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MULTISCALE HIERARCHICAL DECOMPOSITION OF IMAGES
WITH APPLICATIONS TO DEBLURRING, DENOISING AND
SEGMENTATION*

EITAN TADMOR', SUZANNE NEZZAR*, AND LUMINITA VESE$

Abstract. We extend the ideas introduced in [33] for hierarchical multiscale decompositions of
images. Viewed as a function f € L?(£), a given image is hierarchically decomposed into the sum or
product of simpler “atoms” ug, where uj extracts more refined information from the previous scale
ug_1. To this end, the uy’s are obtained as dyadically scaled minimizers of standard functionals
arising in image analysis. Thus, starting with v_; := f and letting vi denote the residual at a given
dyadic scale, \i, ~ 2%, the recursive step [uy,vy] = arginf Qr (v _1,Ax) leads to the desired hierarchical
decomposition, f~ > Tug; here T is a blurring operator. We characterize such Qp-minimizers (by
duality) and expand our previous energy estimates of the data f in terms of ||ug||. Numerical results
illustrate applications of the new hierarchical multiscale decomposition for blurry images, images
with additive and multiplicative noise and image segmentation.

Key words. natural images, multiscale expansion, total variation, segmentation, image decom-
position, image deblurring.

AMS subject classifications. 26B30, 65C20, 68U10

1. Introduction — hierarchical (X,Y) decompositions

We continue our study of the hierarchical image decomposition method intro-
duced by the authors in [33] (hereafter abbreviated TNV). We extend the hierarchical
decomposition method to the case of functionals arising in image deblurring, in multi-
plicative image denoising, and in image segmentation. Convergence results and energy
estimates are given, together with experimental results on real images.

The starting point is a pair of normed function spaces, (X, || ||x) and (Y] |ly),
and their associated Q-functional,

O(f N = QU XX, Y) = inf {flullx +ALf—ul} }, A>0. (1)

We will talk about functions in the smaller space X being “smoother” than those
in Y, so that the condition |lu|lx <oco can be viewed as a regularizing constraint.
The use of regularized Q-like functionals has a long history starting with the classical
Tikhonov-type regularizations; consult [34, 21, 22]. They can be found in a variety of
applications; we mention here two: the work on support vector regression, e.g., [35],
and the early works in the context of image processing [14, 30, 1, 10, 15]. In these
works, A is treated as a fixed threshold parameter. The Q-functional (1.1) is also
closely related to the standard K-functional which arises in interpolation theory, e.g.,
[4, 3,12, 17],

KX Y)= inf {ulx+AIf —ully }, A>0.
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The relation between the O- and the K-functionals is summarized in

)\2
Q(fnUO\aXvY) K(fv)‘vXaY)v X K(f,)\)

In this context of K-functionals, however, A does not just serve as a threshold param-
eter, but in fact is treated as a variable: the collection of f’s with prescribed behavior
of K(f,\) as AT oo forms intermediate interpolation smoothness spaces!. This is the
point of view we adopt in the hierarchical decomposition of Q-functionals described
below, with A being treated as a scaling variable.

We assume that the minimization problem has a solution u:=wu), and we let vy
denote the residual, vy := f —wu). This will be expressed as

f:uA+vAa [ukﬂ}k]:ar%_igffg(faA;va)' (12&)

In general, ||ul|x will be a regularizing term; thus u, will contain only the “larger”
features of f, while the residual vy will contain the “smaller” features. Of course, the
distinction between these two components is scale-dependent — whatever is interpreted
as ‘small’ features at a given A-scale, may contain significant features when viewed
under a refined scale, say 2\

Ux =Ug) + Va), [UQA,UQ)\]:aI;%_in Q(vx,2N). (1.2b)

V=V )

By combining (1.2a) with (1.2b) we arrive at a better two-scale representation of
f given by fauy+ugy. Features below scale 1/2X remain unresolved in vqy, but the
process (1.2b) can be continued. Starting with an initial scale A=\,

f=uo+o, [UO7U0]=a{g+igfo(f7/\o)7 (1.3a)

a more refined decomposition of f into simpler “atoms” is obtained by successive
application of the dyadic refinement step (1.2b),

Vj =Ujqp1 +Vj41, [Uj+177)j+1]::a];g+inf Q(vj,)\02j+1;X,Y), j=0,1,.... (1.3b)

V=V,
After k such steps, we end up with the following hierarchical decomposition of f:
f=uo+uvo
=ug+tur+uv;

=ug+uy+---+up+vg. (1.4)

The above multiscale expansion provides a new hierarchical representation of the
data feY,

f% Z’u]‘, UjGX, (15)
Jj=0
LObserve that the definition of the K-functional here exchanges the usual ordering between X

and Y, so that it scales with increasing A, in order to keep the compatability with the usual use of
the scaling of Q-functional in image processing.
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where the approximate equality, = in (1.5), should be interpreted as the convergence
of the residual vg’s in (1.4), to be made precise below. The partial sum, Z?:O’U’j’
provides a multi-layered description of f which lies in an intermediate scale of spaces,
in between X and Y, though the precise regularity may vary, depending on the scales
which are present in f.

