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Abstract. We propose a new multiscale image decomposition which offers a hierarchical,
adaptive representation for the different features in general images. The starting point is a vari-
ational decomposition of an image, f = u0 + v0, where [u0, v0] is the minimizer of a J-functional,
J(f, λ0;X,Y ) = infu+v=f

{
‖u‖X + λ0‖v‖pY

}
. Such minimizers are standard tools for image ma-

nipulations (e.g., denoising, deblurring, compression); see, for example, [M. Mumford and J. Shah,
Proceedings of the IEEE Computer Vision Pattern Recognition Conference, San Francisco, CA, 1985]
and [L. Rudin, S. Osher, and E. Fatemi, Phys. D, 60 (1992), pp. 259–268]. Here, u0 should capture
“essential features” of f which are to be separated from the spurious components absorbed by v0,
and λ0 is a fixed threshold which dictates separation of scales. To proceed, we iterate the refinement
step [uj+1, vj+1] = arginf J(vj , λ02j), leading to the hierarchical decomposition, f =

∑k
j=0 uj + vk.

We focus our attention on the particular case of (X,Y ) = (BV,L2) decomposition. The resulting
hierarchical decomposition, f ∼

∑
j uj , is essentially nonlinear. The questions of convergence, energy

decomposition, localization, and adaptivity are discussed. The decomposition is constructed by nu-
merical solution of successive Euler–Lagrange equations. Numerical results illustrate applications of
the new decomposition to synthetic and real images. Both greyscale and color images are considered.
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1. Introduction and motivations. Images could be realized as general L2 ob-
jects, f ∈ L2(R2), representing the greyscale of the observed image. Likewise, color
images are typically realized in terms of vector-valued functions, f = (f1, f2, f3) ∈
L2(R2)3, representing the RGB-color scales. In practice, the more noticeable features
of images are identified within a proper subclass of all L2 objects. Most noticeable are
the edges of an image, which are known to be well quantified within the smaller sub-
class of functions of bounded variation (BV), e.g., [4], [3], [5] [6], [11], [16], [17], [23],
[24], [25]. The image representation of a real scene often contains other noticeable fea-
tures, ranging from homogeneous regions to oscillatory patterns of noise or texture. A
large class of those images therefore belong to intermediate spaces, lying “between” the
larger L2(R2) and the smaller1 BV (R2). Quantifying the precise L2 subclasses of these
different features is still the subject of current research. In this paper we introduce a
novel hierarchical, multiscale representation of images. We argue that this new multi-
scale description is particularly adapted for images lying in such intermediate spaces.
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The standard tool for studying intermediate spaces is interpolation, e.g., [8],
[9], [13]. To this end, one starts with a pair of given spaces, Y ⊂ X, and forms
a scale of intermediate spaces, (X,Y )θ, θ ∈ [0, 1], ranging from (X,Y )θ=0 = X to
(X,Y )θ=1 = Y . The canonical example involves the so-called K-functional

K(f, η) ≡ K(f, η;X,Y ) := inf
u+v=f

{
‖v‖X + η‖u‖Y

}
.

The space (X,Y )θ is dictated by the behavior of K(·, η) as η ↓ 0—it consists of
all f ’s such that {f | η−θK(f, η;X,Y ) ≤ Const}. There are many refinements and
other variants. For example, refining the L∞ boundedness of η−θK(f, η) with the
requirement η−θK(f, η;X,Y ) ∈ Lq(dη/η) leads to Lorentz-scale refinement (X,Y )θ,q,
depending on a secondary scale q. The K-functional could be replaced by the closely
related

Jp(f, η;X,Y ) := inf
u+v=f

{
‖v‖pX + η‖u‖Y

}
,

which leads to another variant with a similar scale of intermediate spaces. In the
present context of image processing, one seeks the representation in the intermediate
spaces between X = L2(Ω) and Y = BV (Ω) defined over two-dimensional domains
Ω ⊂ R

2 and quantified in terms of the J-functional

J(f, λ) ≡ J2(f, λ;BV,L2) := inf
u+v=f

{
λ‖v‖2

L2 + ‖u‖BV

}
.

Because of the reversed order—starting with the smaller X = BV (Ω) and ending
with the larger L2(Ω)—we shift our focus from small η’s to large λ’s. The functional
J(f, λ) measures how well an L2 object can be approximated by its BV features,
J(f, λ) ∼ λθ as λ ↑ ∞. The classical argument addresses this question of convergence
(or growth) rate of J(f, λ) in terms of the smoothness properties of f—an intermediate
smoothness between L2 and BV . In modern theory, however, the roles are reversed:
one defines the scale of intermediate smoothness spaces such as (L2, BV )θ in terms
of the behavior of minimizers such as K(f, λ).

The functional J(f, λ) was introduced in the present context of image processing
by Rudin, Osher, and Fatemi. In their pioneering work, [25], they suggested extracting
the main features of contour discontinuities uλ, which are to be separated from the
noisy part vλ, by realizing the minimizing pair, [uλ, vλ], of J(f, λ). In [26], λ is
treated as a fixed threshold for cutting out the noisy part of f . The cut-off scale λ
needs to be predetermined, say, by the known statistical properties of the image under
consideration.

The realization of an image f as a minimizing J(f, λ)-pair, f = uλ + vλ, falls
within the class of so-called u+v models [19]. There are different perspectives on this
question of image processing, using other u+v models. The celebrated Mumford–Shah
model [21] is the forerunner of this class. A regularized version of the Mumford–Shah
functional was introduced by Ambrosio and Tortorelli [3] and Ambrosio, Fusco, and
Pallara [2, section 6]:

AT ε(f, λ) := inf
{w,u,v |u+v=f}

{∫
Ω

w2
[
|∇u|2 + |v|2

]
dx + λ

[
ε‖∇w‖2

L2 +
‖1 − w‖2

L2

ε

]}
.

