaling prescription: this means that the wave propagation terms are assumed to be of
the same order as the nonlinear interaction terms (the turbulence is strong). This leads to the
following ordering:

δρ

ρ0
∼ u⊥

vA
∼ u‖

vA
∼ δp⊥

p0
∼ δp‖

p0
∼ δB⊥

B0
∼ δB‖

B0
∼ ε, (6)

where vA = B0/
√

4πρ0. Two auxiliary ordering assumptions have been made: (i) the
perpendicular velocity and magnetic-field fluctuations are Alfvénic (δB⊥/B0 ∼ u⊥/vA) and
(ii) the Alfvénic fluctuations are of the same order as the magnetic-field-strength (δB‖), density
and pressure fluctuations (in the collisional MHD limit, these correspond to the slow waves
and the entropy mode). The validity of the latter assumption depends on how the turbulence
is stirred. In astrophysical contexts, the large-scale energy input may be assumed to inject
comparable power into all types of fluctuations. We also assume that the characteristic
frequency of the fluctuations is ω ∼ k‖vA. The fast waves are, thus, ordered out, because
their frequency is ∼ k‖vA/ε.

2.3. Alfvén-wave turbulence: reduced MHD

The Alfvénic fluctuations are two-dimensionally solenoidal: since ∇ · u = O(ε2) (from (2))
and ∇ · δB = 0 exactly, separating the O(ε) part of these divergences gives ∇⊥ · u⊥ =
∇⊥ · δB⊥ = 0. Therefore, to lowest order, we may write u⊥ = ẑ × ∇⊥	 and δB⊥/

√
4πρ0 =

ẑ×∇⊥
. Equations for the scalar fields 	 and 
 (the stream and flux functions) are obtained
by substituting these expressions into the perpendicular parts of (3) and (4)—of the former
the curl is taken to annihilate the pressure term. Keeping only the terms of the lowest order,
O(ε2), we get

∂

∂t
∇2

⊥	 + {	, ∇2
⊥	} = vA

∂

∂z
∇2

⊥
 + {
, ∇2
⊥
}, (7)

∂

∂t

 + {	, 
} = vA

∂

∂z
	, (8)

where {	, 
} = ẑ · (∇⊥	 × ∇⊥
) and we have taken into account that, to lowest order,

d

dt
= ∂

∂t
+ u⊥ · ∇⊥ = ∂

∂t
+ {	, . . .}, b̂ · ∇ = ∂

∂z
+

δB⊥
B0

· ∇⊥ = ∂

∂z
+

1

vA
{
, . . .}. (9)

The closed system (7) and (8), known as the reduced MHD (RMHD), was derived originally
from the fluid MHD equations for the studies of stability of fusion plasmas [29, 56]. We have
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now shown that the Alfvén-wave cascade in a collisionless plasma is described by the RMHD
equations (7) and (8) all the way down to the ion gyroscale. The Alfvén waves are decoupled
from the other fluctuation modes: density and magnetic-field-strength fluctuations (slow waves
and entropy fluctuations in the collisional limit; cf [21, 37]).

Introducing Elsasser fields ζ± = 	 ± 
, we may rewrite (7) and (8) as follows

∂

∂t
∇2

⊥ζ± ∓ vA
∂

∂z
∇2

⊥ζ± = −1

2
[{ζ +, ∇2

⊥ζ−} + {ζ−, ∇2
⊥ζ +} ∓ ∇2

⊥{ζ +, ζ−}]. (10)

Thus, the RMHD, like the MHD, supports wave packets of arbitrary shape and magnitude
propagating in one direction at the Alfvén speed vA: if ζ− = 0 or ζ + = 0, the nonlinear
terms vanish and the exact solution for the other Elsasser potential is ζ± = f ±(x, y, z ∓ vAt),
where f ± is an arbitrary function. The Alfvén-wave cascade is a result of interactions between
counterpropagating wave packets [32].

It is this Alfvénic component of the plasma turbulence to which the GS scaling theory
of MHD turbulence (appendix A) applies. In the SW, it is observed via in situ measurements
of the fluctuating magnetic and electric fields [2] (see figure 1). The latter directly probe the
velocity fluctuations because, to lowest order in ε, u⊥ = cE×B/B2 = (c/B0)ẑ×∇⊥φ, where
φ is the scalar potential. Clearly, 	 = cφ/B0.

2.4. Density and magnetic-field-strength fluctuations: kinetic reduced MHD

In order to determine δne and δB‖, we must use the kinetic equation (5)5. The lowest-
order (equilibrium) distribution is taken to be a Maxwellian: F0s = n0 e−v2/v2

th s /(πv2
th s)

3/2,
where vth s = (2T0/ms)

1/2 is the thermal speed of species s and T0 is temperature6. We let
fs = F0s + δfs , where δfs/F0s ∼ ε and apply the ordering (6) to the kinetic equation (5).