Multi-layered representations of images are not new. We mention here those based
on wavelet expansions, e.g., [19], [7], and the TV based expansion suggested by Rudin
and Caselles in [26]. As a prototype example, we mention the hierarchical (BV,L?)
decomposition introduced in TNV. A special case of Tikhonov regularization with
(X,Y)=(BV(£),L?(2)) is the Total Variation (TV) functional' introduced in [10],
Q(f,\,BV(Q),L%*(£)), to recover a sharp image u from its noisy version, f=u+wv,
corresponding to the TV constrained minimization of Rudin-Osher-Fatemi [30]. Here,
A>0 is a threshold parameter. The (BV, L?)-hierarchical decomposition correspond-
ing to (1.5) was introduced by the authors in [33],

f=> uj,  u;€BV(9Q). (1.6)

This decomposition is independent of a priori parameters and is essentially nonlinear
in the sense that its dyadic blocks, u;, depend on the data itself, u;=w;(f). The
dyadic blocks capture different layers of scales of the original image. Their precise
multiscale nature is quantified in terms of the energy decomposition [33, corollary 2.3]

oo

1
TS [Aj|uj|3wm+||uj||i2(m .
j=0

The hierarchical, multi-layered (BV,L?)-decompositions (1.6) were found to be
effective tools in image processing [33, 8] and image registration [18, 27]. They apply to
image denoising in the presence of additive or multiplicative noise, to image deblurring
and to image segmentation. These extensions of hierarchical decompositions will be
discussed in the sections below.

REMARK 1.1. (The homogeneity of the hierarchical decomposition). We note here
the anomaly of the Q-functional (1.1): when an image f with minimizer [u,v] doubles
its intensity, 2f, its minimizer does not scale accordingly since the quadratic-based Q
is not homogeneous. This anomaly of the Q-functionals is fixed by their hierarchical
decompositions. To this end, we observe that if [ug,vg] is the minimizing pair of
O(f,\) then [2ug,2vp] is the minimizer of Q(2f,A/2). Consequently, if an image f
has the hierarchical description (1.3b), f= Z;’io uj, then we find recursively that

205 =2u;11+2v;11, [2117'_‘_1,21@4_1}::aurg+ in2f Q(v;,X027;X,Y), j=0,1,....
UTUV= 'Uj

We conclude that the hierarchical decomposition is homogeneous of degree one:
when doubling the intensity, 2f has the corresponding hierarchical decomposition

2f§ i?u]
j=0

1TV should not be confused with TNV.
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2. Hierarchical decomposition of blurry and noisy images

We are given a blurred image, represented by f € L?(€); blurring will be modeled
by a linear, continuous blurring operator, T: L?(2) — L?(2) (such as a convolution
with a Gaussian kernel). We consider a decomposition of f provided by the following
Or(f,A) minimization in the presence of blur,

Or(FAX(@),L2(@) = inf Ll + M ~Tul oo (2.12)

Here, the regularization functional ||-||: X C L*(Q) — [0,00] is a semi-norm which takes
the general form:

lull =l := /Q o(DPu),  p>L. (2.1b)

A few examples for such regularizing functionals are in order. If ||ul| = |u|py () =
Jo |Dul is the total variation of u, then (2.1a) becomes the denoising-deblurring model
introduced in [9, 10] following the BV-type constrained minimization of [30, 31]. A
more general BV-type model is provided by [lul = [, ¢(|Du|) with a proper norm,
¢, defined on the space of measures; the corresponding Qp in(2.1a) then becomes
the generalized BV model studied in [11, 36, 13]. Other examples, defined on dense
subspaces of BV, are provided by ||u| =||Dul|p2q): H* () — [0,00), or the second-
order [|lully= [, |D?u|: BH(Q) —[0,00) defined on BH, the space of functions with
bounded Hessian.

Let vy:=f—Tuy denote the ‘texture’ at scale A associated with the blurring
model (2.1a),

[ux, )] =arg inf or(f, ).
Starting with A= X in (2.1a),
[uo,vo] = al;gwiglif Qr(f; o), (2:2a)

we proceed by iterating at the dyadic scales \; := Ao27:

[Uj+1,’l)j+1]:an‘g inf Q(Uj,/\j+1), )‘j = )\02j,j:0,1,.... (2.2b)
Uj+1

FUi+1=0;

Thus we have v; =Tu;1+v;41 where v_; := f. Summing the last recursive relation,
we end up with a hierarchical representation of the blurred image f,

f=Tug+Tuy+-+Tup_1+Tug+ v, (2.3)

which in turn paves the way for a hierarchical, multiscale denoised-deblurred expan-

sion
u= E Uj.

3=0

REMARK 2.1. (When to start and when to stop the hierarchical decomposition).
How should one choose the initial scale A\g? According to Corollary 2.5 below, if
Xo||T* fl« <1/2, then the minimizer of (1.3a) is [ug,vo] =[0, f]. Thus, if A¢ is chosen
too small relative to the amount of texture/noise/blurring present in f, then its dyadic
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multiples, 2/ \g, j=0,1,..., will have zero contribution to the hierarchical expansion
until they reach the critical value of 27° A\ so that

1 .
5 <PN|T*fll. <1.

This then dictates the precise initial step of the hierarchical decomposition,

uz Z uj. (2.4)

Jzjo

We note that the last expansion has to be truncated at appropriately chosen finite
m in order to avoid the ill-posedness which must occur as we accumulate infinitely
many terms, approaching the “inversion” of the ill-conditioned 7. When should one
truncate the expansion? A systematic study can be found in, e.g., [25] which studies
hierarchical decompositions based on inverse scale iterations.

REMARK 2.2. (Dyadic scales). How important is the use of dyadic scales, \; ~ 277
As noted in TNV, one can use hierarchical decomposition with any sequence of scales,
Ao <A1 <...<Ap. In particular, Aj~ ) with A>1. The dyadic choice is a default
choice (think wavelets), in the absence of any other systematic policy. Ideally, such a
policy will dictate a judicious, data-dependent choice of how the next scale, Ax11, is
to be determined by the information available from previous layers, Zf> Jo

2.1. Hierarchical decomposition using Qr-minimizers. To study the hi-
erarchical expansions (2.4), we first characterize the minimizers of the Qr-functionals
(2.1). The characterization summarized in the theorem below extends Meyer’s result
[20, Theorem 4] (and we also refer to [5, Chapterl] for related characterization of
minimizers involving dual functionals).