Letting ε ↓ 0, then u = uε approaches the Mumford-Shah minimizer while the aux-
iliary function 1 − wε approaches an edge detector for the boundaries enclosing the



556 EITAN TADMOR, SUZANNE NEZZAR, AND LUMINITA VESE

objects identified with uε. Both J(·) and AT (·) are examples for a larger class of
u + v decompositions which are identified as minimizers of appropriate energy func-
tionals. Let us mention another type of u + v decomposition offered by DeVore and
Lucier [14]. Again, the noticeable features of an L2 image f are realized in an interme-
diate space, this time an intermediate space lying between X = L2 and the (slightly)
smaller Besov space Y = B1,1

1 . The advantage of the scale of spaces spanned by
this pair, (L2, B1,1

1 )θ, is that one can efficiently extract and separate scales in terms

of a wavelet decomposition of f =
∑

f̂jkψjk. In particular, the wavelet decomposi-
tion of such intermediate spaces offers the usual decomposition into the hierarchy of
dyadic scales. To extract the main features above a fixed scale, one could implement
a wavelet shrinkage based on a “greedy” approach of cutting out noisy data by re-
moving wavelets with amplitudes below threshold η, f ≈

∑
|f̂jk|≥η f̂jkψjk. There is

no such simple hierarchical description of (L2, BV )θ in terms of truncated wavelet
expansion, e.g., [19, section 18, Corollary 1] (but see the recent results of [12]). In
particular, no “greedy” algorithm is available with extraction of BV features, similar
to what is available with B1,1

1 . The disadvantage, however, is the failure of B1,1
1 to

faithfully capture the location of sharp edges.
In this paper we introduce a new multiscale procedure using hierarchical represen-

tations, which enables us to capture an intermediate regularity between L2 and BV .
Unlike the one-scale present in u+ v decompositions, in our approach λ is not a fixed
threshold but varies over a sequence of dyadic scales. Consequently, the representation
of an L2 image is not predetermined but is resolved in terms of layers of intermediate
scales. We use (BV,L2) to symbolize this multilayered representation. The resulting
hierarchical representation is outlined in section 2. In section 3 we provide explicit
construction for the hierarchical expansion of a few simple objects. In particular, we
point out the possibility of making our hierarchical expansion adaptive. The hierar-
chical decomposition of real-life images is simulated in section 4. The hierarchical,
multiscale decomposition offered in this paper is not restricted to the J-minimizer of
Rudin, Osher, and Fatemi [25]; in section 5 we conclude with extensions based on
other minimizers.

2. The hierarchical (BV, L2) decomposition.

2.1. The hierarchical decomposition. To recover an image from its noisy
version f , Rudin, Osher, and Fatemi [25] considered the minimizer infu+v=f

{
λ‖v‖2

L2+

‖u‖BV

}
. Here, ‖v‖2

L2 is a fidelity term, ‖u‖BV is a regularizing term, and λ > 0 is
a weighting parameter, serving as a scaling level to separate the two terms. For f ∈
L2(Ω) the problem admits a unique minimizer (see [10], [1], [27]), which decomposes
an L2(Ω) image, f , into two distinct components,

f = uλ + vλ, [uλ, vλ] = arginf
u+v=f

J(f, λ;BV,L2).(2.1)

The BV part, u = uλ, captures the main features of f while neglecting the noisy
part v = vλ. This model is a very effective tool in denoising images while preserving
edges. It requires, however, a priori information on the noise scaling λ. Otherwise, if
J(f, λ) is being implemented with a too small λ, then only a cartoon representation
of f is kept in the form of uλ ∈ BV , while small textured patterns or oscillatory
details are swept into the residual vλ := f − uλ. If λ is kept too large, however, then
uλ remains loaded with too many details, which is close to the original f ; not much
change has been applied to f , and the compression ratio is small. In some cases,



A MULTISCALE IMAGE REPRESENTATION 557

e.g., [25], [10], the parameter λ can be estimated if some statistical information on
the noise is known. In this setup we are limited by the use of the one scale dictated
by λ. A multiscale version was introduced by Rudin and Caselles in [24]. We propose a
multiscale alternative based on the hierarchical image representation of f . We will see
that the resulting multiscale decomposition of f enables us to effectively manipulate
general images.

Our starting point is an alternative point of view argued by Meyer [19], where
the minimization J(f, λ) is interpreted as a decomposition, f = uλ + vλ, so that uλ

extracts the edges of f while vλ captures textures. Of course, the distinction between
these two components is scale dependent—whatever is interpreted as “texture” at a
given scale λ consists of significant edges when viewed under a refined scale, say 2λ,

vλ = u2λ + v2λ, [u2λ, v2λ] = arginf
u+v=vλ

J(vλ, 2λ).(2.2)

We now have a better two-scale representation of f given by f ≈ uλ+u2λ; texture
below scale 1/2λ remains unresolved in v2λ. This process (2.2) can continue. Starting
with an initial scale λ = λ0,

f = u0 + v0, [u0, v0] = arginf
u+v=f

J(f, λ0),

we proceed with successive application of the dyadic refinement step (2.2),

vj = uj+1 + vj+1, [uj+1, vj+1] := arginf
u+v=vj

J(vj , λ02
j+1), j = 0, 1, . . . ,(2.3)

producing, after k such steps, the following hierarchical decomposition of f :

f = u0 + v0

= u0 + u1 + v1

= . . . . . .

= u0 + u1 + · · · + uk + vk.(2.4)

We end up with a new multiscale image decomposition, f ∼ u0 + u1 + · · · + uk,
with a residual vk. As k increases, the uk’s resolve edges with increasing scales
∼ λk := λ02

k. We note in passing that, as usual, coarser and finer decompositions are
available, using different ladder of scales, e.g., λk = λ0s

k, with 1 < s < 2 (respectively,
s > 2) leading to finer (respectively, coarser) decompositions of f .

