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Abstract. We introduce a model for self-organized dynamics which, we argue, addresses
several drawbacks of the celebrated Cucker-Smale (C-S) model. The proposed model does
not only take into account the distance between agents, but instead, the influence between
agents is scaled in term of their relative distance. Consequently, our model does not
involve any explicit dependence on the number of agents; only their geometry in phase
space is taken into account. The use of relative distances destroys the symmetry property
of the original C-S model, which was the key for the various recent studies of C-S flocking
behavior. To this end, we introduce here a new framework to analyze the phenomenon
of flocking for a rather general class of dynamical systems, which covers systems with
non-symmetric influence matrices. In particular, we analyze the flocking behavior of the
proposed model as well as other strongly asymmetric models with “leaders”.

The methodology presented in this paper, based on the notion of active sets, carries
over from the particle to kinetic and hydrodynamic descriptions. In particular, we discuss
the hydrodynamic formulation of our proposed model, and prove its unconditional flocking
for slowly decaying influence functions.
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1. Introduction

The modeling of self-organized systems such as a flock of birds, a swarm of bacteria or a
school of fish, [1, 4, 5, 12, 19, 20, 21, 26], has brought new mathematical challenges. One
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of the many questions addressed concerns the emergent behavior in these systems and in
particular, the emergence of “flocking behavior”. Many models have been introduced to
appraise the emergent behavior of self-organized systems [2, 3, 7, 13, 17, 22, 25, 27]. The
starting point for our discussion is the pioneering work of Cucker-Smale, [8, 9], which led to
many subsequent studies [3, 6, 14, 15, 16, 23]. The C-S model describes how agents interact
in order to align with their neighbors. It relies on a simple rule which goes back to [22]: the
closer two individuals are, the more they tend to align with each other (long range cohesion
and short range repulsion are ignored). The motion of each agent “i” is described by two
quantities: its position, xi ∈ R

d, and its velocity, vi ∈ R
d. The evolution of each agent is

then governed by the following dynamical system,

(1.1a)
dxi

dt
= vi,

dvi

dt
=
α

N

N
∑

j=1

φij(vj − vi).

Here, α is a positive constant and φij quantifies the pairwise influence of agent “j” on the
alignment of agent “i”, as a function of their distance,

(1.1b) φij := φ(|xj − xi|).

The so-called influence function, φ(·), is a strictly positive decreasing function which, by
rescaling α if necessary, is normalized so that φ(0) = 1. A prototype example for such an
influence function is given by φ(r) = (1 + r)−s, s > 0. Observe that the C-S model (1.1) is
symmetric in the sense that the coefficients matrix φij is, namely, agents “i” and “j” have
the same influence on the alignment of each other,

(1.2) φij = φji.

The symmetry in the C-S model is the cornerstone for studying the long time behavior of
(1.1). Indeed, symmetry implies that the total momentum in the C-S model is conserved,

(1.3a)
d

dt

(

1

N

N
∑

i=1

vi(t)

)

= 0 7→ v(t) :=
1

N

N
∑

i=1

vi(t) = v(0).

Moreover, the symmetry of (1.2) implies that the C-S system is dissipative,

(1.3b)
d

dt

1

N

∑

i

|vi − v|2 = −
α

2N 2

∑

i,j

φij|vi − vj|
2 ≤ −min

ij
φij(t)×

α

N

∑

i

|vi − v|2.

Consequently, (1.3) yields the large time behavior, xi(t) ≈ vt, and hence minij φij(t) >
∼

φ(|v|t). This, in turn, implies that the C-S dynamics converges to the bulk mean velocity,

(1.4) vi(t)
t→∞
−→ v(0),

provided the long-range influence between agents, φ(|xj − xi|), decays sufficiently slow in
the sense that φ(·) has a diverging tail,

(1.5)

∫ ∞

φ(r) dr = ∞.

We conclude that the C-S model with a slowly decaying influence function (1.5), has an un-
conditional convergence to a so-called flocking dynamics, in the sense that (i) the diameter,
maxi,j |xi(t)− xj(t)|, remains uniformly bounded, thus defining the domain of the “flock”;
and (ii) all agents of this flock will approach the same velocity — the emerging “flocking
velocity”.
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Definition 1.1. [15, p. 416] Let {xi(t), vi(t)}i=1,...,N be a given particle system, and let
dX(t) and dV (t) denote its diameters in position and velocity phase spaces,

dX(t) = max
i,j

|xj(t) − xi(t)|,(1.6a)

dV (t) = max
i,j

|vj(t) − vi(t)|.(1.6b)

The system {xi(t), vi(t)}i=1,...,N is said to converge to a flock if the following two conditions
hold, uniformly in N ,

(1.7) sup
t≥0

dX(t) < +∞ and lim
t→+∞

dV (t) = 0.

Remark 1.2. One can distinguish between two types of flocking behaviors. When (1.7)
holds for all initial data, {xi(0), vi(0)}i=1,...,N , it is referred to as unconditional flocking,
e.g., [6, 8, 14, 15, 23]. In contrast, conditional flocking occurs when (1.7) is limited to a
certain class of initial configurations.

The flocking behavior of the C-S model derived in [15] was based on the `2-based argu-
ments outlined in (1.3). Other approaches, based on spectral analysis, `1- and `∞-based
estimates were used in [6, 8, 14] to derive C-S flocking with a (refined version of) slowly
decaying influence function (1.5). Though the derivations are different, they all require the
symmetry of the C-S influence matrix, φij.

Despite the elegance of the results regarding its flocking behavior, the description of self-
organized dynamics by the C-S model suffers from several drawbacks. We mention in this
context the normalization of C-S model in (1.1a) by the total number of agents, N , which is
shown, in section 2.1 below, to be inadequate for far-from-equilibrium scenarios. The first
main objective of this work is to introduce a new model for self-organized dynamics which,
we argue, will address several drawbacks of the C-S model. Indeed, the model introduced in
section 2.2 below, does not just take into account the distance between agents, but instead,
the influence two agents exert on each other is scaled in term of their relative distances. As
a consequence, the proposed model does not involve any explicit dependence on the number
of agents — just their geometry in phase space is taken into account. It lacks, however,
the symmetry property of the original C-S model, (1.2). This brings us to the second main
objective of this work: in section 3 we develop a new framework to analyze the phenomenon
of flocking for a rather general class of dynamical systems of the form,

dxi

dt
= vi,

dvi

dt
= α

N
∑

j 6=i

aij(vj − vi), aij ≥ 0,
∑

j 6=i

aij < 1,

which allows for non-symmetric influence matrices, aij 6= aji. Here we utilize the concept
of active sets, which enables us to define the notion of a neighborhood of an agent; this
quantifies the “neighboring” agents in terms of their level of influence, rather than the
usual Euclidean distance. The cornerstone of our study of flocking behavior, presented in
section 3.1, is based on a key algebraic lemma, interesting for its own sake, which bounds
the maximal action of antisymmetric matrices on active sets. Accordingly, the main result
summarized in theorem 3.4, quantifies the dynamics of the diameters, dX(t) and dV (t), in
terms of the global active set associated with the model. We conclude, in section 4, that
the dynamics of our proposed model will experience unconditional flocking provided the
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influence function φ decays sufficiently slowly such that,

(1.8)

∫ ∞

φ2(r) dr = ∞.