We recall that the regularizing functional ||f|| in (2.1b) is a semi-norm and we
define its dual with respect to the L?(f2) scalar product (-,-),

(f, )

’LL]'.

[ fll+:= sup ; (2.5)
lelizo llll
so that the usual duality holds
(o) <llelllfl«- (2.6)

We say that (f,p) is an extremal pair if equality holds above. The theorem below
characterizes u as minimizer of the Qp-functional if and only if u and T*(f —Tu)
form an extremal pair.

THEOREM 2.3. Let T:L*(Q)— L?(Q) be a linear continuous blurring operator with
adjoint T* and let Qr denote the associated functional (2.1a).

(i) The variational problem (2.1) admits a minimizer u. Moreover, if ||-| is
strictly convex, then a minimizer u with ||u||#0 is unique.

(ii) w is a minimizer of (2.1) if and only if
[

(u,T*(f =Tw)) = Ju]}- |T* f =TT, = 2. (2.7)
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The detailed proof of the theorem, whose second part was sketched in [20]) is
postponed to the end of this section. The next two remarks lead to refinement of
Theorem 2.3, depending on the size of ||T™* f||..

REMARK 2.4. (The trivial minimizer). More can be said in case f consists mostly of
texture, in the sense that

T* 2.8
I £l < 55 (23)
Indeed, if (2.8) holds, then the characterization of the minimizer w in (2.7) implies

= (wT"f)=(u.T"Tu) < 5 = Tul 72,

and hence Tu=0. But then QT(f,/\):||uH—|—/\||fH%2 implies that «=0 is a mini-
mizer of (2.1), with Q7 (f,A\) =A||f[|2.. The converse of this assertion also holds. We
summarize with the following corollary.

COROLLARY 2.5. [The case | T* f||« <1/2)\]. Let T:L*(Q)— L*(Q) be a linear con-

tinuous blurring operator with adjoint T* and let Qr denote the associated functional
(2.1a). Then ||T*f||. < 55 if and only if u=0 is a minimizer of (2.1).

Proof. Assume [|T* f||. <1/2\. We have already seen that «=0 is a minimizer.
One can also argue directly that since 2A(T™ f, ) < ||| for all p € BV (),

lell +AIf =Tl Za@) = el + A lIZ2 @) = 2Mf, To) + ATl 720
=llel =2MT* f,0) + Al fll720) + AT ol 720
> A £ll72(0) + ATl Z2 () = A f = T0Z2 () + 0],

and therefore u =0 is a minimizer of (2.1a). It remains to verify the “if” part, namely,
if u=0 is a minimizer of (2.1), then for all ¢ € BV (Q2) we have

MIFlIZ2 0y SMTo = fll720) +iel (2.9)

or
2Mf,T0) STl 22 () + oll-
Rescaling ¢ — ep, we obtain
2Xe(f, Tp) <A Tl|72 (o) +ellll-

Dividing by € and letting € — 04 yields 2A\(T™* f, ) =2X(f,Ty) <|¢| for all h € BV (Q),
and we conclude ||T* f]|. <1/2. 0

REMARK 2.6. (Equivalence classes). Consider the pth order semi-norm in (2.1b),
llull = flull, = [, ¢(DPu), and assume

1T £l < 00

We note that ||-[|. = (|| - ||p)* should be considered on the complement of appropriate
equivalence classes of “modulo polynomials of degree p”. Indeed, since [|p+P|,=
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Il , for any polynomial P =P(z) of degree <p—1, we have for arbitrary constant ¢
that

= = C .
lp+cPll el el Il

Thus, ||T* f||« < oo implies (T* f, P) =0 for all degP <p—1.
In particular, if we assume that

1

a T* * )

55 <7 fll. <00

then a minimizer u of Qp(f) does not vanish, i.e., |ul|#0. Otherwise, if ||u| =0,
then u would be a polynomial of degree <p—1; but by the preceding argument, the
polynomial u should be orthogonal to T* f and hence

Qr(f,N)=Alf = Tull2 = A(II 172 + | TullZ:),

which is minimized when Tu=0. Given that |u||=Tu=0, one can follow the proof
of Corollary 2.5, starting with (2.9) and concluding that ||7* f||. <1/2X, which con-
tradicts our assumption. We can summarize this case in the following corollary.

COROLLARY 2.7. (The case ||T*f|l. >1/2\). Let T:L*(2) — L*(Q) be a linear con-
tinuous blurring operator with adjoint T* and let Qp denote the associated functional
(2.1a) with ||-|[=1|-l,- Assume that

1
— < |T* f|+ .
o <l £l <00
Then w is a minimizer of (2.1) if and only if uw and T*(f —Twu) is an extremal pair

and

1
T f—T*Tu||«=—. 2.10
7T Tl = (2.10)
Moreover, if ||-|| is strictly convex then the minimizer u is unique.

Proof. We can now divide the equality on the right of (2.7) by [luf={u],#0.
Moreover, since ||T* f|. > 1/2], it follows by Remark 2.6 that ||u|| #0, and uniqueness
follows from Theorem 2.3(i). O

Equipped with Theorem 2.3, we can extend the (BV, L?)-hierarchical decomposi-
tions introduced in TNV to general Qp-functionals.

THEOREM 2.8.  (i)(Hierarchical expansion). Let f€L?*(Q)) and consider the
dyadically-based Qr decomposition (2.2). Then f admits the following hierarchical
expansion

f= ZTuj; (2.11a)
=0

here the = should be interpreted as the convergence Z?:OTUJ‘ — f in the weak ||-||-
sense,

k
. 1
”T ('f—ZTuj)”*:W' (2.11b)
7=0
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(ii) (Energy decomposition). The following energy estimate holds:

>[5 sl + 1T ey | < Uy, Ay i= o2 (2.120)
i—0 ]

<

Moreover, if f € BV (Q) then equality holds in (2.12a),
71
S [l + 17wl )] =173y € BV (2120)
j=0 """

We note in passing that the BV reqularity assumption can be relaxed for the energy
decomposition, (2.12b), to hold; consult [33, Corollary 2.3].