The electron kinetic equation can be further simplified by a subsidiary expansion in
(me/mi)

1/2 [48]. To lowest order,

v‖

(
b̂ · ∇δfe +

e

T0
E‖F0e

)
= 0. (11)

Since
∫

d3vδfe = δne, the inhomogeneous solution of this equation is δfe = (δne/n0)F0e (the

electrons are isothermal). The homogeneous solution satisfies b̂ · ∇δfe = 0, i.e. it is constant
along the perturbed field lines and is constant everywhere if the field lines are assumed to be
stochastic. Thus, E‖ = −(T0/en0)b̂ · ∇δne. Substituting this into the ion kinetic equation,
we have, to lowest order, O(ε2),

d

dt

(
δfi − v2

⊥
v2

th i

δB‖
B0

F0i

)
+ v‖b̂ · ∇

(
δfi +

δne

n0
F0i

)
= 0. (12)

5 These quantities cannot be derived from (2) and the parallel part of (4) because (i) (2) has already been used to
determine ∇ · u, a O(ε2) quantity, (ii) the parallel part of (4) contains u‖, whose evolution equation, the parallel part
of (3), requires δp⊥ − δp‖, so u‖ can only be calculated kinetically.
6 The assumption of an isotropic equilibrium was implicit when we adopted an isotropic zeroth-order pressure p0 at
the end of section 2.1. Strictly speaking, in a collisionless plasma such as the SW, the equilibrium distribution does
not have to be Maxwellian or isotropic. The conservation of the first adiabatic invariant, µ = v2

⊥/2B, suggests that
temperature anisotropy with respect to the magnetic-field direction (T⊥0 �= T‖0) may exist. Such anisotropy gives rise
to several high-frequency plasma instabilities [19] and it is plausible to assume that fluctuations associated with them
will scatter particles and limit the anisotropy (e.g. [30]). While there is no definitive analytical theory quantifying this
idea, it has some support in the SW observations that indicate that the core particle distribution is only moderately
anisotropic [40]. We believe, therefore, that assuming a Maxwellian equilibrium is an acceptable simplification. We
also take T0i = T0e (generalizing to T0i �= T0e is straightforward). Note that in plasmas such as the ISM, where
collisions are weak but non-negligible (section 3.1), the Maxwellian equilibrium is rigourously justifiable if the ion
collision rate is ordered νii ∼ ω within the ε expansion [26].
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Finally, we calculate δne and δB‖. From quasineutrality, δne = δni, so

δne

n0
= 1

n0

∫
d3v δfi. (13)

To calculate δB‖, we first revisit the the perpendicular part of (3). In the lowest order,
O(ε), it reduces to the perpendicular pressure balance: ∇⊥(δp⊥ + B0δB‖/4π) = 0, whence
δB‖ = −(4π/B0)δp⊥ (this is why the fast waves disappear under our ordering). Now
δp⊥ = δp⊥e + δp⊥i. Using δfe = (δne/n0)F0e to get δp⊥e = T0δne, equation (13) to express
δne, and calculating δp⊥i from δfi, we find

δB‖
B0

= −βi

2

1

n0

∫
d3v

(
1 +

v2
⊥

v2
th i

)
δfi, (14)

where βi = 8πn0T0/B
2
0 = v2

th i/v
2
A. Note that u‖ = (1/n0)

∫
d3v v‖δfi is not required to solve

the equations, but can be calculated from the solution.
Together with (7) and (8), (12)–(14) form a closed system that describes the anisotropic

turbulence above the ion gyroscale in a collisionless magnetized plasma. We shall refer to this
hybrid fluid-kinetic theory as kinetic reduced MHD (KRMHD). The nonlinearity enters in (12)
via the derivatives defined in (9) and is due solely to interactions with Alfvén waves. Thus,
the cascades of density and magnetic-field-strength fluctuations occur via passive mixing by
Alfvén waves, with no energy exchange (cf [21, 37]).

