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A New Backus-Gilbert Meshless Method for Initial-Boundary Value
Partial Differential Equations

Christopher D. Blakely™

Abstract: The purpose of this paper is to introduce a Backus-Gilbert approximation method as a
tool for numerically solving initial-boundary value problems. The formulation of the method with its
connection to the standard moving least-squares formulation will be given along with some numerical
examples including a numerical solution to the viscous nonlinear Burgers equation in two dimensions.
In addition, we highlight some of the main advantages of the method over previous numerical methods
based on meshless collocation approximation in order to validate its robust approximating power and
easy handling of initial-boundary value problems.
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1 Introduction

As with other moving least-squares techniques for solving partial differential equations
such as the ones found in Belytschko, Lu, and Gu [5], and Fasshauer [9], one of the main
advantages comes from the fact that no computational mesh of the domain is needed. This
leads to an easy implementation of the method on domains which have complex geometries
where a mesh as constructed in finite-element type methods can be computationally tedious
and non-trivial to generate.

While meshless methods have grown popular for dealing with multivariate approximation
problems, extending these methods for their use in solving partial differential equations has
led to a variety of different techniques typically based on either a Galerkin formulation where
numerical integration is used, namely Element-free Galerkin (e.g. [2], [4]) or a collocation
technique (e.g. [13], [9]). The Backus-Gilbert approximation method discussed in this paper
is based on collocation and thus no numerical integration is required.

The first meshless collocation method applied to numerically solving partial differential
equations was developed by Kansa in [13] where direct interpolation using translations and
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dialations of radial basis functions, notably multiquadric functions, approximated the solu-
tion and its derivatives. Thereafter, successful applications of the method to elliptic and
time-dependent problems such as the shallow-water equations began appearing. However, as
studied in many papers such as [22], the condition numbers associated with the interpola-
tion matrices are extremely large and grow as the amount of collocation nodes in the domain
increased. Furthermore, when using globally supported radial basis functions such as the
multiquadric function used in [14] which possess the best approximation results as opposed
to compactly supported radial functions, the shape parameter 5 controlling the dialation of
the function has been demonstrated to be extremely sensitive to the multivariate scattered
data interpolation in terms of convergence of the approximation. Finding an optimal or near
optimal shape parameter for a certain problem can so far only be accomplished numerically,
namely no a priori knowledge of an optimal 8 which minimizes the error in any norm can
be found analytically. This is a severe hinderance to the method since finding an optimal
shape parameter for very large problems where node counts reach an order of O(10°) can be
computationally infeasable.

In [9], a moving least-squares approximation for time-dependant PDEs was proposed based
on approximate approrimation. In this method, a Backus-Gilbert MLS formulation constructs
a reproducing kernel generated by a reproducing space taken as polynomials shifted on a set
of collocation nodes by the evaluation points defined on the domain and boundary while
symmetric weights are taken as radial functions. This approach to the Backus-Gilbert MLS
formulation via translated polynomials offers fast construction of the reproducing kernel since
the Lagrange multipliers that are needed can be found explicitly for a polynomial basis of low
order. In effect, it is a fast way to achieve the robust approximation power of moving least-
squares approximation, but at the cost of not being equipped with the flexibility of choosing
an approximation space for constructing the reproducing kernel. The translated polynomial
basis must be used rendering the method inadmissible for problems in which discontinuities
are known to occur in the solution.

Deducing from the disadvantages of the past two meshless methods, it is of high interest
to construct a meshless method equipped with the following properties:

e The method is flexible when it comes to choosing an approximation space.

e Collocation matrices of the basis functions from the approximation space are well-
conditioned.

e The shape parameter is flexible for any problem in that it offers large intervals of near
optimal choices.

e The method yields high-convergence rates for smooth problems.

In this paper, it is our goal to present a new meshless collocation method based on Backus-
Gilbert moving least squares where we strive to obtain the desired properties described above.
In order to do this, we will first describe the construction of the Backus-Glibert approximation
method in section 2 followed by a brief discussion on how to adapt the method to numerically
solve initial-boundary valued partial differential equations. Section 3 will describe a new
numerical scheme based on Backus-Gilbert followed by some numerical examples involving a
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2D boundary-value elliptic problem and a viscous 2-D nonlinear Burgers equation. Finally,
to conclude the paper, a discussion on the future research and application interests of this
meshless collocation method will be provided.

