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ACOUSTIC LIMIT OF THE BOLTZMANN EQUATION:
CLASSICAL SOLUTIONS

JUHI JANG AND NING JIANG

Abstract. We study the acoustic limit from the Boltzmann equation in the framework
of classical solutions. For a solution Fε = µ+ ε

√
µfε to the rescaled Boltzmann equation

in the acoustic time scaling

∂tFε + v ·∇xFε =
1

ε
Q(Fε, Fε) ,

inside a periodic box T
3, we establish the global-in-time uniform energy estimates of fε in

ε and prove that fε converges strongly to f whose dynamics is governed by the acoustic
system. The collision kernel Q includes hard-sphere interaction and inverse-power law
with an angular cutoff.

1. Introduction

The acoustic system is the linearization about the homogeneous state of the compress-
ible Euler system. After a suitable choice of units, in this model the fluid fluctuations
(ρ, u, θ) satisfy

(1.1)

∂tρ + ∇x ·u = 0 , ρ(x, 0) = ρ0(x) ,

∂tu + ∇x(ρ + θ) = 0 , u(x, 0) = u0(x) ,

∂tθ + 2
3
∇x ·u = 0 , θ(x, 0) = θ0(x) .

In this paper, we consider the periodic boundary condition, i.e x ∈ T
3.

This is one of the simplest system of fluid dynamical equations imaginable, being es-
sentially the wave equation. It may be derived directly from the Boltzman equation as
the formal limit of moment equations for an appropriately scaled family of Boltzmann
solutions as the Knudsen number tends to zero.

The program initiated by Bardos, Golse, and Levermore [1] was to derive the fluid
limits which include incompressible Stokes, Navier-Stokes, Euler equations, and acoustic
system from the DiPerna-Lions renormalized solutions. This program has been developed
with great success during the last decade, here we only mention [1, 2, 3, 4, 10, 11, 12]
among others. In particular, Golse and Saint-Raymond [4] justified the first complete
incompressible Navier-Stokes limit from the Boltzmann equation without any compactness
assumption. On the other hand, higher order approximations with the unified energy
method have been shown by Guo [7] to give rise to a rigorous passage from the Boltzmann
equations to the Navier-Stokes-Fourier systems beyond the Navier-Stokes approximations
in the framework of classical solutions.

Surprisingly, the status for rigorously deriving the acoustic system from DiPerna-Lions
solutions of Boltzmann equation is still incomplete. This is mainly because DiPerna-
Lions solutions do not have some properties which are formally satisfied such as local
conservation laws. In [2], the acoustic limit was justified for Maxwell molecular collisions
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under some assumption on the amplitude of fluctuations. The result was significantly
improved in [3] to a large class of hard potentials and the assumption of the amplitude
of fluctuations was relaxed to the order εm with m > 1

2
. Recently, the borderline case

m = 1
2

was covered in [9] for soft potentials.
In this paper, we take the first step to establish the acoustic limit from the Boltzmann

equation in the framework of classical solutions. Working with classical solutions has
several advantages than working with the DiPerna-Lions solutions. For example, the
classical solutions automatically satisfy local conservation laws and have good regularities;
the nonlinear interaction can be controlled by linear dissipation for small solutions.

We employ the nonlinear energy method developed by Guo [5, 6, 7] in recent years
which has been turned out to be applicable to other problems, for instance see [8]. We
justify the limit for the case that the amplitude of fluctuation is ε, which is not being
optimal. However, our work has advantages in that we can treat for a large class of
collision kernels in a rather uniform way, including hard potentials, soft potentials and
especially Landau kernels which were not covered in the framework of the renormalized
solutions. Furthermore, different dissipation mechanisms for macroscopic parts and mi-
croscopic parts in the limit process are clearly presented by the energy dissipation rate.
To our best knowledge, this is the first global-in-time acoustic limit result in the class of
classical solutions.

The paper is organized as follows: the next section contains the formulation of the
Boltzmann equation for different collision kernels. Some preliminary lemmas regarding
the estimates on the collision operators are listed in Section 3. Then we give a very brief
formal derivation. Section 5 and 6 are devoted to the energy estimates.

2. Formulation and Notations

Consider the following rescaled Boltzmann equation:

∂tFε + v ·∇xFε =
1

ε
Q(Fε, Fε)(2.1)

In this paper, as in [7], we consider two classes of collision kernels, the first is given by
the standard Boltzmann collision operator Q(G1, G2):

Q(G1, G2) =

∫

R3×S2

|u − v|γB(θ)|{G1(v
′)G2(u

′) − G1(v)G2(u)}dudω,(2.2)

where −3 < γ ≤ 1, B(θ) ≤ C| cos θ|, v′ = v − [(v − u) · ω]ω and u′ = u + [(v − u) · ω]ω.