This is slightly more restrictive than the condition for flocking in the symmetric case of C-S
model, (1.5). Another fundamental difference between the flocking behavior of these two
models is pointed out in remark 4.2 below: unlike the C-S flocking to the initial bulk velocity
v(0) in (1.4), the asymptotic flocking velocity of our proposed model is not necessarily
encoded in the initial configuration as an invariant of the dynamics, but it is emerging
through the flocking dynamics of the model.

The methodology developed in this work is not limited to the new model, whose flocking
behavior is analyzed in section 4.1. In section 4.2, we use the concept of active sets to study
the flocking behavior of models with a “leader”. Such models are strongly asymmetric,
since they assume that some individuals are more influential than the others.

Finally, in section 5 and, respectively, section 6, we pass from the particle to kinetic and,
respectively, hydrodynamic descriptions of the proposed model. The latter amounts to the
usual statements of conservation of mass, ρ, and balance of momentum, ρu,

∂tρ+ ∇x · (ρu) = 0(1.9a)

∂t(ρu) + ∇x(ρu⊗ u) = αρ

(

〈u〉

〈1〉
− u

)

, 〈w〉(x) :=

∫

y

φ(|x − y|)w(y)ρ(y)dy.(1.9b)

We extend our methodology of active sets to study the flocking behavior in these contexts
of mesoscopic and macroscopic scales. In particular, we prove the unconditional flocking
behavior of (1.9) with a slowly decaying influence function, φ, such that (1.8) holds,

sup
x,y∈Supp(ρ(·,t))

|u(t, x)− u(t, y)|
t→∞
−→ 0.

2. A model for self-organized dynamics

In this section, we introduce the new model that will be the core of this work. This model
is motivated by some drawbacks of the C-S model.

2.1. Drawbacks of the C-S model. Originally, the C-S model was introduced in [8] to
model a finite number of agents. The normalization pre-factor 1/N in (1.1a) was added
later in Ha and Tadmor, [15], in order to study the “mean-field” limit as the number of
agents N becomes very large. This modification, however, has a drawback in the modeling:
the motion of an agent is modified by the total number of agents even if its dynamics is only
influenced by essentially a few nearby agents. To better explain this problem, we sketch a
particular scenario shown in figure 1. Assume that there is a small group of N1 agents, G1,
at a large distance from a large group of N2 agents, G2; by assumption, we have N1 << N2.
If the distance between the two groups is large enough, we have,

(2.1a) φij ≈ 0 if i ∈ G1 and j ∈ G2.

In this situation, the C-S dynamics of every agent “i” in group G1 reads,

(2.1b)
dvi

dt
≈

α

N1 +N2

∑

1≤j≤N1

φij(vj − vi), i ∈ G1.
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Therefore, since there are only N1 “essentially” active neighbors of “i”, yet we average over
the much larger set of N1 +N2 � N1 agents, we would have dvi/dt ≈ 0. Thus, the presence
of a large group of agents G2 in the horizon of G1, will almost halt the dynamics of G1.

�����G1

������	
���
�

�����G2

Figure 1. A small group of birds G1 at a large distance from a larger group
G2 (2.1a). Due to the normalization 1/N in the C-S model (1.1a), the group
G1 will almost stop interacting.

2.2. A model with non-homogeneous phase space. We propose the following dynam-
ical system to describe the motion of agents {xi(t), vi(t)}

N
i=1,

(2.2)
dxi

dt
= vi,

dvi

dt
=

α
∑N

k=1 φik

N
∑

j=1

φij (vj − vi), φij = φ(|xj − xi|).

Here, α is a positive constant and φ(·) is the influence function. The main feature here is
that the influence agent “j” has on the alignment of agent “i”, is weighted by the total
influence,

∑N
k=1 φik, exerted on agent “i”.

In the case where all agents are clustered around the same distance, i.e., φij ≈ φ0, then
the model (2.2) amounts to C-S dynamics,

dvi

dt
=

α

Nφ0

N
∑

j=1

φij (vj − vi).

But unlike the C-S model, the space modeled by (2.2) need not be homogeneous. In
particular, it better captures strongly non-homogeneous scenarios such as those depicted in
2.1: the motion of an agent “i” in the smaller group G1 will be, to a good approximation,
dominated by the agents in group G1,

dvi

dt
≈

α

N1φ0

∑

1≤j≤N1

φij (vj − vi).

Here, φ0 is the coefficient of interaction inside the nearby group G1, i.e., φij ≈ φ0 for
i, j ∈ G1, whereas the agents in the “remote” group G2, will only have a negligible influence,
∑

k φik ≈ N1φ0.
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The normalization of pairwise interaction between agents in terms of relative influence
has the consequence of loss of symmetry: the model (2.2) can be written as,

dxi

dt
= vi,

dvi

dt
= α

N
∑

j=1

aij(vj − vi),

where the coefficients aij, given by,

aij =
φ(|xj − xi|)

∑N
k=1 φ(|xk − xi|)

,

lack the symmetry property, aij 6= aji. Two more examples of models with asymmetric
influence matrices will be discussed below. The flocking behavior of a model with leaders, in
which agents follow one or more “influential” agents and hence lack symmetry, is analyzed
in section 4 below. In section 7 we introduce a model with vision in which agents are
aligned with those agents ahead of them, as another prototypical example for self-organized
dynamics which lacks symmetry, and we comment on the difficulties in its flocking analysis.
Tools for studying flocking behavior of such asymmetric models are outlined in the next
section.

3. New tools to study flocking

We want to study the long time behavior of the proposed model (2.2). The lack of
symmetry, however, breaks down the nice properties of conservation of momentum, (1.3a),
and energy dissipation, (1.3b), we had with the C-S model. The main tool for studying the

C-S flocking was the variance, (
∑

|vi − v|p)1/p, in either one of its `p-versions, p = 1, 2 or
p = ∞. But since the momentum is not conserved in the proposed model (2.2), the variance
is no longer a useful quantity to look at; indeed, it is not even a priori clear what should be
the “bulk” velocity, v, to measure such a variance.