2 Formulation

2.1 Backus-Gilbert Formulation

Being based on moving least squares approximation, this approximation scheme begins with
the Backus-Gilbert formulation. In depth descriptions of this formulation can be found in [6]
and in references therein. This approach for MLS approximation considers a quasi-interpolant

of the form
N

Pf(x) =) f(xi)¥i(x). (1)
i=1

where f = [f(x1), ..., f(xn)]* represents the given data on a set of N distinct evaluation nodes
X = {xy,...,xy} C QUOIN C R*. The quasi-interpolant ¥;(x), or discrete reproducing
kernel in some literature, is constructed to be minimized in a discrete quadratic expression
subject to some approximation space reproduction constraints. This is done by choosing a
family of functions which are linearly independent such as a polynomial or trigonometric basis.
In this presentation we will use a basis of radial functions as the approximation space, namely
U = span{¢(|| - =&;l|), & € E} where = = {&,...,&nv} C QU ON is a set of M < N nodes
which can be taken as X although any set of M distinct nodes will work. For more detail on
the techniques of radial basis approximation, the reader is referred to [11], [19], [21] and the
references therein. Denoting ¢,(x) := ¢(||x — &;||), j = 1,..., M, the approximation space
reproduction constraints are written as

N

D i (xi)Wil(x) = ¢;(x), forall ¢; € U. (2)

=0

or in matrix form as
AV (x) = ¢(x),
with Aj; = ¢;(x;),i=1,...,N,j=1,..., M. The objective is to minimize

3 DWW Gxx) )

using the above reproducing approximation space constraints. W (x,x;) is a positive weight
function for any pair x € R” and x; € X which moves according to the evaluation node x.
However, when the approximation space is taken as a set of radial basis functions, one usually
takes W(x,x;) = 1.

To solve this moving-least squares problem, Lagrangian multipliers A\;(x),j = 1,..., M
are introduced which leads to a system where we solve for both the Langrangian multipliers
and the reproducing kernel functions. This system can be written in block matrix form as
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Q(X) —AT ‘II(X) _ 0 4
PO A Y N T W
where Q(x) = diag(W(x, X1),. .-, W(x, xl)) which is positive definite for any x. Since we

are assuming that the sets = and X are comprised of distinct nodes in the domain of interest,
A has full rank and we can apply Gaussian elimination to the block matrix and arrive at

Ax) = G(x)"'(x) (5)

where we define G(x) = AQ~!(x) AT as the Gram matrix. The explicit form of the reproducing
kernels can then be given as

M
1

U;(x) = Ai(xX)p(%4, &) ==

Z( ) ]z_; J( )¢( ? §Z)W(X,Xi)
So for every evaluation node x € X', an M x M system of equations must be solved in order
to calculate ¥;(x). We note here that the closeness of the generating functions ¥;(x) to
the pointwise cardinal functions, (i.e., ¥;(x;) = d;,,4,7 = 1,...N) determines how well the
summation in (1) approximates the function f(x).

2.2 Approximating Solutions to PDEs using Backus-Gilbert

This approximation scheme can now be adapted to numerically solve time-dependent boundary
valued partial differential equations. One way to formulate such an adaption which we present
in this paper is akin to the theory of Generalized Hermite interpolation (see e.g. [17] and refer-
ences therein). The idea of this adaption is to construct a reproducing kernel which reproduces
a certain differential operator acting on an approximation space defined on a set of colloca-
tion nodes. As we will discuss later, this routine leads to a numerical method for solving
time-dependant problems which is dependent on the time-integration scheme used.

To begin, suppose f € L*(H, [0, c0]) where H is normed function space on 2 € R” and
suppose we wish to solve the linear hyperbolic partial differential equation

0
6_1;(x, £) + Lu(x,t) = f(x,t) x€Q, t>0 (6)
with initial conditions

u(x,0) = up(x) for x €

and boundary condition
u(x,t) = g(x,t) for x € 02

where L is a real linear differentiable operator of order s. To initiate the Backus-Gilbert
numerical approximation of this problem, we first discretize in time using a standard implicit
method disregarding the negligable o(At) time error. Here, while using the backwards Euler
scheme, we require the two sides of the equation to be equal at a set of N — K distinct
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collocation nodes X = {x1,...,xy_ g} € Q. This gives, using the notation for time indices
u(xg, ty) == u™(x;)

u"(x;) + AtLu™(x;) = u(x;)" " + Atf"(x;) for j=1,...,N (7)

for any time step t, > 0. Furthermore, for the boundary, we create a set of K collocation
nodes Xz = {Xy_K+1,--.,Xn} € 052 and require

u"(x,) = g"(x;) for x; € Ag.