These collision operators cover hard-sphere interactions and inverse-power law with an
angular cutoff. The hard potential means 0 ≤ γ ≤ 1, and the soft potential means
−3 < γ < 0.

The second class is the Landau collision operator

(2.3) Q(G1, G2) =
∑

1≤i,j≤3

∂i

∫

φij(v − u){G1(u)∂jG2(v) − G2(v)∂jG1(u)}du ,

where ∂i = ∂vi
and

(2.4) φij ≡
1

|v|

{

δij −
vivj

|v|2
}

.
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Let

Fε = µ + ε
√

µfε

be the perturbation around the global Maxwellian

µ =
1

(2π)3/2
e−

|v|2

2 .

Define L, the linearized collision operator, as follows

Lg ≡ − 1√
µ
{Q(µ,

√
µg) + Q(

√
µg, µ)},(2.5)

and the nonlinear collision operator Γ as

Γ(g, h) =
1√
µ
Q(

√
µg,

√
µh).(2.6)

The rescaled Boltzmann equation (2.1) is written in terms of the perturbation fε as
follows:

∂tfε + v · ∇xfε +
1

ε
Lfε = Γ(fε, fε).(2.7)

We first recall that the operator L ≥ 0, and for any fixed (t, x), the null space of L is
generated by [

√
µ, v

√
µ, |v|2√µ]. For any function f(t, x, v) we thus can decompose

f = Pf + (I −P)f

where Pf (the hydrodynamic part) is the L2
v projection on the null space for L for given

(t, x). We can further denote

(2.8) Pf = {ρf (t, x) + v · uf(t, x) + ( |v|
2

2
− 3

2
)θf(t, x)}√µ.

Here we define the hydrodynamic field of f as

[ρf (t, x), uf(t, x), θf (t, x)]

which represents the density, velocity and temperature fluctuations physically.
In order to state our results precisely, we introduce the following norms and notations.

We use 〈· , ·〉 to denote the standard L2 inner product in R
3
v, while we use (· , ·) to denote

the L2 inner product either in T
3 × R

3 or in T
3 with corresponding the L2 norm ‖ · ‖.

We use the standard notation Hs to denote the Sobolev space W s,2. For the Boltzmann
collision operator (2.2), we define the collision frequency as

(2.9) ν(v) ≡
∫

R3

|v − v′|γµ(v′)dv′,

which behaves like |v|γ as |v| → ∞. It is natural to define the following weighted L2 norm
to characterize the dissipation rate.

|g|2ν ≡
∫

R3

g2(v)ν(v)dv, ‖g‖2
ν ≡

∫

T3×R3

g2(x, v)ν(v)dvdx.

For the Landau operator (2.3). let

(2.10) σij(v) =

∫

R3

1

|v − u|

{

δij −
(v − u)i(v − u)j

|v − u|2
}

µ(u) du .
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The natural norms are given by the σ-norm

|g|2σ ≡
∑

1≤i,j≤3

∫ 3

R

{σij∂
ig∂jg + σijv

ivjg2} dv ,

‖g‖2
σ ≡

∑

1≤i,j≤3

∫

R3×T3

{σij∂
ig∂jg + σijv

ivjg2} dvdx .

We also use a unified notation for the dissipation as |g|D and ‖g‖D to denote either |g|ν
or |g|σ, ‖g‖ν or ‖g‖σ respectively. Let the weight function w(v) be

w(v) ≡ |(1 + |v|2) 1

2 .

For both Boltzmann and Landau kernels we have

(2.11) ‖w−3/2g‖ ≤ C‖g‖D .

See [7] for the details.
In order to be consistent with the hydrodynamic equations, we define

(2.12) ∂β
α = ∂α1

x1
∂α2

x2
∂α3

x3
∂β1

v1
∂β2

v2
∂β3

v3

where α = [α1, α2, α3] is related to the space derivatives, while β = [β1, β2, β3] is related
to the velocity derivatives.

We now define instant energy functionals and the dissipation rate.

Definition 1 (Instant Energy) For N ≥ 8, for some constant C > 0, an instant

energy functional EN,l(f)(t) ≡ EN,l(t) satisfies:

(i) for hard potentials with 0 ≤ γ ≤ 1 in (2.2)

(2.13)
1

C
EN,l(t) ≤

∑

|α|≤N+1

‖∂αf‖2 +
∑

|α|+|β|≤N

‖wl∂β
αf‖2 ≤ CEN,l(t) ;

(ii) for soft potentials with −3 < γ < 0 in (2.2)

(2.14)
1

C
EN,l(t) ≤

∑

|α|≤N+1

‖∂αf‖2 +
∑

|α|+|β|≤N

‖w{l−|β|}|γ|∂β
αf‖2 ≤ CEN,l(t) ;

(iii) for the Landau kernel (2.3),

(2.15)
1

C
EN,l(t) ≤

∑

|α|≤N+1

‖∂αf‖2 +
∑

|α|+|β|≤N

‖wl−|β|∂β
αf‖2 ≤ CEN,l(t). ,

for all functions f(t, x, v).