The construction of the hierarchical, multiscale expansion (2.4) is independent

of a priori parameters. The partial sum,
∑k

j uj , provides a multilayered description

of f which lies in an intermediate scale of spaces, in between BV and L2, though the
precise regularity may vary, depending on the scales present in f . We use (BV,L2)
to denote a generic intermediate scale space. This multilayered (BV,L2) expansion,
f ∼

∑
j uj , is particularly suitable for image representations. Let us mention applica-

tions of multilayered representations to image compression in the context of wavelet
expansions that were discussed in [18], [7]. We note that the multilayered representa-
tion furnished by (2.4), however, is essentially nonlinear in the sense that its dyadic
blocks, uj , depend on the data itself, uj = uj(f). These dyadic blocks, {uj}j≥0, cap-
ture different scales of the original image. We turn to quantify the multiscale nature
of the hierarchical expansion, f ∼

∑
j uj .
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2.2. Convergence of the (BV, L2) expansion. To quantify the convergence∑k
uj → f as k ↑ ∞, we compare the decomposition of vj = uj+1 + vj+1 furnished

by the minimizer of J(vj , λj+1), vs. the trivial pair [0, vj ], to find

‖uj+1‖BV + λj+1‖vj+1‖2
2 ≤ λj+1‖vj‖2

2, λj := λ02
j .(2.5)

It follows that

∑
j≥0

1

λj
‖uj‖BV =

1

λ0
‖u0‖BV +

∑
j=0

1

λj+1
‖uj+1‖BV

≤ ‖f‖2
2 − ‖v0‖2

2 +
∑
j=0

[
‖vj‖2

2 − ‖vj+1‖2
2

]
≤ ‖f‖2

2,(2.6)

in agreement with the fact that the uj ’s capture the BV dyadic scales of order ∼ λj =
λ02

j . A more precise (BV,L2) hierarchical statement is provided in the following.
Theorem 2.1. Consider f ∈ L2. Then f admits the following hierarchical

decomposition:2

f =

∞∑
j=0

uj ,

∥∥∥∥f −
k∑

j=0

uj

∥∥∥∥
W−1,∞

=
1

λ02k+1
,(2.7)

and the following “energy” estimate holds:

∞∑
j=0

[
1

λj
‖uj‖BV + ‖uj‖2

2

]
≤ ‖f‖2

2, λj := λ02
j .(2.8)

Proof. We begin by quoting the following characterization of the J(f, λ) minimizer
[19, Theorem 3], depending on the oscillatory part of f which is measured by its
W−1,∞ norm. Namely, if ‖f‖W−1,∞ < 1/2λ, then [uλ, vλ] = [0, f ]; otherwise,

‖vλ‖W−1,∞ =
1

2λ
, (uλ, vλ) :=

∫
uλ(x)vλ(x)dx =

1

2λ
‖uλ‖BV .(2.9)

We observe that according to (2.9), the minimizer [uλ, vλ] becomes an extremal pair
by placing an equality in the duality statement

∫
g(x)h(x)dx ≤ ‖g‖W−1,∞‖h‖BV (the

latter follows by a density argument, starting from the usual duality between W−1,∞

and W 1,1).
The first statement (2.7) then follows from the basic hierarchical expansion, f =∑k

0 uj + vk, while noting that ‖vk‖W−1,∞ = 1/2λk. For the second statement, (2.8),
we begin by squaring the basic refinement step, uj+1 + vj+1 = vj ,

‖vj+1‖2
2 + ‖uj+1‖2

2 + 2(uj+1, vj+1) = ‖vj‖2
2, j = −1, 0, 1, . . . .(2.10)

Observe that the last equality holds for j = −1 with v−1 interpreted as v−1 := f . We
recall that (uj+1, vj+1) is a minimizing pair for J(vj , λj+1), and hence, by (2.9),

2(uj+1, vj+1) =
1

λj+1
‖uj+1‖BV ,

2We employ the usual notation, ‖f‖W−1,∞ := supg [
∫
f(x)g(x)/‖g‖W1,1 ], ‖g‖W1,1 := ‖∇g‖L1 .
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yielding 1
λj+1

‖uj+1‖BV + ‖uj+1‖2
2 = ‖vj‖2

2 −‖vj+1‖2
2 (which is a precise refinement of

(2.5)). We sum up, obtaining

k∑
j=0

[
1

λj
‖uj‖BV + ‖uj‖2

2

]
=

k−1∑
j=−1

[
1

λj+1
‖uj+1‖BV + ‖uj+1‖2

2

]

= ‖v−1‖2
2 − ‖vk‖2

2 = ‖f‖2
2 − ‖vk‖2

2.(2.11)

We note that the statement (2.7) is limited to weak convergence of the hierarchical
decomposition, f ∼

∑
j uj . Yet, measured in this weak W−1,∞ topology, the geomet-

ric convergence rate is universal, independent of f ∈ L2. This universality is due to the
nonlinearity of the hierarchical decomposition (2.7). To convert this statement into a
strong convergence, we seek an equality in the energy inequality (2.8). According to

(2.11), equality holds iff we have strong L2 convergence, ‖f −
∑k

uj‖2 = ‖vk‖2 → 0.
The situation is reminiscent of the passage, in the linear setup, from the Bessel-energy
inequality into the Parseval equality. Since the present setup is nonlinear, the linear
sense of completeness of {uj(f)}j≥0 does not apply. Instead, we show energy equality
and strong L2 convergence by adding minimal amount of smoothness. We begin with
the following.