2.5. Parallel and perpendicular cascades

Let us transform (12) to the Lagrangian frame associated with the velocity field u⊥ of the Alfvén
waves: (t, r) → (t, r0), where r(t, r0) = r0+

∫ t

0 dt ′ u⊥(t ′, r(t ′, r0)). In this frame, d/dt (defined
in (9)) becomes ∂/∂t . Equation (4) has the Cauchy solution: B(t) = [ρ(t)/ρ(0)]B(0) · ∇0r,
where ∇0 = ∂/∂r0. Then b̂ · ∇ = b̂(0) · (∇0r) · ∇ = b̂(0) · ∇0 = ∂/∂l0, where l0 is the
arc length along the magnetic field line taken at t = 0 (if δB⊥(0) = 0, l0 = z0). Thus, in
the Lagrangian frame associated with the Alfvén waves, (12) is linear. It does not, therefore,
support a cascade of δne and δB‖ to smaller scales parallel to the perturbed magnetic field,
i.e. b̂ · ∇ of these fluctuations does not change with time. In contrast, passive mixing by the
Alfvén waves does cause a perpendicular cascade of δne and δB‖—i.e. a cascade in k⊥.

Unlike (12), the RMHD equations (7) and (8) in the Lagrangian frame do not reduce to
a linear form, so the Alfvén waves should develop small scales both across and along the
perturbed magnetic field. The scale-by-scale critical balance (1) conjectured by GS leads to
the relation k‖ ∼ k

2/3
⊥ (see appendix A).

Using the linearity of (12) in the Largangian frame, it is straightforward to show that
density and field-strength fluctuations are damped. The dispersion relation is

ω0

|k‖0|vth i
Z

(
ω0

|k‖0|vth i

)
= −2

(
1 − 1

2βi
±
√

1 +
1

4β2
i

)
, (15)

where Z is the plasma dispersion function and ω0 and k‖0 are the Lagrangian frequency
and wave number (k‖0 ∼ b̂ · ∇). When βi ∼ 1, all solutions of (15) have damping rates
Im(ω0) ∼ −|k‖0|vth i ∼ −|k‖0|vA

7. If no parallel cascade of δne and δB‖ develops, the

7 For βi � 1, the weakest-damped solution is ω0 � −i|k‖0|vA/
√

πβi. This is the anisotropic limit (k‖/k⊥ � 1)
of the more general effect known as Barnes, or transit-time, damping [3]. Note that we carried out the expansion in
small k‖/k⊥ before taking the high-β limit. A more standard approach in the linear theory of plasma waves is to leave
k‖/k⊥ arbitrary and take the high-β limit first [16].
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parallel wavenumber k‖0 of these fluctuations with a given k⊥ does not grow with k⊥, so, for
large enough k⊥, it is much smaller than the parallel wave number k‖A ∼ k

2/3
⊥ of the Alfvén

waves that have the same k⊥. This means that the damping rate is small compared with the
characteristic rate k‖AvA at which the Alfvén waves cause δne and δB‖ to cascade to higher
k⊥. One is then led to conclude that, despite the kinetic damping, δne and δB‖ should have
perpendicular cascades extending to the ion gyroscale.

The validity of this conclusion is not quite as obvious as it might appear. Lithwick and
Goldreich [37] argued that the dissipation of δne and δB‖ at the ion gyroscale would lead these
fluctuations to become uncorrelated at the same parallel scales as the Alfvénic fluctuations
by which they are mixed, i.e. k‖0 ∼ k‖A. The damping rate then becomes comparable to the
cascade rate, causing the cascades of density and field-strength fluctuations to be cut off at
k‖λmfp ∼ 1. In the SW, this would mean that no such fluctuations should be detected above the
ion gyroscale. Observational evidence is at odds with this conclusion: the density fluctuations
appear to follow a k−5/3 law at k⊥ρi � 1 [11], as they should if they are passively mixed and
not damped (see appendix A). The same is true for the fluctuations of the field strength [6,23].
It is not clear why Lithwick and Goldreich’s argument fails, but it is, perhaps, useful to point
out two potential pitfalls: (i) in order for the dissipation terms, not present in (12)–(14), to act,
the density and field-strength fluctuations should reach the ion gyroscale in the first place and
(ii) the damping rate of these fluctuations, even if k‖0 ∼ k‖A, is never much larger than the
cascade rate, so it may be necessary to have a quantitative calculation of the interplay between
the kinetic damping, mixing and the dissipation at k⊥ρi ∼ 1 in order to determine the efficiency
of the cascade.