Proof. If ||T* f]|l« <1/2X then by Corollary 2.5 the minimizer of (2.1a), [ux,v] =
[0, f]; otherwise

. 1 1
|T ’UAH**ﬁ, <Tu,\,v,\>—ﬁ||ux||- (2.13)

The first statement (2.11a) then follows from the basic hierarchical expansion, f=

ZISTUj +vg, while noting that ||T*vg|l« =1/2Ag. For the second statement, (2.12),
we begin by squaring the basic refinement step, Tu; 11 +vj41 =v;,

0541112 0) + I Twi 11720y +2(Tujs1,v5401) = 10572y 3=—1,0,1,.... (2.14)

Observe that the last equality holds for j=—1 with v_; interpreted as v_1:=f. We
recall that [uj41,v41] is a minimizing pair for Qr(vj,A;4+1), and hence, by (2.13),

1
2(Tujy1,v541) = o el
]

yielding ﬁ”uﬂ-l” + ||Tuj+1||2L2(Q) = ||Uj||2Lz(Q) - ||Uj+1||2L2(Q)- We sum up obtaining
(2.12a):
k 1 k—1 1
[l 1T ey | = D0 [ Nl + 17w 2y |
j=0 J j=—1 j+1

= ”1)—1”%2(9) - Hvk”%%m = ||f||%2(9) - ||Uk||2L2(Q) < ||f||%2(9)-

Given that f has BV regularity, one can follow the argument in [33, Theorem 2.2] to
conclude the equality (2.12b). |

We conclude this section with the promised proof:

Proof. (of Theorem 2.3).

(i) The existence of a minimizer for the Qp-functional follows from standard
arguments which we omit; consult [1, 10, 36] or [16, Section 8.6]. We address the
issue of uniqueness. Assume u; and us are minimizers

il + Al = Tuill 2 = jmin,  i=1,2
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then by a standard line of argument we consider the average us:= (u1 +u2)/2 to find
that

jnn’n < ||U3|| —i_)‘Hf_jju?)”i2
1 1
< 5 (Ilall A1 =T 32 + lfuall -+ AL = Tua 32 ) = 71T (ur =) 13
. 1
< Jmin = 71T (w — )|

Thus, u; —us belongs to the kernel of 7. We then end up with the one-parameter
family of minimizers, ug:=u1 +0(u2 —uq), 0 €[0,1],

Jmin < |[uell + Al f —Tugl|7
<OlJuz |+ (1= 0)ua ||+ OA[| f = Tuz |72+ (L= O)A| f — Tur |72 = fmin-

Clearly, the two minimizers satisfy ||u1| = ||uz]|, and we conclude that the ball
lu]l = JJu1]| #0 contains the segment {ug, 6 €[0,1]}, which, by strict convexity, must
be the trivial segment, i.e., us =u;.

(ii) If w is a minimizer of (2.1a), namely, if for any ¢ € BV () we have
IS =T (utep)l|L2 () + lluteall 2 AlLf = TullLz ) + lull
then
AT || 20y = 20e(Tp, f = Tu) + lu+ e > [|ull. (2.15)
Since ||-|| is sublinear, the last inequality yields
AT 220 = 20e(Tp, f = Tu) +|ull + el [l > [|ull,
or, after division by € >0,
ol +Aell Tl 72 ) = 2M(Tp, f = Tu).
Letting € | 04, we obtain ||| >2X Ty, f —Tu) for any ¢ € BV () and hence

L T =Tw)

—> — | T* f —T*Tul]... (2.16)
2X 7 g0 el

To confirm (2.7) it remains to verify the reverse inequality in (2.16). To this end
we set p=u and —1<e<0 in (2.15), yielding
A TulZa g + (L€ lfull > [Jull +2X0e(u, T (f = Tw)),
or
ATl +ellull > 26, T ( — Tr).
Dividing by € and letting e10_, we obtain 5 ||ul < (u,7*(f—Twu)). This, together

with (2.16), implies that

1 1
i < * _ < * Pk <
oy el < (w, T(f = Tw)) < [[ull1 T f =T Tull« < g ull,
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so that the last inequalities become equalities and (2.7) follows.
Conversely, we show that if u satisfies (2.7) then it is the desired minimizer. To
this end, we rewrite

1f =T (ut9)Z20
=((f=Tu)=Te,f —T(u+))
= <f—Tu,f—|—T(u—|—<p)> —2<f—Tu,T(u—|—<p)> — <T<p,f—Tu>—|— ||T<p||iz(9)
#1 #2
=|1f = TulF2q)—2(f —=Tu,T(u+¢)) +2(Tu, f = Tu)+|| Tl 72 q)-

Now, Assumption (2.7), [|T*(f—Tu)|l.=55, implies 2A(#1)<[lu+¢| and
2A(#2) = ||u||. We conclude that for any h € BV (),

lut@ll+Alf =T (ut9)l720)

=[lu+ @l = 2A(#1) +2X(#2) + Al f = Tul 220y + AT 72 ()
> [lull +Af = Tull72q)-

Thus, w is a minimizer of (2.1). |

We remark that a lack of uniqueness is demonstrated in an example of [20, pp.
40], using the £>°-unit ball, which in turn lacks strict convexity. Thus, strict convexity
is necessary and sufficient for uniqueness.