In this section, we discuss the tools to study the flocking behavior for a rather general
class of dynamical systems of the form,

(3.1a)
dxi

dt
= vi,

dvi

dt
= α

N
∑

j 6=i

aij(vj − vi), aij ≥ 0.

Here, α is a positive constant, and aij > 0 quantifies the pairwise influence of agent “j” on
the alignment of agent “i”, through possible dependence on the state variables, {xk, vk}k.
By rescaling α if necessary, we may assume without loss of generality that the aij’s are
normalized so that

(3.1b)
∑

j 6=i

aij ≤ 1.

Setting aii := 1 −
∑

j 6=i aij , we can rewrite (3.1) in the form

(3.2a)
dxi

dt
= vi,

dvi

dt
= α(vi − vi),

where the average velocity, vi, is given by a convex combination of the velocities surrounding
agent “i”,

(3.2b) vi :=

N
∑

j=1

aijvj,
∑

j

aij = 1.
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We should emphasize that there is no requirement of symmetry, allowing aij 6= aji. This
setup includes, in particular, the model for self-organized dynamics proposed in (2.2), with
asymmetric coefficients aij = φij/

∑

k φik.
In order to study the flocking behavior of (3.1), we quantify in section 3.2, the decay of

the diameter, dV (t) using the notion of active sets. The relevance of this concept of active
sets is motivated by a key lemma on the maximal action of antisymmetric matrices outlined
in section 3.1. This, in turn, leads to the main estimate of theorem 3.4, which governs the
evolution of dX(t) and dV (t).

3.1. Maximal action of antisymmetric matrices. We begin our discussion with the
following key lemma.

Lemma 3.1. Let S be an antisymmetric matrix, Sij = −Sji with maximal entry |Sij| ≤M .

Let u, w ∈ R
N be two given real vectors with positive entries, ui, wi ≥ 0, and let U , W denote

their respective sum, U =
∑

i ui and W =
∑

j wj. Fix θ > 0 and let λ(θ) denote the number
of “active entries” of u and w at level θ, in the sense that,

λ(θ) = |Λ(θ)|, Λ(θ) :=
{

j
∣

∣ uj ≥ θ U and wj ≥ θW
}

.

Then, for every θ > 0, we have

(3.3) |〈Su, w〉| ≤MU W
(

1 − λ2(θ) θ2
)

.

Remark 3.2. Lemma 3.1 tells us that the maximal action of S on u, w, does not exceed

|〈Su, w〉| ≤MU W min
θ

(

1 − λ2(θ) θ2
)

.

which improves the obvious upper-bound, |〈Su, w〉| ≤MUW .

Proof. Using the antisymmetry of S, we find

〈Su, w〉 =
∑

i,j

Sijuiwj =
1

2

∑

i,j

Sij

(

uiwj − ujwi

)

,

and since S is bounded by M , we obtain the inequality,

|〈Su, w〉| ≤
M

2

∑

i,j

|uiwj − ujwi|.

The identity, |a− b| ≡ a+ b− 2 min(a, b) for a, b ≥ 0, implies

|〈Su, w〉| ≤
M

2

∑

i,j

(

uiwj + ujwi − 2 min{uiwj, ujwi}
)

= M
(

U W −
∑

i,j

min{uiwj, ujwi}
)

.(3.4)

By assumption, there are at least λ(θ) active entries at level θ which satisfy both inequalities,

k ∈ Λ(θ) : uk ≥ θ U and wk ≥ θW .

Therefore, by restricting the sum in (3.4) only to the pairs of these active entries we find

|〈Su, w〉| ≤M
(

U W −
∑

i,j∈Λ(θ)

min{uiwj, ujwi}
)

≤M
(

U W − λ2(θ) · θ U · θW
)

,

and the desired inequality (3.3) follows.
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3.2. Active sets and the decay of diameters. The concept of an active set aims to
determine a neighborhood of one or more agents in (3.1) based on the so-called influence
matrix, {aij}, rather than the usual Euclidean distance. The following definition, which
applies to arbitrary matrices, is formulated in the language of influence matrices.

Definition 3.3 (Active sets). Let {aij} be a normalized influence matrix, aij > 0,
∑

j aij =

1. Fix θ > 0. The active set, Λp(θ), is the set of agents which influence “p” more than θ,

(3.5) Λp(θ) := {j
∣

∣ apj ≥ θ}.

The global active set, Λ(θ), is the intersection of all the active sets at that level,

(3.6) Λ(θ) =
⋂

p

Λp(θ).

This notion of active set, Λp(θ), defines a “neighborhood” for agent “p”, and can be
generalized to more than just one agent. For example,

(3.7) Λpq(θ) := Λp(θ) ∩ Λq(θ),

is the set of all agents whose influence on both, “p” and “q”, is larger than θ, see figure 2.
The number of agents in an active set ΛI(θ) is denoted by λI(θ), e.g. λpq(θ) = |Λpq(θ)|.

The numbers {λpq(θ)}pq are difficult to compute for general θ’s: one needs to count the
number of pairs of agents in the underlying graph G, which stay connected above level θ,

(3.8) Gi,j =

{

1 if agent “i” is influenced by “j” : aij > 0,
0 otherwise.

One simple case we can count, however, occurs when θ takes the minimal value, θ =
minij aij. Then, the active sets Λp(θ) includes all the agents, Λp(θ)θ=minij aij

= {1, . . . , N},
and since this applies for every ”p”, then Λpq(θ) and the global active set, Λ(θ), include all
agents,

(3.9) λ(θ)|θ =min
ij
aij

= N.

2

3

Λ1,4(θ)

1

4

Λ4(θ)

Λ1(θ)

Figure 2. An illustration of active sets. Here, Λ1(θ) = {1, 2, 3} and
Λ4(θ) = {2, 3, 4}. The pairwise active set, Λ14 = Λ1(θ) ∩ Λ4(θ), consists
of agents “2” and “3”.

Armed with the notion of active set and with the key lemma 3.1 on maximal action
of antisymmetric matrices, we can now state our main result, measuring the decay of the
diameters dX(t) and dV (t) in the dynamical system (3.2).
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Theorem 3.4. Let {xi(t), vi(t)}i be a solution of the dynamical system (3.2). Fix an
arbitrary θ > 0 and let λpq(θ) be the number of agents in the active sets, Λpq(θ), associated
with the influence matrix of (3.2). Then the diameters of this solution, dX(t) and dV (t),
satisfy,

d

dt
dX(t) ≤ dV (t)(3.10a)

d

dt
dV (t) ≤ −α min

pq
λ2

pq(θ) θ
2 dV (t).(3.10b)

Since Λ(θ) ⊂ Λp,q(θ) then λpq(θ) ≥ λ(θ) and (3.10b) yields the following global version
of the theorem above.