Theorem 2.2. Consider f ∈ BV . Then the (BV,L2) hierarchical decomposition
of f , f =

∑∞
j=0 uj, converges strongly in L2, and the energy of f is given by

∞∑
j=0

[
1

λj
‖uj‖BV + ‖uj‖2

2

]
= ‖f‖2

2.(2.12)

Proof. Recall that vk denotes the “texture” at scale λk and that according to
(2.11), we have to show the strong convergence ‖vk‖2 → 0. Our starting point is the

decomposition v2k = −
∑2k

j=k+1 uj + vk. Multiplication against v2k yields

‖v2k‖2
2 = −

(
v2k,

2k∑
j=k+1

uj

)
+ (v2k, vk) =: I + II.(2.13)

Recall that the W−1,∞ norm of v2k is given by 1/2λ2k so that |(v2k, h)| ≤
‖h‖BV /2λ2k. We find that the first term on the right-hand side of (2.13), I =

−(v2k,
∑2k

j=k+1 uj), does not exceed

|I| ≤ 1

2λ2k

2k∑
j=k+1

‖uj‖BV ≤
2k∑

j=k+1

1

2λj
‖uj‖BV ,

and hence it decays to zero for k ↑ ∞ as a Cauchy subsequence of the bounded series∑
1
λj
‖uj‖BV ≤ ‖f‖2

2; see (2.6). It remains to treat the second term, (v2k, vk). To

this end we note that the BV norm of vk does not grow faster than 2k; indeed, since
vk = f −

∑k
j=0 uj , we have the upper bound

‖vk‖BV ≤ ‖f‖BV +

k∑
j=0

‖uj‖BV ≤ ‖f‖BV + λk

k∑
j=0

1

λj
‖uj‖BV ≤ ‖f‖BV + λk‖f‖2

2.

(2.14)
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We conclude that the second term on the right-hand side of (2.13), II = (v2k, h),
with h = vk vanishes as k ↑ ∞:

|II| ≤ 1

2λ2k
‖vk‖BV ≤ 1

2λ2k

[
‖f‖BV + λk‖f‖2

2

]
↓ 0.

It is clear that the last result can be extended for f ’s beyond the BV space. To this
end, let us revisit the estimate (2.13). The first one, I, vanishes for arbitrary f ∈ L2,
and we need to treat only the second term on its right-hand side, II = (v2k, vk), which
is upper bounded by

|(v2k, vk)| =

∣∣∣∣(v2k, f) −
k∑

j=0

(v2k, uj)

∣∣∣∣ ≤ |(v2k, f)| + λk

2λ2k
‖f‖2

2.

Thus, the energy statement (2.12) holds iff the moments |(vk, f)| → 0.
To satisfy this vanishing moments condition, let us assume that f belongs to the

interpolation space Xθ := (L2, BV )θ, θ > 0. Characterization of this scale of space
can be found in [12]. Let X−θ denote the dual space, the collection of all f ’s such
that ‖f‖X−θ

:= supg

∫
f(x)g(x)/‖g‖Xθ

< ∞. We recall that v2k is L2 bounded,
‖v2k‖2 ≤ ‖f‖2, while its W−1,∞ size is given by ‖v2k‖W−1,∞ = 1/2λ2k. By a convexity
argument of Riesz we find

‖v2k‖X−θ
≤ Const‖v2k‖1−θ

2 ‖v2k‖θW−1,∞ ≤ Const‖f‖1−θ
2 2−2kθ.

We conclude that

|(v2k, f)| ≤ ‖v2k‖X−θ
‖f‖Xθ

≤ Const‖f‖1−θ
2 ‖f‖X−θ

· 2−2kθ,

which in turn implies strong L2 convergence of texture terms, ‖vk‖2 → 0, and the
desired energy statement (2.12) follows. We summarize by stating the following.

Corollary 2.3. Consider f ∈ (L2, BV )θ, θ > 0. Then the (BV,L2) hierarchical
decomposition of f , f =

∑∞
j=0 uj, converges strongly in L2, and the energy of f is

given by

‖f‖2
2 =

∞∑
j=0

(f, uj) =

∞∑
j=0

[
1

λj
‖uj‖BV + ‖uj‖2

2

]
.(2.15)

Other extensions along these lines are possible. The flavor is the same; namely,
a minimal amount of smoothness beyond the L2 bound will guarantee strong con-
vergence. The question of strong convergence for f ∈ L2, corresponding to θ = 0,
remains open.

Finally, let us note that the decomposition of energy stated in (2.15) lies entirely
with the BV scales. Specifically, we have

∞∑
j=0

1

λj
‖uj‖BV < ‖f‖2

2 <
3

2

∞∑
j=0

1

λj
‖uj‖BV .(2.16)

We need to address only the upper bound on the right-hand side. By duality, ‖uj‖2
2 ≤

‖uj‖W−1,∞‖uj‖BV . But uj = vj−1 − vj implies that the W−1,∞ size of uj does not
exceed

‖uj‖W−1,∞ ≤ 1

2λj−1
− 1

2λj
=

1

2λj
.

The bound could be viewed as the dual estimate (2.14) for the growth of vk. We
conclude that ‖uj‖BV /λj + ‖uj‖2

2 ≤ 3‖uj‖BV /2λj , and (2.16) follows.
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2.3. Initialization. How should one choose the initial scale λ0? Since the op-
timal J(f, λ) decomposition of f for which ‖f‖W−1,∞ ≤ 1/2λ is given by the trivial
pair, [u, v] = [0, f ], the initial scale, λ0, should capture smallest oscillatory scale in f ,
furnished by

1

2λ0
≤ ‖f‖W−1,∞ ≤ 1

λ0
.(2.17)

In general, we may not have a priori information on the size of ‖f‖W−1,∞ . If the
initial choice of λ0 proved to be too small, then the minimizer will remain the same
fully textured pair [uk, vk] = [0, f ] as k increases until a dyadic multiple of λ0 is
large enough so that (2.17) holds. If, on the other hand, the initial λ0 is chosen too
large, we can proceed by a refinement procedure which aims to capture a hierarchical
representation of the missing larger scales. We set

vj = uj−1 + vj−1, [uj−1, vj−1] := arginf
u+v=vj

J(vj , λj−1), j = 0,−1, . . . .(2.18)

We compare the decomposition of vj = uj−1 + vj−1 furnished by the optimal pair
[uj−1, vj−1] minimizing J(vj , λj−1), vs. the trivial pair [0, vj ], to find

‖uj−1‖BV + λj−1‖vj−1‖2
2 ≤ λj−1‖vj‖2

2, j = 0,−1, . . . .(2.19)

It follows that

∑
j≤0

1

λj−1
‖uj−1‖BV ≤

∑
j≤0

[
‖vj‖2

2 − ‖vj−1‖2
2

]
≤ ‖v0‖2

2 ≤ λ0‖f‖2
2,(2.20)

which shows the geometric convergence of the dyadic scales captured by the uj ’s, for
j = 0,−1, . . .