Definition 2 (Dissipation Rate) For N ≥ 8, the dissipation rate DN(t) is defined as

(i) for hard potentials with 0 ≤ γ ≤ 1 in (2.2)

DN,l(t) =
∑

|α|≤N+1

(

ε‖∂αPf‖2(t) +
1

ε
‖∂α(I − P)f‖2

ν

)

+
1

ε

∑

|α|+|β|≤N

‖wl∂β
α(I− P)f‖2

ν;

(2.16)
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(ii) for soft potentials with −3 < γ < 0 in (2.2)

DN,l(t) =
∑

|α|≤N+1

(

ε‖∂αPf‖2(t) +
1

ε
‖∂α(I − P)f‖2

ν

)

+
1

ε

∑

|α|+|β|≤N

‖w{l−|β|}|γ|∂β
α(I− P)f‖2

ν.

(2.17)

(iii) for the Landau kernel (2.3),

DN,l(t) =
∑

|α|≤N+1

(

ε‖∂αPf‖2(t) +
1

ε
‖∂α(I − P)f‖2

ν

)

+
1

ε

∑

|α|+|β|≤N

‖wl−|β|∂β
α(I− P)f‖2

ν.

(2.18)

Both the instant energy and the dissipation rate are carefully designed to capture
the structure of the rescaled Boltzmann equation (2.1) in the acoustic regime. For soft
potentials, EN,l and DN,l involve a weight function in v which depends on the number
of velocity derivatives ∂β . This is designed to control the velocity derivatives for the
streaming terms v · ∇x by a weak dissipation rate as proposed in [7]. In particular, the
dissipation rates in (2.16), (2.17), (2.18) in which the hydrodynamic part has ε scale
reflect that we do not observe the dissipation in the limit, which is exactly the case of the
acoustic system.

We state the main result of this article.

Theorem 2.1. Let N ≥ 8. Let 0 < ε ≤ 1
4

be given. Suppose fε(0, x, v) = f ε
0 (x, v) satisfies

the mass, momentum, and energy conservation laws

(2.19) (f ε
0 , [1, v, |v|2]√µ) = 0,

and Fε(0, x, v) = µ + εf ε
0 (x, v) ≥ 0. If EN,l(f

ε)(0) is sufficiently small, then there exists

a unique global-in-time solution fε(t, x, v) to (2.7), and moreover there exists an instant

energy functional EN,l(f
ε)(t) such that

(2.20)
d

dt
EN,l(f

ε)(t) + DN,l(f
ε)(t) ≤ 0.

In particular, we have the following global energy bound:

(2.21) sup
0≤t≤∞

EN,l(f
ε)(t) ≤ EN,l(f

ε)(0).

Remark 2.2. The global existence of solutions fε to (2.7) follows from the a priori global
energy bound (2.21) by rather standard method. In this article, we focus on proving the
uniform bound.

Remark 2.3. Note that due to the weak dissipation (2.16), we cannot deduce the time
decay estimate from the energy inequality (2.20) unlike the incompressible Navier-Stokes-
Fourier case in [7, 8]. Indeed, physically, we do not expect any time decay of our instant
energy EN,l(f

ε)(t), since the acoustic system preserves the initial energy for all time. See
Lemma 4.2.
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3. Basic estimates of collision operators

In this section, we sum up some basic estimates of collision operators for various kernels
considered in this paper. The proofs can be found in [7]. The following is the coercivity
of L.

Lemma 3.1. There exists δ > 0 such that for any f ∈ L2(R3
v)

〈Lf, f〉 ≥ δ|(I −P)f |2ν .(3.1)

Lemma 3.2. For hard potential with γ ≥ 0, there exits C|β|, C > 0 such that

(3.2) (w2l∂β
αLf , ∂β

αf) ≥ 1

2
‖wl∂β

αf‖2
ν − C|β|‖f‖2

ν ,

(3.3) (∂β
αΓ(f, g), ∂β

αh) ≤ C{‖wl∂β1

α1
f‖ · ‖wl∂β2

α2
g‖ν + ‖wl∂β1

α1
g‖ · ‖wl∂β2

α2
f‖ν}‖wl∂β

αh‖ν .

where l ≥ 0, and summation is for |α| + |β| ≤ N with β1 + β2 ≤ β and α2 ≤ α compo-

nentwise.