Theorem 3.5. Fix an arbitrary θ > 0 and let λ(θ) be the number of agents in the global
active set, Λ(θ), associated with (3.2). Then the diameters of its solution, dX(t) and dV (t),
satisfy,

d

dt
dX(t) ≤ dV (t)(3.11a)

d

dt
dV (t) ≤ −αλ2(θ) θ2 dV (t).(3.11b)

Proof of theorem 3.4. We fix our attention to two trajectories xp(t) and xq(t), where p and
q will be determined later. Their relative distance satisfies,

d

dt
|xp − xq|

2 = 2〈xp−xq, vp−vq〉 ≤ 2|xp−xq||vp−vq|,

which implies,
d

dt
|xp(t) − xq(t)| ≤ dV (t).

Thus, (3.10a) holds. Next, we turn to study the corresponding relative distance in velocity
phase space,

d

dt
|vp − vq|

2 = 2α 〈vp−vq , v̇p−v̇q〉(3.12)

= 2α〈vp−vq , vp−vq〉 − 2α |vp − vq|
2;

recall that vp and vp are the average velocities defined in (3.1b). Given that
∑

` ak` ≡ 1,
the difference of these averages is given by,

vp − vq =
∑

j

apjvj − vq =
∑

j

apj

(

vj − vq

)

=
∑

j

apj

(

vj −
∑

i

aqivi

)

=
∑

j

∑

i

apjaqi

(

vj − vi

)

.

Inserting this into (3.12), we find,

(3.13)
d

dt
|vp − vq|

2 = 2α





∑

ij

apjaqi〈vp−vq, vj−vi〉 − |vp − vq|
2



 .

To upper-bound the first quantity on the right, we use the lemma 3.1 with ui = api, wi = aqi

and the antisymmetric matrix Si,j = 〈vp−vq, vj−vi〉: since |Si,j| ≤ d2
V , U =

∑

i ui = 1
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and W =
∑

i wi = 1, we deduce,
∣

∣

∣

∑

ij

apjaqi〈vp−vq, vj−vi〉
∣

∣

∣ ≤ d2
V (1− λ2

pq(θ) θ
2).

Here, λpq(θ) is the number of agents in the active set Λpq(θ),

λpq(θ) = |{j
∣

∣ apj ≥ θ and aqj ≥ θ}|.

Therefore, the relative velocity vp − vq in (3.13) satisfies,

d

dt
|vp − vq|

2 ≤ 2α
(

d2
V (1 − λ2

pq(θ) θ
2) − |vp − vq|

2
)

.

In particular, if we choose p and q such that |vp(t) − vq(t)| = dV (t), the last inequality
reads,

(3.14)
d

dt
d2

V (t) ≤ −2α min
pq

λ2
pq(θ) θ

2 d2
V (t).

and the inequality (3.10b) follows.

Remark 3.6. Equation (3.10b) tells us that the diameter in velocity phase space, dV (t), is
decreasing in time. In fact, an even stronger statement holds, namely, if we let Ω(t) denote
the convex hull of the velocities, Ω(t) := Conv ({vi(t)}i=1...N ), then Ω(t) is decreasing in
time in the sense of set inclusion,

(3.15) Ω(t1) ⊃ Ω(t2) if t1 ≤ t2.

Indeed, by convexity, vi ∈ Ω(t) for any i, and consequently, if vi is at the frontier of Ω,
then the vector (vi − vi) points to the interior of Ω at vi, see figure 3. More precisely, if n

denotes the outward-pointing normal to Ω at vi, then v̇i · n = (vi − vi) · n ≤ 0 Therefore,
the frontier of Ω(t) is a “fence” [18] for the vectors vi(t) and (3.15) follows.

vi

n

(vi − vi)

Ω

Figure 3. At the frontier of the convex hull Ω, the vector (vi − vi) points
to the interior of Ω. Thus, for any outward-pointing normal vector n at vi,
we have: v̇i · n = (vi − vi) · n ≤ 0.

The bound of dV (t) implies that the spatial diameter of the flock, dX(t) grows at most
linearly in time. Indeed, for agents “p” and “q” which realize the maximal distance, dX(t) =
|xp(t) − xq(t)|, we have

d

dt
dX(t) ≤ |vp(t) − vq(t)| ≤ dV (t),

and hence dX(t) ≤ dX(0) + dV (0)t.
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Theorem 3.4 and 3.5 will be used to prove the flocking behavior of general systems of the
type (3.2). The key point will be to make the judicious choice for the level θ = θ(dX(t)), to
enforce the convergence dV (t) → 0 through the inequalities (3.10), (3.11). In this context
we are led to consider dynamical inequalities of the form,

d

dt
dX(t) ≤ dV (t),(3.16a)

d

dt
dV (t) ≤ −αψ(dX(t))dV (t).(3.16b)

The long time behavior of such systems is dictated by the properties of ψ(·) > 0.

Lemma 3.7. Consider the diameters dX(t), dV (t) governed by the inequalities (3.16), where
ψ(·) is a positive function such that,

(3.17a) dV (0) ≤

∫ ∞

dX(0)

ψ(r)dr.

Then the underlying dynamical system convergences to a flock in the sense that (1.7) holds,

sup
t≥0

dX(t) < +∞ and lim
t→+∞

dV (t) = 0.

In particular, if ψ(·) has a diverging tail,

(3.17b)

∫ ∞

ψ(r)dr = ∞,

then there is unconditional flocking.

Proof. We apply the energy method introduced by Ha and Liu [14]. Consider the “energy
functional”, E = E(t),

(3.18) E(dX , dV )(t) := dV (t) + α

∫ dX(t)

0
ψ(s) ds.

The energy E is decreasing along the trajectory (dX , dV ),

d

dt
E(dX , dV ) = ḋV + αψ(dX) ˙dX ≤ −αψ(dX)dV + αψ(dX)dV = 0,

and we deduce that,

(3.19) dV (t) − dV (0) ≤ −α

∫ dX(t)

dX(0)
ψ(s) ds.

By our assumption (3.17a), there exists d∗ > 0 (independent of t), such that,

(3.20) dV (0) = α

∫ d∗

dX(0)

ψ(s) ds,

and the inequality (3.19) now reads,

dV (t) ≤ α

∫ d∗

dX(0)
ψ(s) ds− α

∫ dX(t)

dX(0)
ψ(s) ds = α

∫ d∗

dX(t)
ψ(s) ds.