2.6. Gyrokinetics

At k⊥ρi ∼ 1, the KMHD description breaks down and the Alfvénic fluctuations are no
longer decoupled from the kinetic component of the turbulence. They are mixed with the
fluctuations of the density and magnetic-field strength and dissipated via the collisionless
damping discussed in section 2.5—the observed flattening of the density-fluctuation spectrum
as k⊥ρi approaches unity [11] is likely to be due to this energy exchange with the Alfvén
waves. The damping leads to ion heating, an astrophysically interesting problem in its own
right, e.g. in the theories of coronal heating [14] and accretion discs [45]. The amount of
heating suffered by the ions is a non-trivial issue because only part of the turbulent energy is
dissipated at k⊥ρi ∼ 1. The rest is converted into a cascade of kinetic Alfvén waves (KAW)
that extends to the electron gyroscale—a feature observed in the SW [2, 36]. Quantitative
theory or numerical modelling of the energy dissipation and conversion processes at k⊥ρi ∼ 1
can only be done in the fully kinetic framework. However, the anisotropy of the fluctuations
leads to a substantial simplification of the full plasma kinetic theory. If the ordering based on
the assumptions of anisotropy and critical balance (section 2.2) is applied, the plasma kinetics
reduce to gyrokinetics (GK)—a low-frequency limit well known in fusion science [10]. A
simple derivation of GK based on the ordering of section 2.2 is given in [26], along with a
detailed GK treatment of the linear collisionless damping at k⊥ρi ∼ 1. The GK is a valid
approximation at all scales that are of interest in the context of low-frequency astrophysical
turbulence, down to the electron gyroscale and below. This broad range of validity and the long
experience of GK simulations developed in fusion research make GK an ideal tool for numerical
modelling of astrophysical turbulence8 and a good starting point for analytical theory.

8 A programme of such numerical studies, using the GS2 code (http://gs2.sourceforge.net/), is currently underway
(supported by the US DOE Center for Multiscale Plasma Dynamics).

http://gs2.sourceforge.net/
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The RMHD and KRMHD equations (sections 2.3 and 2.4) can be derived from GK by
means of two subsidiary expansions: first in (me/mi)

1/2, then in k⊥ρi � 19. This and various
other limits of the GK description of turbulence in weakly collisional astrophysical plasmas
are worked out in [52]. While the k⊥ρi ∼ 1 regime requires solving the ion GK equation
(electrons remain isothermal [52]), the KAW turbulence at ρ−1

i � k⊥ � ρ−1
e is described by

another well known fluid model, the EMHD [31].

2.7. KAW: electron reduced MHD

When k⊥ρi � 1, the ions are unmagnetized and have a Boltzmann distribution: fi =
F0i(v) exp(−eφ/T0), where φ is the scalar potential. The electrons are magnetized (k⊥ρe � 1)
and can be shown to be isothermal in essentially the same way as in section 2.4, where (11) is
still valid to lowest order in (me/mi)

1/2. Then

δne

n0
= δni

n0
= −eφ

T0
= − 1

βi

δB‖
B0

. (16)

The last equality follows from the (perpendicular) pressure balance (cf the derivation of (14)),
using δp⊥i = δp⊥e = δneT0 (the ordering of section 2.2, which eliminates the fast waves,
continues to be valid). The EMHD equations now follow from the density and parallel velocity
moments of the electron kinetic equation, which is similar in form to (12). The rigorous GK
derivation is given in [52]. Here, we adopt a more conventional approach by noting that in
the limit k⊥ρe � 1, the magnetic field is frozen into the electron fluid and satisfies (4) with u
replaced by the electron flow velocity ue [31]:

∂B
∂t

= ∇ × (ue × B) = −ue · ∇B + B · ∇ue − B∇ · ue. (17)

We set δB/B0 = (1/vA)ẑ × ∇⊥
 + ẑδB‖/B0 and expand (17) using the ordering of
section 2.2. To lowest order in the k⊥ρi � 1 expansion, ue can be found by taking the
ions to be immobile and using Ampère’s law: ue = ui − j/en0 = −(c/4πen0)∇⊥ × δB.
In the last term in (17), the next-order compressible part of ue is calculated via the electron
continuity equation: ∇ · ue = −(∂/∂t + ue · ∇⊥)δne/n0. Finally, using (16) and denoting
	 = cφ/B0 = (cT0/eB0βi)δB‖/B0 [see (16)], we find that the parallel and perpendicular
components of (17) take the following form

∂	

∂t
= vA

2(1 + βi)
b̂ · ∇(ρ2

i ∇2
⊥
), (18)

∂


∂t
= 2vAb̂ · ∇	, (19)

where b̂ · ∇ is defined in (9). We shall refer to this system as electron reduced MHD
(ERMHD)—the anisotropic limit of EMHD10.