2.2. Discretization of Euler-Lagrange equation and numerical results.
We consider for illustration the case of the total variation [31], therefore ||u| = [, |Dul.
In practice, we simplify the formulation by working only on W(2) and we write
[ull = [, |Vu|dedy. In order to construct the hierarchical decomposition of f, we use
the associated Euler-Lagrange equation of Q(f,\)

1 \Y%

|V’U,)\|

When working on a bounded domain 2, we augment the Euler-Lagrange equations
by the following Neumann boundary condition:

8u,\

on| O

o0

The hierarchical decomposition, fNZ?:OT uj:TZ§:0uj, is obtained. Note

that we are really interested in the deblurred image u= Z?:o u;, from which the u;’s
are constructed as (approximate) solutions of the recursive relation governed by the
following PDE:

*
T’Uj

1 . Vuizq 1 . Vu;
T Ty — d AR I ( 7).
uJJrl 2>‘j+1 a <|VUj+1|) 2)\] a \Vuj|>

We implement our algorithm for this type of image in essentially the same way
as for the case without blurring (see [33]). The only difference is that we have to deal
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with the blurring operator T, a Gaussian kernel in our experiments, and in this we
follow the method of discretization in [6] and [36]. The first step is to remove the
singularity when |Vuy|=0 by replacing Qr(f,\) with

Q7 (f.A):= inf /\/e2+\Vu|2da:dy+)\Hf TUHLQ(Q}

We find the minimizer u) =u) ¢ of the regularized functional associated with QF at
each step of our hierarchical decomposition. The associated Euler-Lagrange equations
are

VU)\ .
T Tuy=T" f+ — div (——2 Y inQ, 2.17a
A / 2\ <\/62+‘VU)\|2) ( )
% =0 on 9, (2.17b)

which we solve by a dynamic gradient descent scheme (x,y,t) — u(x,y,t),

Ouy 1 . Vuy
—+T*T T —d — t)eQx|0 2.18
g T =T gy v (). (@) €2 [0too), (219

u(x,y,O):f(x,y), (Ly)EQ.

As in TNV, we use a computational grid, (z;:=th,y; :=jh, t" :=nAt), to cover
the domain Q for ¢ >0, where h is the cell size. Let Dy,D_ and Dg:=(Dy+D_)/2
denote the usual forward, backward and centered divided difference, e.g., D% u; ; =
(ui+1,j — um)/h, and let

Vul; = \/62+(Diu;§j)2+(pzu;§j)2 (2.19)

denote the “numerical gradient” at (x;,y;), with a safeguard e <1 chosen below the
relevant scales, just to secure |Vul; ; #0.

We discretize (2.18) with the Gauss-Seidel iteration scheme, using the most recent
values of the available u; ;’s,

untt =uj; + AT Tuj j+ AtT™ f;

]
n+1 n+1 n n n+1 n+1 n
N R R N i W B T R e e S LN R e
2X | AVun|; hVurlii; | 2 h|Vun|; ; h|Vu™|; i1

(2.20)

REMARK 2.9. (Semi-implicit scheme). The resulting semi-implicit scheme (2.20) is
not more computational intensive than the explicit scheme. Yet, it offers a larger
stability region and in fact is unconditionally L*°-stable for T'=1, and it converges in
fewer iterations than the explicit one.

In Figure 2.1, we show a test image, its blurry version (with Gaussian blur, no
noise), the results obtained using the Rudin-Osher model [31], and the results obtained
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using the hierarchical model. Following [6, 36], we work with convolution-type T’s
which are realized by symmetric matrices, (Cag)a,s=1,ds

d d
Tuiji= Y Coplitd/z—a,j+d/2—p: > Cap=1
a,p=1 a,p=1

Thus T*Tu="T?%u; ; :Zi,ﬁ:1 Zi’ézlCa5075Ui+d_a_»y,j+d_ﬁ_5. The proposed hier-
archical model gives improved results over the standard RO model in terms of the

original

vro +128

Fia. 2.1. 1st row (from left to right): original test image, its blurry version f, and Rudin-Osher
restoration uro, YvrRo =f—uro +128, rmse=0.1066. RO parameters: A=2000, h=1, At=0.1.
2nd to last rows: hierarchical recovery from the same blurry initial image f using k=19 steps,
shown every other one, and residual at step 19. Parameters: \o=1, At=0.1, h=1, and A\ =2FXo.
Final rmse= 0.0922.
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vro +128

1))\5

Fi1G. 2.2. 1st row, from left to right: blurry-noisy version f, and Rudin-Osher restoration uro,
vro=f—uro+128, rmse =0.2028. RO parameters A=0.5, h=1, At=0.025. The other rows,
left to right: the hierarchical recovery of u from the same blurry-noisy initial image f using 6 steps.
Parameters: A\g=0.02, At=0.025, h=1, and A\, =2%Xg, rmse= 0.2011.

root mean square error,

\/Zi,j (Worig,i,j — Urestored,i,j)?
241

rmse .=

Similarly Figure 2.2 illustrates how the hierarchical decomposition works for noisy
blurred images, again as a (small) improvement over the Rudin-Osher model. Note
that the result obtained with the hierarchical model suffers less from the staircasing
effect.

3. The hierarchical (SBV,L?) decomposition

We want to construct the hierarchical decomposition based on the Mumford-Shah
functional [23]. To this end we consider its elliptic approximation of Ambrosio and
Tortorelli [2],
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AT, (f,\) = inf /w2+ €,)|Vul2dz
AE) {u,v’ww_f}{d [ (w2 96,190

w122

+ P||Vw||2L2(Q)+4/))4'/\||U||2L2(Q)}7

where €, — 0 as p |0, and A, are positive weight parameters.