Since dV (t) ≥ 0, we conclude that we have a flock with a uniformly bounded diameter,

(3.21) dX(t) ≤ d∗ for all t ≥ 0,
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thus improving the linear growth noted in remark 3.6. The uniform bound on dX(t) in (3.21)
implies that the velocity phase space of this flock shrinks as the diameter dV (t) converges
to zero. Indeed, the inequality (4.5b) yields,

d

dt
dV (t) ≤ −αψ∗ · dV (t), ψ∗ := min

0≤r≤d∗
ψ(r) > 0,

and Gronwall’s inequality proves that dV (t) converges exponentially fast to zero.

4. Flocking for the proposed model

In this section we prove that the model (2.2) converges to a flock under the assumption
that the pairwise influence, φ(|xj − xi|), decays slowly enough so that φ(·), has a non
square-integrable tail, (1.8),

∫∞
φ2(r)dr = ∞. In section 4.2, we show that the same result

carries over the dynamics of strongly asymmetric models with leader(s). We will conclude,
in section 4.3, by revisiting the flocking behavior of the C-S model.

4.1. Flocking of the proposed model.

Theorem 4.1. Consider the model for self-organized dynamics (2.2) and assume that its
influence function φ satisfies,

(4.1a) dV (0) ≤

∫ ∞

dX(0)

φ2(r)dr.

Then, its solution, {(xi(t), vi(t))}i, converges to a flock in the sense that (1.7) holds. In
particular, there is unconditional flocking if φ2 has a diverging tail,

(4.1b)

∫ ∞

φ2(r) dr = +∞.

Proof. Since φ(dX) ≤ φij ≤ 1, the alignment coefficients aij in (3.1) are lower-bounded by

aij =
φ(|xj − xi|)

∑

k φ(|xk − xi|)
≥
φ(dX)

N
.

We now set θ to be this lower-bound of the aij’s,

θ(t) :=
φ(dX(t))

N
,

so that the global active set at that level, Λ(θ(t)), include all agents. Thus, as noted already
in (3.9), λ(θ) = N , and the global version of our main theorem 3.5 yields,

d

dt
dX(t) ≤ dV (t)

d

dt
dV (t) ≤ −αφ2(dX(t)) dV (t).

The result follows from lemma 3.7 with ψ(r) = φ2(r).

Remark 4.2. Theorem 4.1 tells us that the model (2.2) admits an asymptotic flocking
velocity, v∞

limvi(t) = v∞.

In contrast to the C-S model, however, our model does not seem to posses any invariants
which will enable to relate v∞ to the initial condition, beyond the fact noted in remark 3.6,
that v∞ belongs to the convex hull Ω(0). We can therefore talk about the emergence in
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the new model, in the sense that the asymptotic velocity of its flock, v∞, is encoded in the
dynamics of the system and not just as an invariant of its initial configuration. Whether
v∞ can be computed from the initial configuration remains an open question.

4.2. Flocking with a leader. In this section, we discuss the dynamical systems with (one
or more) leaders.

Definition 4.3. Consider the dynamical system (3.1). An agent “p” is a leader if there
exists β > 0, independent of N , such that:

(4.2) aip(t) ≥ βφ(|xp − xi|), for every i.

In other words, an agent “p” is viewed as a leader if its influence on aligning all other
agents “i”, is decreasing with distance, but otherwise, is independent of the number of
agents, N . We illustrate this definition, see figure 4, with the following dynamical system:
a leader “p” moves with a constant velocity and influences the rest of the agents with a
non-vanishing amplitude 0 < β < 1,

(4.3a)
dxi

dt
= vi,

dvi

dt
= α

∑

j 6=i

aij(vj − vi),

where

(4.3b) apj = 0, a
ij
∣

∣i6=p
=











βφ(|xp − xi|), j = p,

1− β

N
φ(|xj − xi|) j 6= p.

i

p

aip ≥ βφ(|xp − xi|)

Figure 4. The agent p (herder) is a leader in the sense of definition (4.3).
He influences every other agents (sheep) more than a certain quantity
βφ(|xp − xi|).

We note that there could be one or more leaders. The presence of leader(s) in the
dynamical system (3.1) is of course typical to asymmetric systems. We use the approach
outlined above to prove that the existence of one (or more) leaders, enforces flocking.

Theorem 4.4. Let {xi(t), vi(t)} the solution of the dynamical system (3.1) and assume
it has one or more leaders in the sense that (4.2) holds. Then {xi(t), vi(t)} admits a
conditional and respectively, unconditional flocking provided (4.1a) and respectively, (4.1b)
hold.
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Proof. We set θ = βφ(dX(t)). Then the leader “p” belongs to all active sets, Λi(θ), and
in particular, “p” belongs to the global active set Λ(θ). Thus, λ(θ) ≥ 1. The inequalities
(3.10) yield

d

dt
dX(t) ≤ dV (t)

d

dt
dV (t) ≤ −αβ2φ2(dX(t))dV (t).

We now apply lemma 3.7 with ψ(r) = φ2(r) to conclude.

Remark 4.5. If the leader p is not influenced by the other agents, then one deduces that the
asymptotic velocity of the flock v∞ will be the velocity of the leader vp. But we emphasize
that in the general case of having more than one leader the asymptotic velocity of the flock
emerges through the dynamics of (3.1), and as with the model (2.2), it may not be encoded
solely in the initial configuration.

4.3. Flocking of the C-S model revisited. We close this section by showing how the
flocking behavior of the C-S model (1.1) can be studied using the framework outlined above.
By our assumption, the scaling of the influence function φ(·) ≤ 1, we have

1

N

∑

j 6=i

φ(|xi − xj|) ≤ 1.

Hence, we can recast the C-S model (1.1a) in the form (3.2)

(4.4)
dvi

dt
= α

N
∑

j 6=i

aij(vj − vi), aij =























1

N
φ(|xi − xj|), j 6= i,

1 −
1

N

∑

j 6=i

φ(|xi − xj|), j = i.

In this case, aij ≥ φ(dX(t))/N for j 6= i. Moreover, the same lower-bound applies for j = i,
because of the normalization φ ≤ 1:

aii = 1 −
1

N

∑

j 6=i

φ(|xi − xj|) ≥ 1 −
N − 1

N
≥
φ(dX(t))

N
.