In (18], a similar problem involving transport equations on a periodic domain T" was con-
sidered as a Hermite interpolation problem and approximated using periodic basis functions
at each time step. That is, assuming we know u" '(x;), interpolation is achieved by us-
ing information about derivatives which leads to restating the discretized transport equation
distributional notation as follows. At each time step, find v € C*(T") such that

(0(x;) + AtLo(x,),v) =d;, for x; € T"

where d; = u" ' (x;) + Atf"(x;) is the given data at each time step. Periodic basis functions
which were defined to be continuous functions 1 : T" — R such that all the coefficients in its
Fourier expansion, ¥(x) = > %(n)expin -z (n multi-index) are strictly positive were then
proposed as a tool for solving the above interpolation problem. In this formulation however, we
consider solving 6 as a multivariate scattered-data generalized Hermite interpolation problem
by constructing quasi-interpolants which discretely reproduce differential operators acting
on an approximation space defined on a set of collocation nodes. Let L be the real linear
differential operator defined in (6) and let {$;(x)};Z; be a family of smooth linear independent
functions such that span{¢;(x),...,¢m(x)} C C*(R*), M < N. Using the two sets of nodes
X = {xy,...,xy_ g} and Xg = {Xy_K41,---,Xn}, the generalized Hermite interpolation
problem is to find v € C*(R") such that for any time step t,

(0(x;) + AtLé(x;),v(x)) = d;, for x; € X

(5(x,), v(x) = g"(x;), for x; € X

where d; is defined above. Using this information, we wish to construct a discrete reproducing
kernel U,(x) € C°(R"™) generated from the approximation space span{¢;(x), ..., ¢ (x)} such
that Pu(x) = SO~ ¥;(x)v(x;). After reproducing the initial condition known on X U X3
as Pu(x,0) = 3N, W;(x)u(x;,0), we can approximate the solution u(t,,x) at any time step

t, > 0 by solving
N

(0(x5) + AtLE(x;), Y Wi(x)v(xi)) =

1=0

> (qfi(xj) + AtL\Ifi(xj))v(Xi) = "l (x;) + ALf(x;), for x; € X

=1

and
N

Z\Ili(xj)v(xi) = g¢"(x;), for x; € A

i=1
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We calculate LW;(x) by using the construction of W;(x). This gives

M
L (x) = ;L(Aj(wm)@(x»
However, using an approximation space U = span{¢;(x)} of radial basis functions ¢;(x) =
é(||x — &;[, ) where 3 is the appropriate shape parameter, one usually takes W (x,x;) = 1.
After solving this system of equations at each time step for v(x;), we set u”(x;) := v(x;)
From this system of equations, it is apparent that the quasi-interpolants ¥,(x;) must be
constructed to belong to C*(R") when assuming u(x,t) is a smooth solution for ¢ > 0 on
Q). Indeed, this property is dependent on the smoothness of the approximation space U =
span{¢(x), ..., dn(x)} from which we construct the quasi-interpolants.

3 A New Backus-Gilbert Approximation Technique

3.1 Construction

In the Backus-Gilbert formulation described in the previous section when constructing the
discrete reproducing kernel, a linear system of size M X M needed to be solved at each
evaluation point in the domain. This can be a computational burden for approximation spaces
of large dimensions. In this section however, we construct a Backus-Gilbert approximation
technique that will avoid calculating solutions to linear systems at each evalutation node.