ERMHD describes the cascade of kinetic Alvén Waves (KAW), whose linear dispersion

relation is ω = ±k‖vAk⊥ρ
√

1+βi

i with eigenfunctions 	∓ k⊥ρi
/2
√

1 + βi. To understand the
nonlinear cascade, one may follow the spirit of GS theory, assuming anisotropy (k‖ � k⊥)

9 This means that the k‖/k⊥, (me/mi)
1/2 and k⊥ρi expansions commute: KRMHD can be arrived at by either of

the two routes: full kinetics → k⊥ρi expansion → KMHD → k‖/k⊥ expansion → (me/mi)
1/2 expansion →

isothermal electrons → KRMHD (this paper) or full kinetics → k‖/k⊥ expansion → GK [26] → (me/mi)
1/2

expansion → isothermal electrons → k⊥ρi expansion → KRMHD [52].
10 Equation (17) with ue = −(c/4πen0)∇⊥ × δB and ∇ · ue = 0 (the incompressible limit valid if βi � 1) is what
is normally understood by EMHD. In (18)–(19), βi is arbitrary, i.e. the electron fluid is not assumed to be exactly
incompressible.
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and strong interactions [7, 12]. This argument, reviewed at the end of appendix A, leads to
a k

−7/3
⊥ spectrum of magnetic fluctuations (note that for KAW-like fluctuations, δB‖/B0 ∼

	/ρivA ∼ k⊥
/vA ∼ δB⊥/B0) and to the relation k‖ ∼ k
1/3
⊥ , quantifying the anisotropy.

Both of these scalings have been confirmed by numerical simulations of EMHD [7, 12].
Note that the electric-field fluctuations in this regime should have a k

−1/3
⊥ spectrum because

δE ∼ k⊥φ ∼ k⊥ρi(vA/c)δB. Measurements of the spectra of δB and δE in the SW appear to
corroborate these arguments [2] (see figure 1).

The anisotropic KAW cascade is terminated at k⊥ρe ∼ 1 by the electron collisionless
damping. The proper description of this process is again gyrokinetic [26].

3. Interstellar medium and the two regimes of MHD turbulence

3.1. Weakly collisional limit

The anisotropic MHD turbulence in extrasolar plasmas is largely similar to the turbulence in
the SW. The best studied of these plasma is the ISM, a hot low-density plasma (n0 ∼ 1 cm−3,
T0 ∼ 104 K for the warm ISM phase) that makes up most of our and other galaxies’ diffuse
luminous matter. Turbulence in the ISM is stirred by colliding shock waves caused by
supernova explosions, with the estimated injection scale L ∼ 100 pc ∼ 1020 cm [44]. One
important difference with the SW is that in the ISM, λmfp ∼ 1012 cm is substantially smaller
than L, although it is still larger than ρi ∼ 109 cm. Thus, collisions have to be allowed for.
This can be done by keeping a collision integral in the GK equations and ordering the ion–
ion collision rate to be comparable to the fluctuation frequency, νii ∼ ω [26, 52]. Both the
RMHD equations (7) and (8) above the ion gyroscale and the ERMHD equations (18) and
(19) below it can then still be derived rigourously [52]. Collisions do not appear in these
equations: in (7), this is because in the k⊥ρi � 1 limit the collisional transport is parallel to the
field lines [9]; in (8), the collision terms, which give rise to Ohmic resistivity, are ordered out
via the subsidiary expansion in (me/mi)

1/2; the latter is also true for the ERMHD equations
(18) and (19). The kinetic part of the KRMHD system, (12)–(14), remains intact except that
the ion–ion collision integral appears in (12) [52]. Thus modified, the KRMHD constitutes
a description of anisotropic plasma turbulence valid both in the collisional and collisionless
regime11. To lowest order in k⊥ρi, the collision integral has no spatial derivatives, so (12) is
still linear in the Lagrangian frame of the Alfvén waves and the discussion of the cascades
of δne and δB‖ given in section 2.5 continues to apply. The only difference is that there is
also collisional damping of these fluctuations, which, like the collisionless damping, depends
solely on the variation of δne and δB‖ along the perturbed magnetic-field lines. Indeed, in
the collisional limit k‖0λmfp � 1, (12)–(14) reduce to a set of fluid equations via the standard
Chapman–Enskog expansion procedure [52]:

d

dt

δB‖
B0

= b̂ · ∇u‖ +
d

dt

δne

n0
, (20)

d

dt
u‖ = v2

Ab̂ · ∇δB‖
B0

+ ν‖b̂ · ∇(b̂ · ∇u‖), (21)

d

dt

δTi

T0
= 2

3

d

dt

δne

n0
+ κ‖b̂ · ∇

(
b̂ · ∇δTi

T0

)
, (22)