Lemma 3.3. For the inverse power law with −3 < γ < 0, for any l ≥ 0, there exist

C|β| , C > 0 such that

(3.4) (w{2l−2|β|}|γ|∂β
αLf , ∂β

αf) ≥ 1

2
‖w{l−|β|}|γ|∂β

αf‖2
ν − C|β|‖f‖2

ν ,

(w{2l−2|β|}|γ|∂β
αΓ(f, g) , ∂β

αh) ≤ C{‖w{l−|β1|}|γ|∂β1

α1
f‖ · ‖w{l−|β2|}|γ|∂β2

α2
g‖ν

+ ‖w{l−|β1|}|γ|∂β1

α1
g‖ · ‖w{l−|β2|}|γ|∂β2

α2
f‖ν}

× ‖w{l−|β|}|γ|∂β
αh‖ν ,

(3.5)

where the summation is taken over |α1| + |β1| ≤ |α| + |β| ≤ [N
2
] + 4, and α2 ≤ α and

β2 ≤ β componentwise.

Lemma 3.4. For the Landau kernel, for any l ≥ 0, there exist C|β|, C > 0, such that

(3.6) (w2l−2|β|∂β
αLf , ∂β

αf) ≥ 1

2
‖wl−|β|∂β

αf‖2
σ − C|β|‖f‖2

σ ,

(w2l−2|β|∂β
αΓ(f, g) , ∂β

αh) ≤ C{‖wl−|β1|∂β1

α1
f‖ · ‖wl−|β2|∂β2

α2
g‖σ

+ ‖wl−|β1|∂β1

α1
g‖ · ‖wl−|β2|∂β2

α2
f‖σ}

× ‖wl−|β|∂β
αh‖σ ,

(3.7)

where the summation is taken over |α| + |β| ≤ N , and β1 + β2 ≤ β and α2 ≤ α compo-

nentwise.

As a direct consequence of (3.3) in the above lemmas, we can estimate the pure spatial
derivatives for the nonlinear collision operator Γ.

Lemma 3.5. Let ζ(v) be a smooth function that decays exponentially, then there is a given

instant energy functional EN,0(f) and Cζ > 0, such that for summation over α1 +α2 = α,

|α| ≤ N ,

(∂αΓ(f , g) , ∂αh) ≤ {E1/2
N,0(f)‖∂α2

g‖ν + E1/2
N,0(g)‖∂α2

f‖ν}‖∂α3
h‖ν ,

∥

∥

∥

∥

∫

∂αΓ(f , g)ζ dv

∥

∥

∥

∥

≤ Cζ{E1/2
N,0(f) · ‖∂α2

g‖ν + E1/2
N,0(g) · ‖∂α2

f‖ν} .
(3.8)
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4. Derivation of Acoustic System

In this section, we derive the acoustic system as the hydrodynamic limit of solutions
fε to the rescaled Boltzmann equation (2.7). Since we have the uniform energy bound in
ε by Theorem 2.1, there exists the unique limit f of fε in ε and we remark that due to
higher order energy bound, all the limits in the below are strongly convergent. First, by
letting ε → 0 in (2.7), one finds that Lf = 0. Thus f can be written as follows:

f = {ρ + v · u +
(

|v|2

2
− 3

2

)

θ}√µ,

for ρ, u, θ are functions of t, x. In order to determine the dynamics of ρ, u, θ, project

(2.7) onto {√µ, v
√

µ, ( |v|
2

2
− 3

2
)
√

µ}: by collision invariants, first we get

〈∂tfε + v · ∇xfε, {1, v, ( |v|
2

3
− 1)}√µ〉 = 0

and take the limit ε → 0 to get

〈∂tf + v · ∇xf, {1, v, ( |v|
2

3
− 1)}√µ〉 = 0

Since f = Pf , this is equivalent to

∂tρ + ∇x ·u = 0

∂tu + ∇x(ρ + θ) = 0

∂tθ + 2
3
∇x ·u = 0

(4.1)

Thus we have shown the following proposition on the mathematical derivation of the
acoustic system from the Boltzmann equation.

Proposition 4.1. Assume that Fε = µ + ε
√

µfε solves the rescaled Boltzmann equation

(2.1) where fε is obtained from Theorem 2.1. Then there exists the hydrodynamic limit

f of fε such that f = Pf , and furthermore its macroscopic variables ρ, u, θ solve the

acoustic system (4.1).

The acoustic system is a linear system and it is globally well-posed in the Sobolev space.

Lemma 4.2. The acoustic system (4.1) is globally well-posed in Hs(T3) space, for any

s ≥ 0. Moreover, we obtain the following estimates:

(4.2)
d

dt
{||ρ1||2Hs + ||u1||2Hs + 3

2
||θ1||2Hs} = 0

Proof. The existence of solutions can be verified, for instance by solving the ordinary
differential equation after taking Fourier transform in x ∈ T

3. The energy estimates give
rise to the conservation of energy (4.2). The uniqueness is easily deduced. �

5. uniform spatial energy estimates

In this section, we shall establish a uniform spatial energy estimate for fε, a solution
to (2.7):

∂tfε + v · ∇xfε +
1

ε
Lfε = Γ(fε, fε)

For the convenience, we rewrite the fluid part Pfε as follows:

Pfε = {aε(t, x) + bε(t, x) · v + cε(t, x)|v|2}√µ

Our goal is to estimate aε(t, x), bε(t, x), and cε(t, x) in terms of (I − P)fε.
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Lemma 5.1. Assume fε is a solution to (2.7) satisfying conservation of mass, momentum

and energy:

(5.1) (f ε(t), [1, v, |v|2]√µ) = 0.