To begin, we consider the approximation space U = span{¢;(-), 7 =1,..., M} which was
used to provide the reproduction constraints in the Backus-Gilbert formulation. Furthermore,
we set the weight function W (-,x;) = 1. Suppose we have N evaluation nodes in the domain
of interest Q2 U 02 which can either be uniformly or randomly distributed. We can thus write
the N x M interpolation matrix based on these evaluation nodes as

$1(x1)  @a(x1) -+ Pm(x1)

A :</51(X2) ¢a(x2) -+ Pm(x2) ®)

bi(xx) Ba(xn) o Gmlxn)

Using this matrix, consider the resulting ¢) matrix from a () R decompositon algorithm, namely
A = QR. A new basis {¢;(-)}}Z, from the rows of Q is provided which is orthonormal with
respect to the evalutation nodes in the sense that

(B bx) = Z@&m& ik

Going back to the Backus-Gilbert formulatlon using this new basis, we have the reproduction
constraints written as

<¢1,¢1> (%1,%2) oo (b, dar) A1(x
<¢2,¢>1) (B2, d2) -+ (P2 dnr) Ao (x

Gand) Gunds) - Gadu) ] ) Fut (%)
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But since (¢;, ) = J;; this means that \;(x) = ¢;(x) for j = 1,..., M and so the Backus-
Gilbert formulation yields a discrete reproducing kernel

ZA (x1)04(x:) Zasuxk—&m 81 x: = &)

Unlike with the original Backus-Glibert MLS approximation, no linear systems need to be
solved at each evaluation node in order to produce the approximation. Instead, for a given
radial basis approximation space of dimension M in R", U = span{¢(||x — &|[); § € E,j =
1,...,N}, and a given set of N evaluation nodes X C Q U 02, an orthonormal basis is
constructed with respect to X' via QR decomposition of the matrix defined in 8.

Because of this construction, this kernel function forms a partition of unity in the sense
that Zf\il U, (xx) =1 for x, € X. To see this, we use the definition of the kernel function and
write for some x, € X

é“’i(x” - iﬁA (ee)d5(x) (10)
= éiéj(xk)éj(xi) (11)
= é(Jﬁika—sj||><£<||xz-—£j||)) (12)
- S o

We used the fact that the QR decomposition of the N x N matrix A produces a ) which has
orthonormal rows and columns.

Restating the Backus-Gilbert formulation with respect to the constructed orthonormal
basis {¢;(- )L, for given data f = {f(x1),..., f(xn)}, X; € X, the approximation using the
kernel functions W;(x;) is given as

N
Prlx) = Y F(x)Ws(xy)
i=1
where u
Z (I1xk = &D(lIxi — 1))

3.2 Approximating Linear Differential Operators

We now discuss the problem of approximating a linear differential operator L acting on the
given data f = {f(x1),..., f(xnx)} via MLS with the constructed orthonormal basis. In
the standard Backus-Gilbert formulation using the radial basis approximation space U =
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span{o(||x — &||); & € 2,4 =1,..., M}, the approximation of the linear operator L acting
on the given data f is made simply by calculating for x € X

PLf(x) = Z f(xi)LY;(x) (14)
= Z f(x:) Z LX;(x)¢;(x;) (15)

Denoting A(x) = [A1(x), ..., An(x)]F, the L)\;(x)’s are calculated as
LA(x) = G 'Lo(x)

where Lp(x) = [Lo(x), ..., Lop(x)]T and G = AAT is the Gram matrix.

The problem we face with the constructed orthonormal basis approach to Backus-Gilbert
MLS approximation is that the basis {a;(-) M, is not explicitly known, so we do not know
how the operator L acts on the new basis. In effect, they must be projected onto the orig-

inal approximation space U = span{¢,(x); j = 1,..., M} with which we used to compute
an orthonormal basis via QR decomposition. This will then allow approximation of the
linear differential operator L. To this end, for each j = 1,..., M, we project ¢;(x) onto

span{¢;(x); j =1,..., M} by calculating the vector ¢/ € R defined as

¢1(x1) (1) - Pm(x) ¢ 9;(x1)
p1(x2)  @a(x2) -+ Pum(x2) C’; _ ¢j(x2) for x: € X (16)
hiey) dalen) o oulxy) |\ &, 35(x)

We can then approximate Lo, (x;) for some x; € X as

Léj(xx) = > ] Li(xs)
=0

These projections can be efficiently implemented by storing the LU decomposition of the
matrix above and then applying direct substition for each vector ¢/ € RM, j =1,..., M.
With the goal being to construct a discrete kernel T;(x) such that