11 Strictly speaking, this is only true for k‖λmfp � (me/mi)
1/2. At longer parallel scales, the electrons are

adiabatic, rather than isothermal, δTe = δTi, and the standard fluid MHD theory applies. With the ordering of
section 2.2, the equations for the passive part of the turbulence are the same as (20)–(22), except now δne/n0 =
−δTi/T0 − (1/βi)δB‖/B0 [50, 52] and the transport terms are more involved [9].
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where ν‖ ∼ κ‖ ∼ vth iλmfp are the parallel viscosity and thermal diffusivity. The ion
temperature is related to δne and δB‖ via pressure balance, which is written in the form
δne/n0 = −(1/2)δTi/T0 − (1/βi)δB‖/B0. Equations (20)–(22) describe passive cascades of
slow waves (u‖ and δB‖) and entropy fluctuations (δne and δB‖) mixed by Alfvén waves [37]
via the nonlinearities contained in d/dt and b̂ · ∇ and damped by anisotropic diffusion, which
occurs purely along the perturbed magnetic-field lines.

The observational evidence is less exhaustive for the ISM than for the SW. The magnetic
fluctuation spectra, inferred from the structure functions of the Faraday rotation measure,
appear to be consistent with the k

−5/3
⊥ scaling [42], although the accuracy of the measurements

is not high. The electron-density fluctuations, measured by a variety of methods, are anisotropic
and also seem to have a Kolmogorov scaling across the entire range from L ∼ 1020 cm to
ρi ∼ 109 cm—this is sometimes called ‘The Great Power Law in the Sky’ [1, 35]12. Note
that while the density-fluctuation spectrum appears to extend to the ion gyroscale, the scale
separation between λmfp and ρi is not sufficient in the ISM (unlike in the SW) to distinguish this
from a cut-off at k‖λmfp ∼ 1 (see section 2.5), which, using the GS relation k‖ ∼ k

2/3
⊥ L−1/3,

would imply the perpendicular cut-off scale ∼ 108 cm [37].

3.2. Inhomogeneously turbulent ISM: spiral arms versus interarm regions

It is, in fact, simplistic to view the ISM as a homogeneous plasma. The ISM is a spatially
inhomogeneous environment consisting of several phases (of which warm ISM is one) that
have different temperatures, densities and degrees of ionization [15] (and, therefore, different
degrees of importance the neutral particles and the associated ambipolar damping effects
have [37]). While the role of the molecular properties of the multiphase ISM is left outside
the scope of this paper, we would like to discuss briefly another aspect of the ISM’s spatial
inhomogeneity: the fact that it is inhomogeneously turbulent. One of the most prominent spatial
features of our and many other galaxies is the spiral arms. They are denser than the interarm
regions (interarms) by a factor of a few [46] and observed to support stronger turbulence [47],
which is not surprising as the concentration of supernovae is higher. Observations of magnetic
fields in external galaxies show that the spatially regular (mean) fields are stronger in the
interarms, while in the arms, the stochastic fields dominate [4]. A recent study of the rotation-
measure structure functions in our galaxy [22] revealed that in the interarms, the magnetic
energy is large-scale dominated and the structure functions are consistent with Kolmogorov-
like negative spectral slopes, whereas in the arms, the structure functions are flat down to the
resolution limit, meaning that the magnetic energy resides at much smaller scales than in the
interarms. With these results in mind, let us recall that there exist two asymptotic regimes
of MHD turbulence, depending on the relative magnitude of the mean and fluctuating fields,
δBrms/B0:

(I) Anisotropic Alfvénic turbulence. This is the type of turbulence discussed so far in this
paper. It requires that a strong mean field B0 is present. The turbulent fluctuations are
much smaller than the mean field: δBrms � B0, urms � vA (see section 2.2). The
fluctuations are Alfvénic and have a Kolmogorov spectrum, with velocity and magnetic
fields in scale-by-scale equipartition (see appendix A).

(II) Isotropic MHD turbulence. In this case, no mean field is present, i.e. B0 � δBrms.
The dynamically strong stochastic magnetic field is a result of saturation of the small-
scale dynamo—amplification of magnetic field due to random stretching by the turbulent

12 There is, however, some evidence of a k
−3/2
⊥ spectrum as well [55]—see discussion of MHD turbulence scalings

and the polarization-alignment theory [8] in appendix A.
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motions. Both the small-scale dynamo and its saturation are reviewed in [50]. While the
definitive theory of the saturated state remains to be discovered, both physical arguments
and numerical evidence [51, 58] suggest that magnetic field is organized in folded flux
sheets/ribbons. The length of these folds is comparable to the stirring scale, while the
scale of the field-direction reversals transverse to the fold is determined by the dissipation
physics: in MHD with Laplacian viscosity and resistivity operators, it is the resistive
scale13. The structure functions of such magnetic fields are flat [58], with magnetic
energy dominantly at the reversal scale. While Alfvén waves propagating along the folds
may exist [50, 51], the presence of small-scale direction reversals means that there is no
scale-by-scale equipartition between velocity and magnetic fields.