‖uj‖BV ≤ λj‖f‖2
2, j = 0,−1, . . . ,−k0.(2.21)

As j decreases, the expansion is running through smaller scales, λj = λ02
j , until we

exhaust the oscillatory part of f by satisfying λ02
−k0‖f‖W−1,∞ ≤ 1. We end up with

the hierarchical decomposition

v0 = u−1 + v−1

= u−1 + u−2 + v−2

= . . . . . .

= u−1 + u−2 + · · · + u−k0
.(2.22)

The multiscale (BV,L2) expansion now reads

f =

∞∑
j=−k0

uj ,

with equality understood in the weak W−1,∞ (respectively, L2) sense for general
f ’s in L2 (respectively, BV ).
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2.4. A dual (BV, L2) expansion. The hierarchical decomposition discussed so
far was based on a dyadic refinement of “texture” in terms of “edges.” The procedure
can be transposed. Let [uλ, vλ] be the minimizer of J(f, λ), and consider the resolution
of the main features on scale λ, this time in terms of a refined scale of “texture,”
namely, uλ = u2λ + v2λ. This leads to a dual (BV,L2) hierarchical expansion of the
form

f =
k∑

j=0

vj + uk, [uj+1, vj+1] := arginf
u+v=uj

J(uj , λj+1).(2.23)

The quantitative behavior of this expansion can be worked out as before. To
sketch the details, we first compare the optimal pair, [uj+1, vj+1] vs. the trivial one,
[uj , 0], yielding λj+1‖vj+1‖2

2 + ‖uj+1‖BV ≤ ‖uj‖BV ; hence

λj‖vj‖2
2 + ‖uj‖BV ≤ ‖u1‖BV ≤ λ0‖f‖2

2.

It follows that ‖vj‖2 ≤
√
λ0/λj‖f‖2. This dictates an initial scale λ0 for the dual

expansion (2.23), λ0 ∼ 1/‖f‖2; otherwise, the expansion is truncated at smaller scales
where vj = 0 since ‖vj‖W−1,∞ < 1/2λj . For decomposition of the energy, ‖f‖2

2, we
square uj = uj+1 + vj+1 to find (with f := u−1)

‖uj‖2
2 = ‖uj+1‖2

2 +
1

λj+1
‖uj+1‖BV + ‖vj+1‖2

2, j = −1, 0, 1 . . . .

The telescoping sum then yields

‖f‖2
2 − ‖uk‖2

2 =

k∑
j=0

[
1

λj
‖uj‖BV + ‖vj‖2

2

]
,(2.24)

and strong convergence follows, provided ‖uk‖ → 0.3 To put this into perspec-
tive, we recall the classical K-interpolation spaces, (L2, BV )θ,q, for θ, 1/q ∈ [0, 1],
which consist of all f ’s such that

∑
j(2

jθK(f, 2−j ;L2, BV ))q < ∞. Likewise, we

define the intermediate scale of spaces J(BV,L2)θ,q associated with the finite sum∑
j(λ

−θ
j J(uj , λj ;BV,L2))q < ∞. The summability on the right-hand side of (2.24)

corresponds to the case (θ, q) = (1, 1).

3. Examples of (BV, L2) expansions.

3.1. Hierarchical decomposition over R
2. We begin with the simple example

of the characteristic function of a disc, f(x) = αχBR
(x), x ∈ R

2. To illustrate the hi-
erarchical expansion (2.22) in this case, we refer to the optimal J(f, λ) decomposition
given in [19, Lemma 6],

uλ =

(
α− 1

λR

)
+

χBR
, vλ = f − uλ, [uλ, vλ] = arginf

u+v=αχBR

J(αχBR
, λ).(3.1)

The point here is that already for a simple BV function without any noise such
as f = αχBR

, its J-minimizer at any level λ ≥ 1/Rα contains both a BV part
uλ = (α− 1

λR )χBR
and a texture part given by the residual vλ = 1

λRχBR
. Indeed, as

3Equating the W−1,∞ norms of (2.23) restricts λ0 such that ‖f‖W−1,∞ ≤
∑

j 1/2λj = 1/λ0.
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pointed out by Meyer [19, section 1.14], the decomposition of Rudin et al. does not
keep original BV images; for example, it cannot recover the characteristic function
of any Lipschitz domain. Instead, the BV portion of an image is extracted at a
given λ scale. Underresolved features are considered “textures.” This undesired
phenomenon is due to restriction to one scale and should be contrasted with the
multiscale representation constructed below. With ‖αχBR

‖W−1,∞ = αR/2, we set as
our initial scale

1

αR
≤ λ0 ≤ 2

αR
,

leading to the decomposition at level λ0,

f = u0 + v0, u0 =

(
α− 1

λ0R

)
χBR

, v0 =
1

λ0R
χBR

.

Successive decompositions, arginfu+v=vj−1
J(vj−1, λj), with λj := λ02

j yield the cor-
responding minimizers, [uj , vj ],

uj =

(
1

λj−1R
− 1

λjR

)
χBR

, vj =
1

λjR
χBR

, j = 1, 2 . . . .