REMARK 3.1. Note that we modified the A7 ,-functional, where the first square-root
term on the right replaces the original term, fQ(w2+p6p)|Vu|2dx, appearing in the
work of Ambrosio-Tortorelli [2]. Our modified AT ,-functional does not affect the
main properties of the segmentation model, however; it is introduced here in order to
enable the characterization of AT ,-minimizers in Section 3.1 below. Our numerical
calculations will then utilize the original formulation of the A7 ,-functional.

Let [uy,vy] be the minimizer of AT,(f,\) (depending on w). Here f € L>°(2) and
uy is restricted to the smaller SBV space (a special subclass of BV space consisting
of measure gradients free of the Cantor component [2]), while the texture vy lives in
L?. We proceed to construct the hierarchical (SBV,L?) decomposition of f in the
same manner as before, letting [u;41,v,4+1] be the AT minimizer

[’LLj+1,’Uj+1] =arg inf ATp(vja)\j)a Aj :)\02j.

UV, W, U+ V=0

We end up with the hierarchical decomposition

f=uo+us+---+up+vg.

Here, at each hierarchical step, we also obtain the edge detectors 1—w;=1—wy,,
which are (essentially) supported along the boundaries of objects enclosed by edges
identified by u;.

3.1. Characterization of (SBV,L?)-minimizers. We proceed along the lines
of our analysis of general O-functionals in Section 2.1. We begin with a general
characterization of AT ,-minimizers as extremal pairs. To this end, we introduce the
weighted spaces for given w € H* (),

olmy ) = \//Q(w2+p6p)lv<pl2dx,
and we let
”fHH;l(Q) ‘= sup <f7<P>/|%0|H}U(Q)
PEH(Q)

denote the dual norm. We have now the following characterization of the minimizers
u,w of the AT ,-energy.

THEOREM 3.2. If u,w € [0,1] are minimizers of the AT ,-energy, then

L p
||f_uHH;1(Q):ﬁ’ and (f—u,u>:ﬁ|u|H;(Q). (3.1)
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Proof. Let [u,w] be a minimizing pair. Considering the variation of A7, only
with respect to u, we find that for any h € H(£2), we have

H1 @) FAf —u—epl 720

w

my @) TS —ullF2 o) < plutep

w

plu

The triangle inequality yields the “first variation” (or, more precisely, sub-differential)

HL(Q)- (32)

w

2)\6<f—u,<p> < )\EQH(PH%Q(Q) +M6|(p

For e>0 this gives 2A\(f —u,p) S)\e||g0||%2(m+u\<p|H}U(Q)7 and, as e— 04, we deduce
that for all p € H}(Q),

<f_ua90>

<
lolm @) — 2\

or

w
||f*u||H;1(sz) < D% (33)

Now, if we set o =wu in (3.2), we find that
2Xe(f —u,u) < ,\€2||u||%2(9) +ILL€|'U,|H&)(Q).
Again, first dividing by € <0 and letting € T0_, we obtain
I
<f7u,u>25|u|Hi)(Q). (3.4)

Combining (3.3) and (3.4) we find that

p p
ﬁlu ay@) S —wu) S| f—ullg-1 g lulmy @) < 5|u HL(Q)>
confirming that the last inequalities are in fact equalities and thus concluding the
proof. 0

As before, consult Corollary 2.5, the fact that the image f contains too much
texture is linked to a trivial A7 ,-minimizer. One part of this link is the content of
the following theorem.

THEOREM 3.3. Ifu=0 and w=1 are minimizers of the AT ,-energy, then

By 1tpe (3.5)

ey <
flla-1(0) < X

Proof. If [u,w]=10,1] is a AT ,-minimizer then for any p € H*(Q),

A|f||iz(ms6u\/ /Q(1+p€p)|V<Pl2dx+/\Ilf—630||2L2(Q>,

or, after expanding terms,

2eA(f,0) <€Al¢lzz0) +6u\//ﬂ(1 +pep)|IVepl2da.
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As €] 04, we deduce that

Afop) < u\//ﬂ(l +pe) [Vl 2da,

and (3.5) follows. |

Equipped with the characterization of A7 ,-minimizers, we turn to analyze the
corresponding hierarchical decomposition.

THEOREM 3.4. (i)(Hierarchical decomposition). Consider f € L?(Y). Then f admits
the following hierarchical decomposition:

f= Zuj, (3.6a)
j=0

where = is interpreted as weak H'-convergence of the residuals

If— ZUJ”Hwk @~ )\021@4—1 (3.6b)

Here, wy is computed recursively as the weighting minimizer of AT,(f—
A .

Zj:ouj7>‘02j)'

(ii) (Energy decomposition). The following ‘energy’ estimate holds:

oo

1 .
[l o s3] S UFIR2, Ay =22, (3.7)
j=0 "

Moreover, if [ is sufficiently smooth then equality holds in (3.7).

Proof The first statement, (3.6), follows from the basic hierarchical expansion,
f= Zo uj+ vy, while noting that [[vg| -1 )= w/2M,. For the second statement,

(3.7), we begin by squaring the basic reﬁnement step, w1 +vj41="0;,

||’Uj+1H%2 + ”ujJrIH%2 +2<uj+1vvj+1> = ”ij%Zﬂ J==10,1,.... (38)

Observe that the last equality holds for j=—1 with v_; interpreted as v_;:=f. We
recall that [wj41,v41] is a minimizing pair for A7, (v;,A;+1) and hence, by (3.1),

2(uj1,v5401) = v |uj1lmy (@)