It is tempting to explain the difference between the magnetic-field structure in the arms
and interarms by classifying the MHD turbulence in the interarms as anisotropic (I) and in
the arms as isotropic (II). The observational evidence cited above lends qualitative support
to this idea and so do numerical simulations of an inhomogeneously turbulent MHD fluid [28].
The turbulence in the arms should be closer to the isotropic variety and in the interarms to
the anisotropic one for a number of conspiring reasons: (i) urms is larger in the arms, so
δBrms/B0 ∼ urms/vA should be larger, (ii) the presence of the spiral mean field in galaxies is
usually attributed to some form of mean-field dynamo [33] and it is possible to argue plausibly
that this mechanism produces stronger mean fields in the interarms than in the arms [54] and
(iii) the mean field should be pushed out of the more turbulent region (arms) into the less
turbulent one (interarms) by the diamagnetic effect of turbulence [28, 33, 59].

Finally, we mention another class of weakly collisional astrophysical plasmas where
isotropic MHD turbulence is believed to exist: the intracluster medium (ICM) of the galaxy
clusters. The turbulence in these intergalactic plasmas, which constitute the majority of
the luminous matter in the universe, has, in recent years, been increasingly accessible to
observational astronomy [53, 57]. For further information, the reader is referred to our
review [49].
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Appendix A. Scaling theories of Alfvén-wave turbulence: a brief review

Goldreich–Sridhar turbulence

Here we outline the key steps in the GS theory of anisotropic MHD turbulence [20]. A
more leisurely historical review, which explains how the GS argument is related to the

13 In weakly collisional astrophysical plasmas, such a description is not applicable and the field reversal scale is most
probably determined by more complicated and as yet poorly understood plasma dissipation processes; below this
scale, an Alfvénic turbulence of the kind discussed in section 2 may exist [49].
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earlier (isotropic) theory of Iroshnikov [27] and Kraichnan [32] and to the weak-turbulence
treatment [17, 21], can be found in [50] (see also [18, 38]).

As in the Kolmogorov–Obukhov theory of turbulence, it is assumed that the cascade of
energy is local in scale space and the flux of energy through scale λ in the inertial range is
scale-independent:

δu2
⊥λ

τλ

∼ ε = const, (A.1)

where ε is the Kolmogorov flux, the subscript λ indicates fluctuations associated with the
perpendicular scale λ, and τλ is the cascade time. It is now assumed that the turbulence is
strong, i.e. that the Alfvénic linear propagation terms are comparable to the nonlinear terms:

vA
∂

∂z
∼ u⊥ · ∇⊥ ⇔ vA

l‖λ
∼ δu⊥λ

λ
. (A.2)

This is the critical-balance conjecture, applied scale by scale. It is further assumed that the
cascade time is the same as the Alfvén time: τλ ∼ l‖λ/vA. Together with (A.1)–(A.2), this
immediately implies

δu⊥λ ∼
(

εl‖λ
vA

)1/2

∼ (ελ)1/3 , l‖λ ∼
(

v3
A

ε

)1/3

λ2/3. (A.3)

The first of these scaling relations is equivalent to a k
−5/3
⊥ spectrum of kinetic energy14, the

second quantifies the anisotropy by establishing the relation between the perpendicular and
parallel scales. The fluctuations are Alfvénic, so δB⊥λ ∼ δu⊥λ

√
4πρ0.

Polarization alignment

While the GS theory has acquired the status of the accepted view, the failure of the numerical
simulations [39, 43] to reproduce the k

−5/3
⊥ spectrum has remained a worrying puzzle. The

numerical spectra are closer to k
−3/2
⊥ , but cannot be explained by the Iroshnikov–Kraichnan

theory [27, 32] because the fluctuations are definitely anisotropic. Recently, Boldyrev [8]
proposed a scaling argument that allows an anisotropic Alfvénic turbulence with a k

−3/2
⊥

spectrum. It is based on the conjecture that u⊥ and δB⊥ align at small scales, an idea that has
had some numerical support [5, 39, 41]. The alignment weakens nonlinear interactions and
alters the scalings.

The fluctuations are assumed to be three-dimensionally anisotropic: the three characteristic
scales are the parallel scale l‖ along B0, the displacement ξ⊥ of the fluid element perpendicular
to B0 and parallel to δB⊥, and the scale λ of the variation of u⊥ and δB⊥ perpendicular both
to B0 and to δB⊥. The nonlinear terms in (7) and (8) are

δB⊥ · ∇⊥ ∼ δB⊥λ

ξ⊥λ

, u⊥ · ∇⊥ ∼ δu⊥λθλ

λ
∼ δu⊥λ

ξ⊥λ

, (A.4)

where θλ is the angle between u⊥ and δB⊥, assumed to be small, and ∇⊥ · u⊥ = 0 has been
used to estimate θλ ∼ λ/ξ⊥λ, which is, indeed, small if ξ⊥λ � λ.