We end up with hierarchical decomposition, αχBR
=

∑k
j=0 uj + vk,

αχBR
∼ u0 +

k∑
j=1

(
1

λj−1R
− 1

λjR

)
χBR

=

(
α− 1

λ02jR

)
χBR

.(3.2)

The error encountered after k steps is given by vk = 1
λ02kR

χBR
. The convergence is

geometric; in this case ‖vk‖2 ∼ 2−k.

3.2. Hierarchical decomposition over bounded domains. Consider the
characteristic function f = αχBR

defined over a bounded domain Ω ⊃ BR,

f(x) = αχBR
(x) :=

{
1, |x| ≤ R,
0, x ∈ Ω \BR.

Then the corresponding minimizer [uλ, vλ] of J(f, λ) is given by (here and below, | · |
denotes the area of a two-dimensional set)

uλ =

(
α− 1

λR

)
+

χBR
+

1

λR

|BR|
|Ω \BR|

χΩ\BR
,

vλ := f − uλ =
1

λR
χBR

− 1

λR

|BR|
|Ω \BR|

χΩ\BR
, λ > 1/αR.

Observe that the natural boundary condition, ∂uλ/∂n|∂Ω = 0 (see (4.2) below),
requires vλ to satisfy the consistency condition,

∫
Ω

vλdx = − 1

2λ

∫
∂Ω

∂uλ

∂n

|∇uλ|
dS = 0,(3.3)
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which in turn dictates the unique, nonzero constant value of vλ outside the ball BR.
The general hierarchical step then reads

uj =

(
1

λj−1R
− 1

λjR

)
χBR

+

(
1

λjR
− 1

λj−1R

)
|BR|

|Ω \BR|
χΩ\BR

,(3.4)

vj =
1

λjR
χBR

− 1

λjR

|BR|
|Ω \BR|

χΩ\BR
, j = 1, 2, . . . .

We conclude with the (BV,L2) hierarchical expansion

αχBR
(x) ∼

k∑
j=0

uj =

(
α− 1

λkR

)
χBR

+
1

λkR

|BR|
|Ω \BR|

χΩ\BR
(3.5)

with a geometrically vanishing error, ‖vk‖2 ∼ 1/λk.
Remark. In the last two examples we find that the k-step hierarchical decom-

positions, f ∼
∑k

j=1 uj , coincide with the one step (BV,L2) decomposition at the

λk-scale, i.e.,
∑k

j=1 uj = Uk, where [Uk, Vk] = arginfu+v=f J(f, λk). The situation
is rather special for the two examples of simple characteristic functions. With gen-
eral images, however, the two decompositions are different, as shown by numerical
experiments carried out in [22], yet they are close to each other in the sense that

∥∥∥∥
k∑

j=1

uj − Uk

∥∥∥∥
W−1,∞

= ‖Vk − vk‖W−1,∞ ≤ 1

λk
.

In fact, the distinction between the two decompositions is more fundamental than
their sheer size. The (BV,L2) decomposition introduced in [25] by Rudin, Osher,
and Fatemi as a denoising process involves one step to remove the layer of noise Vk

from the main signal Uk. The approach taken in this work is different: we seek the
decomposition into several layers of signals and textures. Our starting point is that
whatever is interpreted as “texture” in a given scale consists of significant features on
a finer scale. This is consistent with the one layer u+v modeling of texture suggested
by Meyer [19] and the remark made in [20, pp. 93–94] that modeling noise in a
given scale follows the same statistics of the cartoon, only scaled down. The one-step
signal Uk is therefore replaced by a multilayer of scales,

∑k
j=1 uj , which are necessary

to capture different features at the different scales. Although
∑k

j=1 uj is close to Uk,
the interpretation is different. Moreover, thanks to the energy estimate (2.15), one can

manipulate the hierarchical decomposition, f ∼
∑k

j=1 uj . As an example, we consider
below adaptive domain decompositions where a different number of hierarchical layers
apply to different parts of the image.

3.3. Localization and adaptivity. The last example shows that the J(f, λ)
minimizer need not be local in the sense that the support of uλ could spread well
beyond the support of f . Nevertheless, the example discussed in section 3.2 shows
that the corresponding hierarchical expansion compensates for localization as the
amplitude of f −

∑k
uj decays outside supp(f). In this context we raise a more

general question. Consider an image f as a direct sum, f = g + h, where g and h
have disjoint supports, supp(g)∩supp(h) = ∅, and assume g and h admit the (BV,L2)
hierarchical decompositions g ∼

∑
gj and h ∼

∑
hj . What can be said about the sum∑

(gj +hj) as a hierarchical expansion of f? Clearly, ‖f−
∑k

(gj +hj)‖W−1,∞ ≤ 1/λk;
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the main issue is to quantify strong convergence and, in particular, the behavior of
supp(gj) and supp(hj) relative to supp(f). The special case (g, h) = (f, 0) corresponds
to the question of localization. The general case is related to the issue of adaptivity
of the hierarchical (BV,L2) expansion.

The following example demonstrates this point. Following Meyer [19, section
1.14], we set f = χA(x)+p(2Nx)χB(x) with nonintersecting A and B. The function p
is assumed 2π-periodic, so that h ≡ hN = p(2Nx)χB(x) represents the “noisy part”
of f with increasing N , while g = χA(x) represents the “essential feature” in f .
If 2N � λ, then the “u-component” of the J(h, λ) minimizer fails to separate the
essential part of h, since ‖h‖W−1,∞ ∼ 2−N < 1/2λ. Thus, we need at least k ∼ N

terms before the hierarchical expansion, h ∼
∑k

hj , would remove the noisy part. On

the other hand, the expansion of g is independent of N for ‖g −
∑k

gj‖ ∼ 1/λk, and

we are led to the question of how
∑k

(gj + hj) compares with the direct expansion,

f ∼
∑k

uj . One way to circumvent the possible global effect of localized oscillations
(such as those represented by hN (x)) would be to introduce a localized hierarchical
expansion which is adapted to the behavior of f in each subdomain. An adaptive
domain decomposition procedure along these lines is discussed in section 4.4.