N

Lf(x) =) f(x)Ti(x) x€X

=1

via Backus-Gilbert MLS approximation using the orthonormal basis, we can apply the repro-
ducing constraints to the discrete kernel as
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while minimizing 3 >~._, T?(x). To solve for the discrete kernel T, we use the process described

in section (2.1) and introduce Lagrangian multipliers 5\]-, j = 1...,M to this constrained
optimization problem which yields the system

(¢1, 1) (D1, ¢2) -+ (¢1,0m) Ar(x) Lo (x)
<¢2, </51) <</52, ¢2> T <¢2, ¢M> )\Q(X) _ L¢2(X) . (17)
Grd) (Banda) o Gandan) )\ D) Lén(x)

Using the approximation of L¢,(x) from the original basis, the expression for the dicrete
kernel then becomes

M
X):Zj\j(x)~ ZLqﬁJ x)¢;(x;) forx € X

i=1

To summarize, efficiently computing the reproducing kernel associated with the linear differ-
ential operator L requires two sets of nodes in the domain, X on which the evaluations of the
basis and the reproducing of the operator are done, and = of M nodes which creates the ap-
proximation basis. Moreover, one ()R decomposition of the interpolation matrix A is required
along with one LU decomposition of the same matrix in order to produce the approximation
of operator L acting on the computed orthonormal basis.

3.3 Solving Initial-Boundary Valued Problems

Extending this Backus-Gilbert approach to numerically solve initial-value problems should
now be straight forward. Consider the following problem

ou

E:Lu(x,t) xe€N t>0 (18)

u(x,0) = f(x) x€Q

where L is a linear spatial differential operator which we will assume forms a well-posed
linear initial-value PDE. This new moving-least squares technique begins by calculating the
orthonormal basis with respect to the evaluation nodes along with constructing the discrete
reproducing kernel. To this end, let {¥;}¥ | be the kernel associated with the orthonormal
basis on the set of evaluation nodes X = {xy,...,xy} C QUOQ and let {Y;}X, be the kernel
associated with the differential operator L. Discretizing 18 first in time using a high-order
explicit scheme while applying discrete reproducing kernel to the initial condition, Pu(x,0) =
Zfiou(xi,())\lli(xk), Vx; € (), each new timestep n + 1 can then be solved for simply by
applying Y;(-) to the solution at the previous time step n. For example, suppose a 2nd order
Adams-Bashford method is used for the timestepping. Namely,

3L n__J, n—1
utl =t AL 5 v (19)
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Here u" = [u"(x1),...,u"(xy)] is the solution from the previous timestep at each node x, € Q.
The approximation of Lu™(x;) and Lu™"!(x;) at a node x; is calculated from

Lu™(xp) = Z u™ (x;) Y5 (xp)

We remark that since an explicit time integration scheme is being employed, no linear system
needs to be solved.

An implicit time scheme can be used by considering the discrete reproducing kernel Y;(-)
which satisfies reproducing constraints of the form

Z&(xi)Ti(xk) = (I — CAtL)g(x) ¥ x € X.

where C is some constant depending on the implicit method and [ is the identity operator.
After discretizing in time using the implicit method and calculating the initial condition, we
can advance the timestepping at step n by solving for u™*! from the linear system

Ti(x1) Ya(xy) --- YTn(xi) u::(xl) uZ(xl)
T1('X2) To(xz) -+ Tn(xz) u"t (x2) _ u (:X2) ' (20)
Ti(xy) To(xn) -+ Tn(xn) u" (xy) u"(xn)

In the next section on numerical examples, we start by showing the approximation results for
a linear elliptic boundary-valued problem which is tied to using an implicit scheme for solving
a time dependant problem since at every time step n, a system like the one above must be
solved in order to produce an approximation for the next time step n + 1.