Further development is the same as in the Kolmogorov/GS argument reviewed above,
except that in (A.2) and, consequently, in (A.3), λ must be replaced by ξ⊥λ. An additional
assumption is now needed to determine ξ⊥λ. Boldyrev conjectures that u⊥ and δB⊥ will align

14 In terms of parallel wavenumbers, (A.3) means that the spectrum scales as k−2
‖ . Remarkably, recent SW data

analysis confirms this power law [25].
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to the maximum possible extent. This is achieved if the angle θλ between them is comparable
to the characteristic angular wonder of δB⊥:

θλ ∼ λ

ξ⊥λ

∼ ξ⊥λ

l‖λ
⇒ ξ⊥λ ∼ (λl‖λ)1/2. (A.5)

Combining (A.3) (where λ is replaced by ξ⊥λ) and (A.5), one gets

δu⊥λ ∼
(

εl‖λ
vA

)1/2

∼ (εξ⊥λ)
1/3 ∼ (εvAλ)1/4, (A.6)

ξ⊥λ ∼
(

v3
A

ε

)1/4

λ3/4, l‖λ ∼
(

v3
A

ε

)1/3

ξ⊥λ
2/3 ∼

(
v3

A

ε

)1/2

λ1/2. (A.7)

The scaling relation (A.6) is equivalent to a k
−3/2
⊥ spectrum of kinetic energy.

The status of Boldyrev’s theory vis-à-vis real MHD turbulence is uncertain.
Observationally, only in the SW does one measure the spectra with sufficient accuracy to
state that they are consistent with k

−5/3
⊥ but not with k

−3/2
⊥ [2, 24, 36]. From numerical

simulations, it appears that the condition for the k
−3/2
⊥ spectra [39,43] and the alignment scaling

θλ ∼ (ε/v3
A)1/4λ1/4 [41] to emerge is that the mean field is strong (a few times δBrms)15, whereas

in the SW, B0 ∼ δBrms. It is not, however, clear why that should matter asymptotically, because
δB⊥λ/B0 is arbitrarily small for sufficiently small λ.

Scaling of passive scalar fields

The scaling of the passively mixed scalar fields, e.g., density fluctuations δne, is slaved to the
scaling of the Alfvénic fluctuations. Again as in Kolmogorov–Obukhov theory, one assumes
a local-in-scale-space cascade of scalar variance and a constant flux εn of this variance. Then,
analogously to (A.1), δnλ

2/τλ ∼ εn. The cascade time is τλ
−1 ∼ u⊥ ·∇⊥ ∼ vA/l‖ ∼ ε/δu⊥λ

2.
This gives

δnλ ∼
(εn

ε

)1/2
δu⊥λ, (A.8)

so the scalar fluctuations have the same scaling as the turbulence that mixes them.

KAW turbulence

The scaling laws for the KAW turbulence are again obtained following the Kolmogorov–
Obukhov/GS line of reasoning [7,12]. The locality of interactions and constancy of the energy
flux imply, analogously to (A.1),(

δBλ

B0

)2
v2

A

τλ

∼ εB = const. (A.9)

If the turbulence is strong, then, analogously to (A.2),
∂

∂z
∼ δB⊥

B0
· ∇⊥ ⇔ δBλ

B0
∼ λ

l‖λ
. (A.10)

Assuming that the cascade time is comparable to the inverse KAW frequency, τλ ∼ l‖λλ/vAρi,
and combining this with (A.9) and (A.10), we get

δBλ

B0
∼
(

εB

v3
Aρi

)1/3

λ2/3, l‖λ ∼
(

v3
A

εB

)1/3

ρ
1/3
i λ1/3. (A.11)

15 Note however, that [39] had B0 ∼ 100δBrms, reported a k
−3/2
⊥ spectrum, but also found that the anisotropy fit the

GS scaling l‖λ ∼ λ2/3, not l‖λ ∼ λ1/2 that appears in (A.7).
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The first of these scaling relations is equivalent to a k
−7/3
⊥ spectrum of magnetic energy, the

second quantifies the anisotropy. Note that for KAW-like fluctuations, δB‖λ ∼ δB⊥λ ∼ δBλ,
δEλ ∼ (vAρi/c)δBλ/λ and δnλ/n0 ∼ δBλ/B0 (see section 2.7).
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