Then there exists C1 > 0 such that

ε
∑

|α|≤N+1

‖∂αPfε‖2 ≤ ε
dG(t)

dt
+

C1

ε

∑

|α|≤N+1

‖∂α(I− P)fε‖2
ν + C1ε

∑

|α|≤N

‖∂αΓ(fε, fε)‖‖2

(5.2)

where G(t) is defined as

−
∑

|α|≤N

∫

T3

(〈(I− P)∂αfε , ζij〉 · ∂j∂αbε − 〈(I − P)∂αfε , ζc〉 · ∇x∂αcε) dx

−
∑

|α|≤N

∫

T3

(〈(I −P)∂αfε , ζ〉 · ∇x∂αaε − ∂αbε · ∇x∂αaε) dx .

(5.3)

Here ζij(v) , ζc(v) , ζa(v) are some fixed linear combinations of the basis

[
√

µ, vi
√

µ, vivj
√

µ, vi|v|2
√

µ]

for 1 ≤ i , j ≤ 3, and f‖ is the L2
v projection of f onto the subspace generated by the same

basis. It is obvious that |G(t)| ≤ CEN,0(t).

Proof. The proof is similar to the one of Lemma 6.1 in [7]. For the clear presentation of
this article, we provide the key ingredients and estimates and point out the difference.
From the conservation of mass, momentum, and energy (5.1), it follows that

∫

T3

aε(t, x)dx =

∫

T3

bε(t, x)dx =

∫

T3

cε(t, x)dx = 0

By Poincaré inequality, it suffices to estimate

∇x∂αaε, ∇x∂αbε, ∇x∂αcε,

for |α| ≤ N . First, we use the local conservation laws: Multiply
√

µ, v
√

µ, |v|2√µ with
(2.7) and integrate in v ∈ R

3. By the collision invariants, we obtain

∂ta
ε =

1

2
〈v · ∇x(I − P)fε, |v|2

√
µ〉

∂tc
ε +

1

3
∇x · bε = −1

6
〈v · ∇x(I − P)fε, |v|2

√
µ〉

∂tb
ε + ∇xa

ε + 5∇xc
ε = −〈v · ∇x(I −P)fε, v

√
µ〉

(5.4)

The second ingredient of the proof is the macroscopic equations. By plugging fε =
Pfε + (I − P)fε into (2.7), we get

{∂ta
ε + ∂tb

ε · v + ∂tc
ε|v|2}√µ + v · {∇xa

ε + ∇xb
ε · v + ∇xc

ε|v|2}√µ

= −{∂t + v · ∇x}(I − P)fε −
1

ε
L(I −P)fε + Γ(fε, fε)

Fix t, x, and compare the coefficients on both sides in front of

[
√

µ, vi
√

µ, vivj
√

µ, vi|v|2
√

µ].
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Then we get the following macroscopic equations as

∂ic
ε = lεc + hε

c(5.5)

∂tc
ε + ∂ib

ε
i = lεi + hε

i(5.6)

∂ib
ε
j + ∂jb

ε
i = lεij + hε

ij , i 6= j(5.7)

∂tb
ε
i + ∂ia

ε = lεbi + hε
bi(5.8)

∂ta
ε = lεa + hε

a(5.9)

Here the linear parts lεc , l
ε
i , l

ε
ij, l

ε
bi, l

ε
a are of the form

(5.10) 〈−{∂t + v · ∇x}(I− P)fε −
1

ε
L(I− P)fε, ζ〉

where ζ is a linear combination of the basis

[
√

µ, vi
√

µ, vivj
√

µ, vi|v|2
√

µ],

and accordingly, hε
c, h

ε
i , h

ε
ijh

ε
bi, h

ε
a are defined as 〈Γ(fε, fε), ζ〉 with the same choices of ζ .

Following the proof of Lemma 6.1 in [7], we first deduce

‖∇∂αbε‖2 ≤ − d

dt

∫

T3

〈(I− P)∂αf ε, ζij〉 · ∂j∂αbεdx

+ C‖∇x∂α(I −P)f ε‖ν{‖∇∂αaε‖ + ‖∇∂αcε‖}
+ C{‖∂α(I− P)f ε‖2

ν + ‖∇x∂α(I −P)f ε‖2
ν}

+
C

ε
{‖∇x∂α(I − P)f ε‖ν + ‖∂α(I −P)f ε‖ν}‖∇∂αbε‖ + C‖∂αhε

‖‖ · ‖∇∂αbε‖.