Dirichlet Boundary Conditions

Adding Dirichlet boundary conditions
u(x,t) = g(x), xondQ t>0

to the initial-value problem adds additional constraints to linear system in 7. To this end, we
split the set of N nodes X into two sets, namely Xo = {x1,...,xy,} of interior nodes and
Xsa = {Xn;41,---,Xn} composed uniquely of nodes on the boundary 992. Thus we require
that for x; € Xaq, u(xk,t) = g(xx) and for x; € X, Ju(xg,t)/0t = Lu(xy,t) for any ¢ > 0.
An explicit time-discretization scheme gives a system for any time step n

() | Fr) )
um (xy 1)
U'n+1(XN1)

Fr(u (x5, 1))

9(xx,) (21)

\ Unﬂ.(XN) / \ 9(3;N) /
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where

Lu” — Lu™ !

Fru() = u" + AL

Similarly, enforcing boundary conditions while using an implicit scheme can be accomplished
by splitting the set of nodes A" into the two sets Xy, and X5 and use the reproducing operator
kernel YT applied to u™*!(x;) for x; € X, and the reproducing kernel ¥ for x;, € Xpq. For
example, using the backward Euler implicit method yields the system

T1(x1) To(x1) -+ Tn(xi) 1 (5 u(x
( Tix)  Ta(xa) - Tw(x) ) [ :( Do\ (: )
| U (e, 1) U (X, 1)
Ti(xn-1) Tolxy—1) -+ Tw(xm-1) el (5 = < (22)
Ty (x,) Uy(xy,) -+ Un(xp,) u ( M) q( :Nl)
\ \Ifl(.XN) Uy(xn) -+ Uy(xwy) / \ u" (o) \ 9(xw) )

It is easy to see from the construction of the kernel T that the solution u™*! will satisfy the
PDE for any node x; € X, and Zf;l u™(x;)V;(xk) = g(xx) for xi, € Xaq.

3.4 Numerical Examples

However, before engaging in numerical examples with time dependent problems, we wish to
study the approximating power of this Backus-Gilbert method in reproducing linear differ-
ential operators and its dependence on the shape parameter 3. It has been known since the
work of Kansa [13] that the shape parameter in multivariate approximation using radial basis
functions is of critial importance in dealing with the convergence of the method. Many studies
in recent years in employing radial basis functions demonstrate the difficulty in obtaining an
approximate optimal shape parameter with respect to minimal L, error.

Due to their multivariate scattered data approximation ability studied by Franke in [11] we
use throughout these numerical examples a radial basis of translated multiquadric functions.
In these examples we begin by constructing a radial basis using multiquadric functions on
Q = [0,7] x [0,7]. We chose N distinct nodes which were randomly distributed in © U 09
on which the multiquadric functions were translated. The set of evaluation nodes X were
chosen to be equally distributed throughout the domain. Using this basis on the evaluation
set X', the interpolation matrix A as in 8 is constructed, followed by the Q) R decomposition of
A. Using the orthogonal matrix (), a new basis is contructed with respect to the evaluation
nodes. This new basis, @ = span{qzj(-); j=1,...,N} will now be used as the reproducing
approximation space for the Backus-Gilbert formulation.

To show the ability of this Backus-Gilbert approach on approximating linear differential
operators, we consider the problem on © = [0, 7] x [0, 7]

Ay = —2sin(z)sin(y) z,y €

u=0 z,y € 00
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which has as solution f(z,y) = sin(z) sin(y). Using the orthonormal basis @ = span{;(-) j =
1,..., N}, we construct the reproducing kernel ¥;(x) and create the linear system associated
with this Poisson boundary value problem which the solution u satisfies.

AV, (x7)
AV, (x2)

AWy (x1)
AWy (x2)

AWy (xn, 1) AWs(xy,-1)
Uy (xn,) Uy(xn,)

\ ‘1’1('XN) Wy (xn)

A\IIN(Xl)
A\IIN(XQ)

A\DN(XNl—l)
Uy (xn,)

\IIN(XN)

/

( U(’fl) \

u(x, 1)
U(XNI)

\ uxy)

/ f(>:<1) \

fem)
0

Lo )

. (23)

The L, errors associated with different grid sizes on various 8 values are shown in the two
tables below. The N evaulation nodes X are taken to be uniformly distributed and the M
collocation nodes = are randomly distributed. In these examples, we take N = M.

Table 1: L; error for 10 x 10 and 12 x 12 uniform grid nodes for various § values.

Table 2: Ly error for 15 x 15 and 20 x 20 uniform grid nodes for various /3 values.