Therefore, if we now set θ to be this lower-bound of the aij’s,

θ(t) :=
φ(dX(t))

N
,

then Λp(θ(t)), and consequently, Λ(θ), include all agents, λ(θ) = N , consult (3.9). Theorem
3.5 yields,

d

dt
dX(t) ≤ dV (t)(4.5a)

d

dt
dV (t) ≤ −αφ2(dX(t)) dV (t).(4.5b)

Now, apply lemma 3.7 with ψ(r) = φ2(r) to conclude the following.
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Corollary 4.6. Consider the C-S model (1.1) with an influence function, φ, that has a
non square-integrable tail, (1.8). Then the C-S solution, {(xi(t), vi(t))}i, converges, uncon-
ditionally, to a flock in the sense that (1.7) holds. In particular, since the total momentum
is conserved, (1.3a),

vi(t)
t→∞
−→ v , v :=

1

N

∑

i

vi(0).

Comparing the quadratic divergence (4.1b) vs. the sharp condition for C-S flocking,
(1.8), we observe that the unconditional C-S flocking we derive in this case requires a
more stringent condition of the influence function. This is due to the fact that the proposed
approach for analyzing flocking is more versatile, being independent whether the underlying
model is symmetric or not.

5. From particle to mesoscopic description

We would like to study the model (2.2) when the number of particles N becomes large.
With this aim, it is more convenient to study the kinetic equation associated with the
dynamical system (2.2). The purpose of the section is precisely to derive formally such
equation.

We introduce the so-called empirical distribution [24] of particles fN (t, x, v),

(5.1) fN(t, x, v) :=
1

N

N
∑

i=1

δxi(t) ⊗ δvi(t),

where δx⊗δy is the usual Dirac mass on the phase space R
d×R

d. Integrating the empirical

distribution fN in the velocity variable v gives the density distribution of particles ρN(t, x)
in space,

(5.2) ρN(t, x) =
1

N

N
∑

i=1

δxi(t)(x).

Using the distributions fN and ρN , the particle system (2.2) reads,

dxi

dt
= vi,(5.3a)

dvi

dt
= α

∫

y,w φ(|y−xi|) (w−vi) f
N(y,w) dydw

∫

y
φ(|y−xi|) ρN(y) dy

.(5.3b)

Therefore, we can easily check that the empirical distribution fN satisfies (weakly) the
Liouville equation,

(5.4a) ∂tf + v · ∇xf + ∇v · (F [f ] f) = 0,

where the vector field F [f ] and the total mass ρ are given by,

(5.4b) F [f ](x, v) := α

∫

y,w φ(|y−x|) (w−v)f(y,w) dydw
∫

y
φ(|y−x|) ρ(y) dy

, ρ(y) =

∫

w

f(y,w) dw.

To study the limit as the number of particles N approaches infinity, we first assume that
the initial condition fN

0 (x, v) converges to a smooth function f0(x, v) as N → +∞. Then
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it is natural to expect that fN (t, x, v) convergences to the solution f(t, x, v) of the kinetic
equation,

(5.5)

{

∂tf + v · ∇xf + ∇v · (F [f ] f) = 0,
ft=0 = f0

However, the passage from the discrete system (5.3) to the kinetic formulation (5.4) is more
delicate than in the argument for the C-S model [14, 15]: here, the vector field F [f ] may
not posses enough Lipschitz regularity due to the normalizing factor at the denominator of
(5.4b). But since this question does not play a central in the scope of this paper, we leave
the study of existence and uniqueness of solution of the kinetic equation (5.4) for a future
work, and we turn our focus to the hydrodynamic model.

6. Hydrodynamics of the proposed model and its flocking behavior

Having the kinetic description associated with the particle dynamics (2.2), we can derive
the macroscopic limit of the dynamics [11, 10, 15]. We also extend our method developed
in section 3 to prove the flocking behavior of the model in the macroscopic case. To this
end we extend the notion of active sets from the discrete setup the continuum, and the
corresponding key algebraic lemma 3.1 for skew-symmetric integral operators.

6.1. Macroscopic system. To derive the macroscopic model of the particle system (2.2),
we just integrate the kinetic equation (5.4a) in the phase space. With this aim, we first
define the macroscopic velocity u and the pressure term P,

ρ(t, x)u(t, x) =

∫

v

vf(t, x, v) dv , P(t, x) =

∫

v

(v − u) ⊗ (v − u)f(t, x, v) dv,

where ρ is the spatial density defined previously (5.4b). Then integrating the kinetic equa-
tion (5.4a) against the first moments (1, v) yields the system (see also [15]),

∂tρ+ ∇x · (ρu) = 0(6.1a)

∂t(ρu) + ∇x · (ρu⊗ u + P) = S(u),(6.1b)

where the source term S(u) is given by, (recall the notation of (1.9b), 〈w〉 = φ ∗ (wρ)),

(6.1c) S(u)(x) = α

∫

y

φ(|y−x|)ρ(x)ρ(y)
(

u(y)− u(x)
)

dy

∫

y

φ(|y−x|)ρ(y) dy

= αρ(x)

(

〈u〉(x)

〈1〉(x)
− u(x)

)

.

The system (6.1) is not closed since the equation for ρu (6.1b) does depend on the third
moment of f which is encoded in the pressure term P. In order to close the system, we
neglect the pressure, setting P = 0 (in other words, we assume a monophase distribution,
f(t, x, v) = ρ(t, x) δu(t,x)(v)). Under this assumption, (6.1) is reduced to the closed system
(1.9),

∂tρ+ ∇x · (ρu) = 0(6.2a)

∂t(ρu) + ∇x · (ρu⊗ u) = S(u).(6.2b)

We want to study the flocking behavior of general systems of the form (consult figure 5),

∂tρ+ ∇x · (ρu) = 0(6.3a)

∂tu + (u · ∇x)u = α(u− u).(6.3b)
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The expression on the right reflects the tendency of agents with velocity u to relax to the
local average velocity, u(x), dictated by the influence function a(x, y),

(6.3c) u(x) =

∫

y

a(x, y)ρ(y)u(y) dy,

∫

y

a(x, y)ρ(y) dy = 1.

The class of equations (6.3) includes, in particular, the hydrodynamic description of our
self-organized dynamics model, (6.2), with

(6.4) a(x, y) =
φ(|y − x|)

∫

y
φ(|y − x|)ρ(y) dy

.

y

x

a(x,y)

����(ρ)

Figure 5. The quantity a(x, y) (6.4) is the relative influence of the particles
in y on the particles in x.

We begin with the definition of a flock in the macroscopic case.