Note that the difference from the estimate in [7] so far is that the scaling parameter ε

is absent in the t-derivative term due to the acoustic scaling. Now multiply it by ε and
apply the Cauchy-Schwarz inequality to get

ε‖∇∂αbε‖2 ≤ −ε
d

dt

∫

T3

〈(I − P)∂αf ε, ζij〉 · ∂j∂αbεdx +
ε2

2
{‖∇∂αaε‖2 + ‖∇∂αcε‖2}

+
C

ε
{‖∇x∂α(I − P)f ε‖2

ν + ‖∂α(I −P)f ε‖2
ν} + Cε‖∂αhε

‖‖2 +
ε

2
‖∇∂αbε‖2.

By the same token, we obtain the similar estimates on ∇∂αcε and ∇∂αaε as follows:

ε‖∇∂αcε‖2 ≤ −ε
d

dt

∫

T3

〈(I − P)∂αf ε, ζc〉 · ∇x∂αcεdx +
ε2

2
‖∇∂αbε‖2

+
C

ε
{‖∇x∂α(I − P)f ε‖2

ν + ‖∂α(I −P)f ε‖2
ν} + Cε‖∂αhε

‖‖2 +
ε

2
‖∇∂αcε‖2,

ε‖∇∂αaε‖2 ≤ −ε
d

dt
{
∫

T3

〈(I− P)∂αf ε, ζ〉 · ∇x∂αaεdx +

∫

T3

∂αbε · ∇x∂αaεdx} +
ε2

2
‖∇∂αbε‖2

+
C

ε
{‖∇x∂α(I − P)f ε‖2

ν + ‖∂α(I −P)f ε‖2
ν} + Cε‖∂αhε

‖‖2 +
ε

2
‖∇∂αaε‖2.

By absorbing the hydrodynamic terms in the right hand sides into the left hand sides, we
obtain the desired estimates (5.2). �

Next we perform the energy estimates of spatial derivatives.
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Lemma 5.2. Assume that fε is a solution to equation (2.7) and satisfies (5.1); then there

exists a constant C1 ≥ 1 such that the following energy estimate is valid:

d

dt
{C1

∑

|α|≤N+1

‖∂αfε‖2 − εδG(t)} + δ
∑

|α|≤N+1

{ε‖∂αPfε‖2 +
1

ε
‖∂α(I −P)fε‖2

ν}

≤ 2C1

∑

|α|≤N+1

(∂αΓ(fε, fε), ∂αfε) + εδ
∑

|α|≤N

‖∂αΓ(fε, fε)‖‖2

≤ C{E1/2
N,0(fε) + EN,0(fε)}DN,0(fε)

(5.11)

Proof. We take ∂α of (2.7) and sum over α to get

1

2

d

dt
‖∂αfε‖2 +

δ

ε
‖(I −P)∂αfε‖2

ν ≤ (∂αΓ(fε, fε), ∂αfε) .

By Lemma 5.1, there is a constant C1 ≥ 1 such that

δ

2ε

∑

|α|≤N+1

‖∂α(I− P)fε‖2
ν

≥ δε

2C1

∑

|α|≤N+1

‖∂αPfε‖2 − δε

2C1

dG

dt
− δε

2

∑

|α|≤N

‖∂αΓ(fε, fε)‖‖2 .

(5.12)

Multiply by C1 and collecting terms, we deduce the first inequality in (5.11). By the
nonlinear estimate in (3.8), it is easy to derive that for |α| ≤ N

(5.13) ‖∂αΓ(fε , fε)‖‖2 ≤ CEN,0(fε)DN,0(fε) ,

and

(∂αΓ(fε , fε) , ∂αfε) ≤ CE1/2
N,0(fε)‖ε1/2∂αfε‖ν‖ε−1/2∂α(I − P)fε‖ν

≤ CE1/2
N,0(fε)DN,0(fε) .

(5.14)

Thus, the second inequality in (3.8) follows and this finishes the proof of the lemma. �

6. The first order remainder

In this section we finish the proof of Theorem 2.1. We already established a pure spatial
energy estimate for all collision kernels in Lemma 5.2. For general derivatives ∂β

α, different
collision kernels require different weight functions, we treat separately in two cases: hard
potentials then soft potentials and Landau kernel.