Aj+1 Yitt

yielding ﬁ|Uj+1|Hlluj+l(Q) +lujs1l32 =vjl|32 = |vj+1]|32. We sum up obtaining

k—1

k
1
Z[ lujlm, (@) +||uJ||L2] => {E\Uﬁﬂmﬂw(n)+||Uj+1||2L2}

=0 j=—1

=llv-1llZz = llvkllZ= = F11Z2 = o7 < I £115.
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F1c. 3.1. The sum of the u;’s using the Ambrosio-Tortorelli approzimation of the image of a
woman, using 10 steps. Parameters: A\g=.25, p="5, p=.0002, and A, =2%X\g.
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Fic. 3.2. The weighted sum of the w;’s using the Ambrosio-Tortorelli approzimation of the
image of a woman, using 10 steps. Parameters: A\g=.25, p=>5, p=.0002, and A, =2% .
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1
2 icoUn,

2 3 4
Zi:o Ux; Zi:o Ux; Ei:o UN;

F1G. 3.3. The sum of the u;’s using the Ambrosio-Tortorelli approzimation on the image of a
fingerprint. Parameters: p=>5, p=.0002, A\g =.25, k=10, and A\, =2FXo.
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1
Wxo Zi:O Wi,
— —
2 3 4
Zi:o Wx; Zi:o Whx; Ei:o Wy;
- % .
b
\,
; =
L "’-'\-.'3. s,
: # =
|
5 6 7
D im0 W, D icoWa; Dico WA,
8 9
Zi:o Wx; Zi:o Wx;

F1G. 3.4. The sum of the w;’s using the Ambrosio-Tortorelli approximation on the image of a
fingerprint. Parameters: p=>5, p=.0002, Ao =.25, k=10, and A\, =2FXo.
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3.2. Discretization of Euler-Lagrange equations and numerical results.
We consider the (original) Ambrosio-Tortorelli functional [2] (neglecting the term

Pep):

lw =117
inf w?|Vul?dx + p|| Vw3 b N2 .
{uv,w | qu_f}{'u/Q Vel Al HLZ(Q) 4p | ||L2(Q)

The associated Euler-Lagrange equations are

My — uV (wiVuy) = Af,

1+4up|Vuy|? 1
—A — =0.
Ry N T I dpp Vs P

We construct the hierarchical decomposition in the same manner as before, so
f NZ?ZO u; with the additional feature that the accumulated w;’s detect the set of
edges of the image u. To this end, we discretize the Euler-Lagrange equations, yielding

)‘fl}j = )\ui_j — ‘LLDai ('LU,?’JD_Zi_Uld) — ,uD‘Z (U/g)jDiUiJ),

Dfome-i-D?iDiwi,j
_ L dppl(Dyui )+ (Dfui) (. L
4p? " 1 +4pp[(DEui )2 + (Dgui §)?] )

Using the notation

A_::A+%(2w,?7j+w7;2_17j+w7;27j_1) (39&)
Uip1,; —Uim1,5\2 | (U1 —Uij—1\2  16p?

B =144/ ( ) +( ) . (39D

+ up\/ 57 + 57 +3 (3.9b)

we have
. Mg+ Ao (2 (i1 4 s y1) F 0Py i1+ w?_yuigo1)|, (3.10a)
17]714_ 2,7 h2 i,5 \i+1,7 3,7+1 i—1,jUi—1j5 ii—1Wii—1) |, .

1 4p?
Wi = E [1 + T@(wi+l,j Fwi—1,5 Wi j+1 —i—wi’j,l) . (310b)

In order to minimize the grid effect, we alternate the above scheme with the following

one, obtained by substituting D, for D_ (and vice-versa) in the discretization of the
above Euler-Lagrange equation. Expressed in terms of

yz
A+ :>\+ E(Zwi] +w§+1,j +wi27j+1)7

we have
!
= A

Wi, j [)\fi,j+ a (w2 (UFL]’+Ui,j—1)+w12+1,jui+1,j +wz‘2,j+1ui,j+1) , (3.11a)

2 (W
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with the same equation for the w; ;’s as before,

1 4p?
wi’j:E 1+h—p2(wi+17j+wi,1,j+wi7j+1+wi,j,1) . (311b)

REMARK 3.5. (On the edge detector w; ;). Recall that the AT-weight 1—w) is
supported along the edges of f. Similarly, the discrete AT-weights, 1—w; ;, provide
a multiscale decomposition for discrete edge indicators, in the sense that they vary
between being =0 in regions of smoothness, and being ~ 1 near edges, depending on
how large the local gradients of u are. Indeed, consider the fixed-point iterations for
the w-part of the Euler-Lagrange equations (3.9b), (3.10b), (3.11b), which we rewrite
as

1

1,] - 16p2
1+4pp/(Dgui 5)%+ (Dui 5)2 + 2

16p°_, ]

[1 + 52 Wi

where W} := §(w], j+wp | 4wl +wp; ) is the local average. It follows that
the w; ;’s remain in [0,1] with a limiting value

n n—o0 4p

wi]‘ — '
’ 4p+ ph?\/(Dgui )2 + (Diui ;)?

Thus, in smooth regions where (|Du; |+ |Dfu;;|)h?/p<1, the discrete weights,
1—w; j, are of order h?/p~0, and near edges where (|Dgu; ;|+|D§u;;|)h*/p>h,
the discrete weights 1 —w; ; > h.

In Figures 3.1 and 3.3 we demonstrate the hierarchical AT ,-decompositions. We
can clearly see the convergence to the respective images, while in Figures 3.2 and 3.4
we obtain the hierarchical representation, > 277 wj, of the contours of the correspond-
ing images.

4. Hierarchical decomposition of images with multiplicative noise
Following [31], [28], we consider a multiplicative degradation model where we are
given an image f=1wu-v, with « >0 being the original image and with v modeling the
multiplicative noise, normalized such that va(x,y)dxdy: 1, where for simplicity we
assume that |2 =1. Let uy be the minimizer of the corresponding total variation
functional in the multiplicative case [31], [9] (in a simplified form, without a mean
constraint),

2
ABV,L?):= inf AHfA’
MUt xBV.L= inf o (A

. 4.1
oy V@ ) (4.1)

If f>0 a.e. in €, then (4.1) has at least one minimizer >0 [9].