10 x 10 12 x 12

L, error B Ly error B
6.06394e-05 | 14 | 6.4211e-06 | 10
9.37156e-06 | 34 | 8.27118e-06 | 18
3.57931e-06 | 48 | 4.53544e-06 | 28
2.58906e-05 | 54 | 1.26301e-05 | 42
5.23094e-05 | 100 | 3.2699e-05 | 48
9.22903e-05 | 102 | 4.33146e-05 | 54

15 x 15 20 x 20

L, error I3 L, error 153
4.57714e-05 | 6 | 8.1885e-07 | 6
1.01192e-06 | 10 | 7.41084e-06 | 10
4.72437e-06 | 18 | 3.71961e-05 | 20
9.65463e-06 | 32 | 5.83601e-05 | 26
2.54876e-05 | 42 | 2.74848e-05 | 30
4.52623e-05 | 62 | 7.28861e-05 | 40

Nonlinear viscous Burgers Equation
In order to validate this Backus-Gilbert construction for solving initial and boundary valued
problems, we apply the method to a 2D nonlinear viscous Burgers equation which features
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both a nonlinear advection term and a linear diffusion term to smooth the solution in time.
Extending this moving-least squares approach to numerically solve a time-dependant nonlinear
problem such the viscous Burgers Equation

ou °. du
E-I-Zzzlua—xZ = eAu

u(0,z,9) =uy z,y€ (0,7)*=Q u(t,r,y) =0 2,5y €9Q t >0

is handled in a similar manner as above. Discretizing the equation first in time using any time
stepping scheme such as a 4th order explicit multistep scheme, a reproducing kernel must be
created for both the Laplacian and the advection operators. Figure 1 depicts plots of the
solution for various times using a grid composed of 30 x 30 uniformly distributed evalutation
nodes, 30 x 30 random collocation nodes, and setting 5 = 6 for the multiquadric basis as used
in the elliptic problem above. Furthermore, we set the viscosity ¢ = .5 in Figure 1 and € = .1
in Figure 2. The time-stepping uses an explicit 4th-order Adams-Bashforth scheme.

'Time0.dat"  + "Time200.dat"  +

0.8 -

A

06 PR 06 |
E A e M*%%

04 A AL I T 7 L
: 7

4
ey e 04
T b o P
ek RS e
02 R AN T 02 |
Wgﬁﬁarw P e
Lt s s T T e
Y P R
e

-
i
By %w
: e
51
i
®

o

"Time400.dat"  + "Time600.dat"  +

o e iy
ST
I
e e A S R

R ek e et

R -
AN e s
e e e

AR N A

RS el eraattls

o

Figure 1: Plot of solution to Burgers Equation for Time = 0,.2,.4,.6, e = .5

3.5 Concluding Remarks

In this presentation of a new Backus-Gilbert approximation method for solving initial-boundary
valued problems, we attempted to demonstrate that its fine approximation results could make
it an attractive substitute for traditional radial basis collocation methods. Although a QR and
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Figure 2: Plot of solution to Burgers Equation for Time = .2,.4,.6,.8, ¢ = .1

LU decomposition is needed in constructing the reproducing kernels for the linear operators,
the resulting linear systems when discretizing PDEs have been shown to be slightly better
conditioned than its radial basis collocation counterpart.

In future work on this Backus-Gilbert formulation, we plan to test constructions of re-
producing kernels which are not generated by radial basis functions. This will include the
most general sense of the original Backus-Glibert formulation, namely moving least squares
as discussed in section (2.1).

In regards to the multiquadric case in generating the reproducing kernel as shown in this
paper, for a fixed § and an increasing amount of nodes to generate the radial basis, the
moving-least squares method will not converge due to the dependence on the node density.
However, unlike straight radial basis collocation, the Backus-Glibert approach offers greater
flexibility in choosing a near optimal g parameter since larger neighborhoods of near optimal
values are available.

The results of the computations of these meshless schemes for solving partial differential
equations presented in this paper show that accurate solutions can be obtained, but much
work is still needed in adapting these schemes to larger scale problems such as 3D flow in large
domains. Our current interest in these methods is to couple them with domain decomposition
methods which have been used in finite-difference and finite-element methods with much
success. Futhermore, this coupling has been shown to enjoy a computational structure easily
adapted for the implementation on massively parallel processors.
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