6.1. Proof of hard potential case of Theorem 2.1.

Proof. First note that for the hydrodynamic part Pfε,

‖∂β
αPfε‖ ≤ C‖∂αPfε‖

which has been estimated in Lemma 5.2. In order to prove Theorem 2.1, it remains to
estimate the remaining microscopic part ∂β

α(I −P)fε for |α| + |β| ≤ N . We take ∂β
α of
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equation (2.7) and sum over |α| + |β| ≤ N to get

∂t∂
β
α(I − P)fε + v · ∇x∂

β
α(I −P)fε +

1

ε
∂β

αL(I− P)fε

+

(

∂t∂
β
αPfε + v ·∇x∂

β
αPfε +

(

β1

β

)

∂β1
v ·∇x∂

β−β1

α fε

)

= ∂β
αΓ(fε , fε) ,

(6.1)

where |β1| = 1. Taking the inner product with w2l∂β
α(I − P)fε, we get

d

dt

{

1

2
‖wl∂β

α(I − P)fε‖2

}

+
1

ε
(w2l∂β

αL(I − P)fε , ∂β
α(I − P)fε)

+

(

∂t∂
β
αPfε + v ·∇x∂

β
αPfε +

(

β1

β

)

∂β1

α v ·∇x∂
β−β1

α fε , w2l∂β
α(I −P)fε

)

≤
(

w2l∂β
αΓ(fε , fε) , ∂β

α(I − P)fε

)

.

(6.2)

By the linear estimate (3.2), we have

(6.3)
1

ε
(w2l∂β

αL(I− P)fε , ∂β
α(I− P)fε) ≥

1

2ε
‖wl∂β

α(I −P)fε‖2
ν −

C

ε
‖∂α(I −P)fε‖2

ν .

From the local conservation laws (5.4) and the estimate (5.13),

‖w2l∂t∂
β
αPfε‖ ≤ C

∑

|α|≤N

(‖∂t∂αaε‖ + ‖∂t∂αbε‖ + ‖∂t∂αcε‖)

≤ C





∑

|α|≤N+1

‖∂αfε‖ν +
∑

|α|≤N

‖∂αhε
‖‖





≤ C





∑

|α|≤N+1

‖∂αfε‖ν + E1/2
N,0(fε)D1/2

N,0(fε)



 .

(6.4)

We also have

(6.5) ‖w2lv ·∇x∂
β
αPfε‖ ≤ C

∑

|α|≤N

‖∇x∂αPfε‖ ≤ C
∑

|α|≤N+1

‖∂αPfε‖ .

Thus the first two inner products in the second line of (6.2) is bounded by

(6.6)
1

8ε

∑

|α|+|β|≤N

‖∂β
α(I − P)fε‖2

ν + C





∑

|α|≤N+1

‖∂αfε‖2
ν + E1/2

N,0(fε)DN,0(fε)



 .

The last term in the second line of (6.2) is bounded by

C|(∂β1v ·∇x∂
β−β1

α (I −P)fε , w2l∂β
α(I −P)fε)|

+ C|(∂β1v ·∇x∂
β−β1

α Pfε , w2l∂β
α(I − P)fε)|

≤ C‖∇x∂
β−β1

α (I −P)fε‖2
ν +

1

8ε
‖wl∂β

α(I − P)fε‖2
ν + Cε‖∂αPfε‖2

≤ CεDN,l(fε) +
1

8ε
‖wl∂β

α(I− P)fε‖2
ν + Cε‖∂αPfε‖2 ,

(6.7)

since ν(v) is bounded from below for hard potential.
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Now we estimate the nonlinear term in (6.2). By the nonlinear estimate in (3.3),

(w2l∂β
αΓ(fε, fε) , ∂β

α(I− P)fε) ≤ CE1/2
N,l (fε)‖ε1/2wl∂αfε‖ν‖ε−1/2wl∂α(I −P)fε‖ν

≤ CE1/2
N,l (fε)DN,l(fε) .

(6.8)

Using the coercivity of L (3.1) and absorbing a total of 1
ε
‖wl∂β

α(I − P)fε‖2
ν from the

right-hand side, we have
∑

|α|+|β|≤N

(

d

dt

{

1

2
‖wl∂β

α(I − P)fε‖2

}

+
1

4ε
‖wl∂β

α(I −P)fε‖2
ν

)

≤ C
∑

aaN

‖∂αfε‖2
ν + C

(

E1/2
N,l (fε) + ε

)

DN,l(fε) .

(6.9)

Multiplying (6.9) by a factor and adding a large multiple K of (5.11), we have

d

dt
(K{C1

∑

|α|≤N+1

‖∂αfε‖2 − εδG(t)} + 2
∑

|α|+|β|≤N

‖wl∂β
α(I − P)fε‖2) + DN,l(fε)

≤ CK

(

E1/2
N,l (fε) + EN,l(fε) + ε

)

DN,l(fε) .

(6.10)

Notice that

(6.11) ‖wl∂β
αPfε‖2 ≤ C‖∂αPfε‖2 ≤ C‖∂αfε‖2 ,

and

(6.12) G(t) ≤ C
∑

aaN

‖∂αPfε‖(‖I− P∂αfε‖ + ‖∂αPfε‖) .