4. Numerical discretization and experimental results. In this section, we
provide the details of the numerical algorithm we used for the construction of our
hierarchical decompositions. In each step, we use finite-difference discretization of the
Euler–Lagrange equations associated with the J(vj , λj+1) minimization to resolve the
next term, uj+1, in the hierarchical decomposition. Numerical results of hierarchical
decompositions applied to both synthetic and real images are presented.

4.1. Euler–Lagrange equations. To construct the hierarchical representation
of f , we seek the characterization for the minimizer of J(f, λ) in terms of the corre-
sponding Euler–Lagrange equation; see, e.g., [4], [10] and the references therein:

uλ − 1

2λ
div

(
∇uλ

|∇uλ|

)
= f.(4.1)

When restricted to a bounded domain Ω, the Euler–Lagrange equations are augmented
by the Newman boundary condition

∂uλ

∂n |∂Ω
= 0.(4.2)

This leads to the hierarchical expansion, f ∼
∑k

j=0 uj , where the uj ’s are con-
structed as (approximate) solutions of the recursive relation governed by the elliptic
PDE,

uj+1 −
1

2λj+1
div

(
∇uj+1

|∇uj+1|

)
= − 1

2λj
div

(
∇uj

|∇uj |

)
.(4.3)

4.2. Numerical discretization of Euler–Lagrange equations. We begin by
regularization. To remove the singularity when |∇uλ| = 0, we replace J(f, λ) by

Jε(f, λ) := inf
u+v=f

{
λ‖v‖2

L2(Ω) +

∫
Ω

√
ε2 + |∇u|2dxdy

}
.

At each step of our hierarchical scheme, we find the minimizer, uλ ≡ uλ,ε, of the reg-
ularized functional associated with Jε. The corresponding Euler–Lagrange equations
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read

uλ − 1

2λ
div

(
∇uλ√

ε2 + |∇uλ|2

)
= f in Ω,(4.4)

∂uλ

∂n
= 0 on ∂Ω.(4.5)

We cover the domain Ω with a computational grid (xi := ih, yj := jh), with
cell size h. We let D+ = D+(h), D− = D−(h), and D0 := (D+ + D−)/2 denote the
usual forward, backward, and centered divided difference, e.g., differencing in the x-
and y-directions (D±xu)i,j = ±(ui±1,j − ui,j)/h, (D0yu)i,j = (ui,j+1 − ui,j−1)/2h.

The resulting nonlinear elliptic PDE (4.4) is discretized in a straightforward man-
ner (see [25], [27], and [6]):

ui,j = fi,j +
1

2λ
D−x

[
1√

ε2 + (D+xui,j)2 + (D0yui,j)2
D+xui,j

]

+
1

2λ
D−y

[
1√

ε2 + (D0xui,j)2 + (D+yui,j)2
D+yui,j

]

= fi,j +
1

2λh2

[
ui+1,j − ui,j√

ε2 + (D+xui,j)2 + (D0yui,j)2
− ui,j − ui−1,j√

ε2 + (D−xui,j)2 + (D0yui−1,j)2

]

+
1

2λh2

[
ui,j+1 − ui,j√

ε2 + (D0xui,j)2 + (D+yui,j)2
− ui,j − ui,j−1√

ε2 + (D0xui,j−1)2 + (D−yui,j)2

]
.(4.6)

4.3. The hierarchical (BV, L2) decomposition scheme for greyscale
images. One can use the fixed point Jacobi or Gauss–Seidel iterative methods for
solving the discrete regularized Euler–Lagrange equations (4.6). For the former we
have

un+1
i,j = fi,j +

1

2λh2

[
un
i+1,j − un+1

i,j√
ε2 + (D+xu

n
i,j)

2 + (D0yu
n
i,j)

2
−

un+1
i,j − un

i−1,j√
ε2 + (D−xu

n
i,j)

2 + (D0yu
n
i−1,j)

2

]

+
1

2λh2

[
un
i,j+1 − un+1

i,j√
ε2 + (D0xu

n
i,j)

2 + (D+yu
n
i,j)

2
−

un+1
i,j − un

i,j−1√
ε2 + (D0xu

n
i,j−1)

2 + (D−yu
n
i,j)

2

]
.

Introducing the notations

cE :=
1√

ε2 + (D+xu
n
i,j)

2 + (D0yu
n
i,j)

2
, cW :=

1√
ε2 + (D−xu

n
i,j)

2 + (D0yu
n
i−1,j)

2
,

cS :=
1√

ε2 + (D0xu
n
i,j)

2 + (D+yu
n
i,j)

2
, cN :=

1√
ε2 + (D0xu

n
i,j−1)

2 + (D−yu
n
i,j)

2
,

and solving for un+1
i,j , we obtain the iterative scheme

un+1
i,j =

2λh2fi,j + cEu
n
i+1,j + cWun

i−1,j + cSu
n
i,j+1 + cNun

i,j−1

2λh2 + cE + cW + cS + cN
.(4.7)

Using the most recent (north and west) values of ui,j ’s amounts to the Gauss–
Seidel scheme which we use in the examples below for computation at all interior
points (xi, yj) ∈ Ω. The interior Gauss–Seidel scheme is augmented by reflection
boundary conditions, in agreement with the Neumann boundary conditions (4.5). To
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this end, we also reflect f outside Ω (by adding up to 10 gridlines on all sides of Ω).
As the initial condition we set u0

i,j = fi,j .
In order to avoid grid effects, we rotate the starting point of the scheme (4.7) be-

tween the four corners of the grid, namely, (0, 0), (imax, 0), (imax, jmax), and (0, jmax),
and alternate whether we run the algorithm row by row or column by column.