Setting vy 1= % we end up with the one-scale decomposition f=wuyvy. We con-
struct the hierarchical decomposition as in TNV, except that sums and differences are
replaced by products and quotients. Thus, the iterative step at scale \; = X2’ reads

Vj =U;j4+1Vj+1, leading to the multiplicative hierarchical decomposition

f=uouy - ug X v, /\j:)\02j.
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1
Uxg Hi:o UN;

H?:O UN; U, - 120

Fi1G. 4.1. The recovery of u given an initial image of a woman with multiplicative noise, for 10
steps. Parameters: Ao =.02, and A\, =2%Xg.
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4.1. Characterization of M-minimizers. = We begin with characterization
of the M(f,\; BV, L?)-minimizers. We show that [uy,v,] is a minimizer if it is an
extremal pair, properly interpreted in terms of the dual BV norm |||« (consult [20,
Definition 10]).

THEOREM 4.1. If u is a minimizer of (4.1), then

|U|BV(Q)'H£(£—1) *:\uh;% and <£<£—1),U>:%|U|Bv(g). (4.2)

Proof. Let

gle):= (u—{eap _1)2. (4.3)

2
Taylor’s expansion gives g(e) = (5 - ) - 26(% - )i—f + %g”(eg) and hence

@) —2)e <i—1 f—(p>+)\ max x|g" (z)].

I

o<1,
u-+ep

L2(Q)

This inequality, together with the fact that w as an M-minimizer satisfies, for all
€ BV(Q),

Az

+lulpv Q)<>\H

+luteo|pyv (),

L2(Q) u+e<p_ ‘LQ

implies that
2\e <i—1 f—<p><e|<p|BV(Q +)\ max|g ()] (4.4)

Dividing by € and letting € | 0, (while noticing that lim._.g %maxm lg" (x)| =0), yield
that for any ¢ € BV (),

2)\<£ (% - 1),h> <lelev);

thus
ff 1
=Gl =5x (4.5)
Now let ¢ =u in (4.4). Then, dividing by € <0, and letting € T 0_, we obtain
f (f lul v ()
2 (E-1)u) > 2N, 4.
<u2 u U= (4.6)
Combining (4.5) and (4.6) concludes the proof. |

As before, Theorem 4.1 could be refined, depending on the amount of texture
present in f. For example, compared with Corollary 2.5, we have that f consists
mostly of texture, if and only if its M-minimizer is the trivial one which, in the
multiplicative case, is given by u=1. The following theorem confirms one direction
of this implication.
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THEOREM 4.2. Ifu=1 is a minimizer of (4.1), then || f(f—1)]+ < 5x.
Proof. Since u=1 is assumed to be an M-minimizer, we have for any ¢ € BV (Q)
that

I
14+ep

A Feerl

2
2
L) +1+eplpy ) > Alf =172 (q)-

Revisiting g(e€) in (4.3) with u=1, we have

/ 2 2 e "
9= (1305 =1) = =126/ = Dfp+ o (eo)
The last two relations yield
o?
A =110 =2l f(F= D)0 [ Fof/ (1) (17)

‘f‘)\/ﬂo((@@)?’)dw"'"'+€|<P|Bv(sz) > A f - 1”%2(9)' (4.8)
Divide by € and let € | 04+ to obtain that for all p € BV (Q)

|l By () = 2X (@, f(f—1)),

which means that ||f(f—1)|. < % .

4.2. Discretization of Euler-Lagrange equation and numerical results.
Formally minimizing M(f,\) with respect to w yields the following associated
Euler-Lagrange equation:

() (i) =3 o (ma)
Uy u?\ )\ [Vuy]/"

When working on a bounded domain €2, we augment the Euler-Lagrange equation
by the following Neumann boundary condition:

8u,\ -
on laa
The hierarchical decomposition, f NH?:O uj, is obtained, in which the u;’s are
constructed as (approximate) solutions of the recursive relation governed by the Euler-
Lagrange equation.

To discretize the Euler-Lagrange equation, we begin by regularization of M(f,\)
to avoid the singularity when |Vuy|=0. So, we have

+/ \/62+\Vu|2dxdy}.
Q

This yields the associated Euler-Lagrange equation:

ME(f,) = inf {AH%A’

ueEBV

2
L2(Q)

o f 1 ( Vuy >’ (4.9)

ST ——— A
uy o oud VeEE+|Vuyl?

Noouy o 2A v
which we solve by a dynamic scheme (z,y,t) — u(z,y,t):

ou f2 f 1 . Vu
5wt

Vel +|Vul?

), u(z,y,0) = f(x,y). (4.10)
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Let uj'; ~ w(z;,y;5,nAt). The discretization that we have used is a linearized semi-
implicit scheme:

n+l__ n 2
ig Yy Jig o fig
- n \3 n \2
At (ui,j) (ui,j)
n _ n+1 n+1_ n n _ n+1 n+1_ n
At Ui U5 U — Uy Lo Wi =Wy Wiy —Uj

2\ | h[Vun|;; hVun|i_1 o hVurl;  hVurlia |

where |Vu"|; ; is the “numerical gradient” used before in (2.19).

We note in passing the issue of stability: in order to enable the necessary division
by u#0, we shift f away from zero, adding a positive constant which is subtracted
from the final result.

We demonstrate our hierarchical decomposition to the image f in Figure 4.1.
We can see that just as in the case with additive noise, we must pay a price for the
recovered texture, namely the return of some noise. As in the case with additive noise,
using a finer decomposition might give improved results.
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