Definition 6.1. Let ρ(t, x) > 0 and u(t, x)) be the density and velocity vector field which
solve (6.3). Let Supp(ρ) denotes the non-vacuum states,

Supp(ρ) := {x ∈ Rd
∣

∣/ ρ(x) 6= 0},

and consider the diameters, dX(t) and dV (t), of ρ and, respectively, u,

dX(t) := sup{|x− y| , x, y ∈ Supp(ρ(t))},(6.5a)

dV (t) := sup{|u(t, x)− u(t, y)| , x, y ∈ Supp(ρ(t))}.(6.5b)

The solution (ρ,u) converges to a flock if its diameters satisfy,

(6.6) sup
t≥0

dX(t) < +∞ and lim
t→+∞

dV (t) = 0.

Clearly, in order to have a flock, the initial density, ρ0, needs to be compactly supported.
Furthermore, we also impose that the initial velocity, u0, has a compact support, assuming:

(6.7) dX(0) < +∞ and dV (0) < +∞.

In the following, we assume there exists a smooth solution (ρ,u) of the system (6.3).

Hypothesis: Consider the system (6.3) subject to compactly supported initial data, (ρ0, u0),
(6.7). We assume that it admits a unique smooth solution (ρ(t),u(t)) for all t ≥ 0.
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6.2. Active sets at the macroscopic scale. To prove that the solution (ρ,u) converges
to a flock, we need to show that the convex hull in velocity space,

Ω(t) := Conv{u(t, x) | x ∈ Supp(ρ(t, ·))},

shrinks to a single point, as its diameter, dV (t), converges to zero. To this end, we employ
the notion of active sets which is extended to the present context of macroscopic framework.
We begin by revisiting our definition of active set using the influence function a(x, y) (6.4).

Definition 6.2. Fix θ > 0. For every x in the support of ρ, we define the active set, Λx(θ),
as

(6.8) Λx(θ) = {y ∈ Supp(ρ)
∣

∣ a(x, y) ≥ θ}.

The global active set Λ(θ) is the intersection of all the active set Λx(θ):

(6.9) Λ(θ) =
⋂

x∈Supp(ρ)

Λx(θ) =
{

y ∈ Supp(ρ)
∣

∣ a(x, y) ≥ θ for all x in Supp(ρ)
}

.

As before, we let λI(θ) denote the density of agents in the corresponding active set; thus

(6.10) λx(θ) :=

∫

Λx(θ)

ρ(y) dy, λ(θ) =

∫

Λ(θ)

ρ(y) dy.

We would like to extend the key lemma 3.1 from the discrete case of agents to the
macroscopic case of the continuum. This is formulated in terms of the maximal action of
integral operators which involve antisymmetric kernels, k(x, y).

Lemma 6.3. Let ρ ∈ L1(Rd) be a positive function and let k be a bounded antisymmetric
kernel, |k(x, y)| ≤ M and k(x, y) = −k(y, x). Fix two positive functions, u and w in L1

ρ

with a total mass U and W ,

(6.11) U =

∫

x

u(x)ρ(x) dx and W =

∫

x

w(x)ρ(x) dx.

Then, for every positive number θ, we have:

(6.12)

∣

∣

∣

∣

∫

x,y
k(x, y)u(x)w(y) ρ(x)ρ(y) dxdy

∣

∣

∣

∣

≤MUW
(

1 − λ2(θ)θ2
)

.

Here, λ(θ) is the density of active agents at level θ for u and w,

λ(θ) =

∫

Λu,w(θ)
ρ(x) dx, Λu,w(θ) := {x ∈ Supp(ρ)

∣

∣ u(x) ≥ θ U and w(x) ≥ θ W}.

Proof. To simplify, we denote S :=
∫

x,y k(x, y) u(x)w(y) ρ(x)ρ(y) dxdy. The anti-symmetry

of k enables us to rewrite,

S =
1

2

∫

x,y
k(x, y)

[

u(x)w(y)− u(y)w(x)
]

ρ(x)ρ(y) dxdy.

The bound on k and the identity |a− b| ≡ a+ b− 2 min(a, b) yields,

|S| ≤
1

2

∫

x,y
M
[

u(x)w(y) + u(y)w(x)− 2 min
(

u(x)w(y), u(y)w(x)
)

]

ρ(x)ρ(y) dxdy.

Using the notations, we obtain,

|S| ≤MUW −M

∫

x,y
min

(

u(x)w(y), u(y)w(x)
)

ρ(x)ρ(y) dxdy.
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We now restrict the domain of integration on the right hand side to (x, y) ∈ Λθ ×Λθ, where
the lower-bounds of u and w yield,

|S| ≤ MUW −M

∫

Λθ×Λθ

θU θW ρ(x)ρ(y) dxdy = MUW −Mθ2U Wλ2(θ),

and (6.12) follows.

6.3. Decay of the diameters. The diameters (dX , dV ) also satisfy the same inequality
at the macroscopic level. We only need to adapt the proof using the characteristics of the
system (6.3).

Proposition 6.4. Let (ρ,u) the solution of the dynamical system (6.3). Fix an arbitrary θ
and let λ(θ) be the density of agents on the corresponding global active set Λ(θ) associated
with this system, (6.10). Then, the diameters dX(t) and dV (t) in (6.5) satisfy,

d

dt
dX(t) ≤ dV (t)(6.13a)

d

dt
dV (t) ≤ −αλ2(θ) θ2(t) dV (t).(6.13b)

Proof. We fix our attention on two characteristics Ẋ(t) = u(t, X) and Ẏ (t) = u(t, Y ),
subject to initial conditions, X(0) = x and Y (0) = y for two points (x, y) in the support
of ρ(0). Their relative distance satisfy:

d

dt
|Y −X |2 = 2〈 Y −X , u(Y ) − u(X) 〉 ≤ 2dX dV .

Since this inequality is true for every characteristics, (6.13a) follows.
We turn to study the relative distance in velocity phase space: using (6.3c) we find,

d

dt
|u(Y )− u(X)|2 = 2α 〈u(Y ) − u(X) , u(Y ) − u(X)−

(

u(Y ) − u(X)
)

〉,

and hence,

(6.14)
d

dt
|u(Y ) − u(X)|2 ≤ 2α dV

(

|u(Y ) − u(X)| − |u(Y ) − u(X)|
)

.

Using the fact that a(X, ·) has a unit ρ-mass, the difference of averages u(Y ) − u(X) can
be expressed as

u(Y ) − u(X) =

∫

w

a(Y,w)ρ(w)u(w) dw−

∫

z

a(X, z)ρ(z)u(z) dz

=

∫

w,z

a(Y,w)ρ(w)u(w) a(X, z)ρ(z) dwdz

−

∫

w,z
a(X, z)ρ(z)u(z) a(Y,w)ρ(w) dwdz

=

∫

w,z
a(Y,w)a(X, z)

[

u(w)− u(z)
]

ρ(w)ρ(z) dwdz.