Thus we can redefine the instant energy by

(6.13) EN,l(fε) = K{C1

∑

|α|≤N+1

‖∂αfε‖2 − εδG(t)} + 2
∑

|α|+|β|≤N

‖wl∂β
α(I −P)fε‖2

for ε sufficiently small. By a standard continuity argument, we deduce our main estimate
(2.20) by letting EN,l(fε) be sufficiently small initially. �

6.2. Proof of soft potential and Landau cases for Theorem 2.1. We follow the
same idea as in the hard potential case to establish (2.20) for both soft potential and Lan-
dau kernels. First, for soft potential cases, we take inner product of w2(l−|β|)|γ|∂β

α(I− P)fε

with the equation (6.1) and sum over |α| + |β| ≤ N to get

d

dt

{

1

2
‖w{l−|β|}|γ|∂β

α(I − P)fε‖2

}

+
1

ε
(w2{l−|β|}|γ|∂β

αL(I− P)fε , ∂β
α(I − P)fε)

+

(

∂t∂
β
αPfε + v ·∇x∂

β
αPfε +

(

β1

β

)

∂β1

α v ·∇x∂
β−β1

α fε , w2{l−|β|}|γ|∂β
α(I− P)fε

)

≤
(

w2{l−|β|}|γ|∂β
αΓ(fε , fε) , ∂β

α(I − P)fε

)

,

(6.14)

for |β1| = 1. By the linear estimate (3.4), we have

1

ε
(w2{l−|β|}|γ|∂β

αL(I− P)fε , ∂β
α(I − P)fε)

≥ 1

2ε
‖w{l−|β|}|γ|∂β

α(I− P)fε‖2
ν −

C

ε
‖∂α(I −P)fε‖2

ν .

(6.15)



ACOUSTIC LIMIT 13

From the local conservation laws (5.4), we have

(6.16) ‖w2{l−|β|}|γ|∂t∂
β
αPfε‖ ≤ C





∑

|α|≤N+1

‖∂αfε‖ν + E1/2
N,0(fε)D1/2

N,0(fε)



 .

We also have

(6.17) ‖w2{l−|β|}|γ|v ·∇x∂
β
αPfε‖ ≤ C

∑

|α|≤N

‖∇x∂αPfε‖ ≤ C
∑

|α|≤N+1

‖∂αPfε‖ .

Note that ‖ · ‖ν is equivalent to ‖wγ/2 · ‖, the first two inner products in the second line
of (6.14) is bounded by

(6.18)
1

8ε

∑

|α|+|β|≤N

‖w{l−|β|}|γ|∂β
α(I− P)fε‖2

ν + C





∑

|α|≤N+1

‖∂αfε‖2
ν + E1/2

N,0(fε)DN,0(fε)



 .

The weight function w|β|γ is so designed to treat the last term in the second line of (6.14)

C|(∂β1v ·∇x∂
β−β1

α (I −P)fε , w2{l−|β|}|γ|∂β
α(I −P)fε)|

+ C|(∂β1v ·∇x∂
β−β1

α Pfε , w2{l−|β|}|γ|∂β
α(I− P)fε)|

≤ C‖wl+|β−β1|γ∇x∂
β−β1

α (I− P)fε‖2
ν +

1

8ε
‖w{l−|β|}|γ|∂β

α(I − P)fε‖2
ν + Cε‖∂αPfε‖2

≤ CεDN,l(fε) +
1

8ε
‖w{l−|β|}|γ|∂β

α(I −P)fε‖2
ν + Cε‖∂αPfε‖2 .

(6.19)

The nonlinear term in (6.14) is estimated by (3.5),

(w2{l−|β|}|γ|∂β
αΓ(fε, fε) , ∂β

α(I −P)fε)

≤ CE1/2
N,l (fε)‖ε1/2w{l−|β|}|γ|∂αfε‖ν‖ε−1/2w{l−|β|}|γ|∂α(I − P)fε‖ν

≤ CE1/2
N,l (fε)DN,l(fε) .

(6.20)

The rest of the proof is similar to the hard potential case, the nonlinear estimate (2.20)
can be deduced by letting

EN,l(fε) = K{C1

∑

|α|≤N+1

‖∂αfε‖2 − εδG(t)}

+ 2
∑

|α|+|β|≤N

‖w{l−|β|}|γ|∂β
α(I − P)fε‖2 .

(6.21)

To establish the estimate (2.20) for the Landau case for which the power of weight is
γ = −1. We follow the same procedure as in the soft potential case. Take the inner
product with w2l−2|β|∂β

α(I −P)fε for equation (6.1) to get (6.14) with γ = −1. All the
estimates for the soft potential case can applied for the case γ = −1. So we omit the
details here.
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