We now appeal to the maximal action lemma, 6.3, with anti-symmetric kernel, k(w, z) =
u(w)− u(z), and the positive functions u(w) = a(Y,w) and w(z) = a(X, z): since

|u(y)− u(z)| ≤ dV , U =

∫

y

a(Y, y)ρ(y) dy = 1 and W =

∫

y

a(X, y)ρ(y) dy = 1,
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we obtain,

|u(Y ) − u(X)| ≤ dV

(

1 − λ2(θ)θ2
)

,

Inserted into (6.14), we end up with

d

dt
|u(Y ) − u(X)|2 ≤ 2αdV

(

dV (1− λ2(θ)θ2) − |u(Y ) − u(X)|
)

.

Finally, since the support of ρ is compact, we can take the two characteristics Y (t) and
X(t) such that at time t we have: dV (t) = |u(Y ) − u(X)|, and the last inequality yields
(6.13b),

d

dt
d2

V (t) ≤ 2αdV (t)
(

dV (t)
(

1 − λ2(θ)θ2
)

− dV (t)
)

= −2αλ2(θ)θ2d2
V (t).

6.4. Flocking in the hydrodynamic limit. Since the diameters dX and dV satisfy the
same system of inequalities at the macroscopic level, (6.13), as in the particle level, (3.10),
we immediately deduce that theorem 4.1 is still valid for the macroscopic system (6.3).

Theorem 6.5. Let (ρ,u) the solution of the system (6.3). If the influence kernel, φ, decays
sufficiently slow,

(6.15)

∫ ∞

0
φ2(r) dr = +∞,

then (ρ,u) converges to a flock in the sense of definition 6.1.

Proof. For every x and y in the support of ρ(t, ·), we have,

a(x, y) =
φ(|y − x|)

∫

y
φ(|y − x|)ρ(y) dy

≥
φ(dX)

∫

y
φ(0)ρ(y) dy

=
φ(dX)

ρ
, ρ :=

∫

y

ρ(t, y)dy ≡

∫

y

ρ0(y)dy.

Thus, if we take θ(t) = φ(dX(t))/ρ, every point y in the support of ρ(t, ·) belongs to the
global active set Λ(θ). Therefore, for this choice of θ, we have,

λ(θ) =

∫

Λ(θ)
ρ(x) dx =

∫

Supp(ρ)
ρ(x) dx = ρ.

We deduce that,

d

dt
dX(t) ≤ dV (t)

d

dt
dV (t) ≤ −αφ2(dX(t)) dV (t).

To conclude, we apply lemma 3.7 with ψ(r) = φ2(r).

7. Conclusion

There is a large number of models for self-organized dynamics [1, 2, 4, 5, 7, 13, 12, 17, 19,
20, 22, 21, 26, 25, 27]. In this paper we studied a general class of models for self-organized
dynamics which take the form (3.1),

dxi

dt
= vi,

dvi

dt
= α

N
∑

j 6=i

aij(vj − vi), aij ≥ 0,
∑

j

aij = 1.
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We focused our attention on the popular Cucker-Smale model, [8, 9]. Its dynamics is gov-
erned by symmetric interactions, aij = φij/N , involving a decreasing influence function
φij := φ(|xi − xj |). Here we introduced an improved model where the interactions be-
tween agents is governed by the relative distances, aij = φij/

∑

k φik, which are no longer
symmetric. To study the flocking behavior of such asymmetric dynamics, we based our
analysis on the amount of influence that agents exert on each other. Using the so-called
active sets, we were able to find explicit criteria for the unconditional emergence of a flock.
In particular, we derived a sufficient condition for flocking of our proposed model: flocking
occurs independent of the initial configuration, when the interaction function φ decays suf-
ficiently slow so that its tail is not square integrable, (1.8). Similar results holds for models
with one or more leaders. This is only slightly more restrictive than the characterization
of unconditional flocking in the symmetric case, which requires a non-integrable tail of φ,
(1.5).

In either case, these requirements exclude compactly supported φ’s: unconditional flock-
ing is still restricted by the requirement that each agent is influenced by everyone else. A
more realistic requirement is to assume that φ is rapidly decaying or that the influence
function is cut-off at a finite distance. Here, there are two possible scenarios: (i) condi-
tional flocking, namely, flocking occurs if dV (0) and dX(0) are not too large relative to the
rapid decay of φ2, dV (0) ≤

∫∞

dX(0) φ
2(r)dr; (ii) a remaining main challenge is to analyze

the emergence of flocking in the general case of compactly supported interaction function
φ. Clearly, this will have to take into account the connectivity of the underlying graph G,
(3.8). We expect that the notion of active sets will be particularly relevant in this context
of compactly supported φ’s. The main difficulty is counting the number of “connected”
agents in the corresponding active sets. As a prototypical example for the difficulties which
arise with both — asymmetric models and compactly supported interactions, we consider
self-organized dynamics which involves vision, where each agent has a cone of vision,

(7.16)
dxi

dt
= vi,

dvi

dt
= α

N
∑

j=1

κ(ωi, xj − xi) φij(vj − vi).

Here, κ(ωi, xj − xi) determines whether the agent “i”, heading in direction ωi := vi/|vi|,
“sees” the agent “j”:

κ(ωi, xj − xi) =











1, if ωi ·
xj − xi

|xj − xi|
≥ γ > −1,

0, otherwise,

with γ being the radius of the cone of vision (see figure 6). The φij’s determine the pairwise
alignment within the cone of vision, and can be modeled either after C-S (1.1),

φij =
1

Ni
φ(|xj − xi|), Ni := #{j | κ(ωi, xj − xi) = 1},

or after our proposed model for alignment, (2.2)

φij =
φ(|xj − xi|)

∑Ni

k=1 φ(|xk − xi|)
.
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In either case, the resulting model (7.16) reads,

dvi

dt
= α

N
∑

j=1

aij(vj − vi), aij = κ(ωi, xj − xi) φij,

and it lacks symmetry, aij 6= aji. The loss of symmetry in this example reflects possible
configurations in which agent “i” “sees” agent “j” but not the other way around. This
example demonstrates a main difficulty in the flocking analysis of local influence functions,
namely, counting the number of active agents aij ≥ θ inside the cone of vision. We leave
the flocking analysis of this example to a future work.




j

i

Figure 6. Adding a cone of vision in the C-S model (7.16) breaks down the
symmetry of the interaction. Here, the agent “i” does not “see” the agent
“j” whereas the agent “j” sees the agent “i”.
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