The scheme is iterated, n = 0, 1, . . . , n∞, until ‖un∞ − un∞−1‖ is reduced below
a preassigned tolerance, so that un∞

i,j produces an accurate approximation of the fixed
point steady solution uλ(xi, yj). In general, n∞ = n∞(λ, h) is dictated by the contrac-
tivity of the fixed point iterations (4.7), e.g., in [6], while we note in passing that the
following maximum principle holds: mini,j |fi,j | ≤ |un

i,j | ≤ maxi,j |fi,j | (in agreement
with the maximum principle, 0 ≤ min f ≤ uλ(x) ≤ max f ; see [19, section 1.14]).

This completes the description of the Euler–Lagrange scheme for a fixed λ. We
tag the final discrete solution as uλ = {un∞

i,j }. In order to convert this into the
hierarchical multiscale decomposition, we reiterate this process, each time updating
the value of f and λ in the following way:

{
fnew ←− fcurrent − uλ,
λnew ←− 2λcurrent.

In other words, we take the residual of the previous step and apply the J(fcurrent−uλ,
2λ) minimization using a doubled scaling parameter. With λj = λ02

j , the final result
after k steps is a multiscale representation of f , expressed in term of uj = uλj

and
given by f = u0 + u1 + u2 + · · · + uk + vk.

How many hierarchical steps, k, should we take? Let us mention several stopping
criteria. The first, measuring the amount of texture ‖v2k−1‖W−1,∞ to be below a
certain tolerance factor, amounts to specifying the number of iterations, since in
view of Theorem 2.1, ‖v2k‖W−1,∞ = 1/λk+1. Another option would be to measure
the energy, ‖uk − uk−1‖L2(Ω), below a specified tolerance. The advantage of the
hierarchical decomposition is that it also allows us to access the λk scale through the
k-component, ‖uk‖BV /λk ∼ ‖uk‖BV /λk + ‖u‖2

2; equivalently, the latter is a measure
for the change in the L2 texture, requiring ‖vk‖2

2 −‖vk−1‖2
2 to be less than a specified

tolerance factor.
We now turn to a series of numerical experiments which illustrate the hierarchical

multiscale expansion for images. The different numerical results shown below use the
same regularization parameter, ε2 = 10−6. We begin with a simple illustration for
the improvement obtained by increasing the number of hierarchical iterations. In
the simple case of a characteristic function of a disk (see Figure 1), the additional
iterations improve the resolution as seen in the series of enhanced textures, vλj

+120.
Next, we illustrate how the hierarchical decomposition of an image resolves de-

tailed textures; see the increased scales of a fingerprint in Figure 2. In Figure 3 we
illustrate hierarchical decomposition of a woman figure. In each hierarchical step, an
additional amount of blurred texture is resolved in terms of the refined scaling for
edges.

The following three figures zoom into one piece of the woman in Figure 3. In
Figure 4, we see how our multiscale decomposition adds details of texture at each
stage of the algorithm. Figures 5 and 6 show the different hierarchical stages—the uj ’s
and the vj (enhanced by an additive factor of 120)—which add up to our final result
in Figure 4. We record the first six terms since the remaining ones are not noticeable.

Next we turn to two numerical tests with noisy data. In Figure 7 we illustrate an
additive noise. After 9 steps, the texture of the image is recovered on the top right
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f uλ0 vλ0
+ 120

∑1
i=0 uλi vλ1 + 120                                                            

∑2
i=0 uλi vλ2 + 120

∑3
i=0 uλi vλ3 + 120

∑4
i=0 uλi

                                                            

vλ4
+ 120            

Fig. 1. The uλj
components and the residuals, vλj

, for 5 steps, starting with an initial image

of a circle, (3.5). Parameters: λ0 = .01 and λj = λ02j .

f uλ0

∑1
i=0 uλi

∑2
i=0 uλi

                                                

∑3
i=0 uλi

∑4
i=0 uλi

vλ4
+ 120                                    

Fig. 2. Decomposition of an initial image of a fingerprint for 5 steps with λ0 = .01.

corner of the image while removing a smaller scale noise from the woman forehead.
If we continue the decomposition into smaller scales, then noise will reappear in the
u components, as the refined scales reach the same scales of the noise itself. Figure 8
is another example of a noisy image. After 9 steps we obtain a denoised image while
most of the texture is kept.
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Fig. 3. Successive decompositions of an image of a woman with λ0 = .0005.

The last examples demonstrated how the hierarchical decomposition separates
between different features of edges, texture, and noise. The distinctive feature is their
different scale. Our final example deals with different scales in an image of a galaxy
shown in Figure 9. The smaller values of the scaling factor, λ, correspond to the larger
objects in the image, while the smaller objects are brought into light when increasing
values of λ are considered. In this manner, the hierarchical decomposition enables an
effective separation of scales depicted, for example, in the last two images in Figure 9.

4.4. Localization of the hierarchical expansion. We want to localize the
hierarchical algorithm so that most of the computational work concentrates in the
neighborhoods of edges and textures while large homogeneous regions require a rela-
tively smaller amount of work. To this end, we start by considering the whole domain
embedded in a computational square Ω0 := Ω. We then dyadically split each typical
computational box, Ωj,k, into four new subregions, Ωj+1,k, depending on how much
texture they have. We refer the reader to [11] for a similar adaptive approach where
the local variation, ‖f − ave(f)‖L2(Ωj,k), was used as a criterion for local refinement,
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f uλ0

∑1
i=0 uλi

∑2
i=0 uλi

                                                

∑3
i=0 uλi

∑4
i=0 uλi

∑5
i=0 uλi

∑6
i=0 uλi

                                                

∑7
i=0 uλi

∑8
i=0 uλi

∑9
i=0 uλi vλ9

+ 120
                                                

Fig. 4. Decomposition of an initial image of a woman for 10 steps. Parameters: λ0 = .005
and λj = λ02j .

f uλ0
uλ1 + 120 uλ2 + 120

                                                

uλ3 + 120 uλ4 + 120 uλ5 + 120 uλ6 + 120
                                                

Fig. 5. Representation of each uj for 0 ≤ j ≤ 6. Parameters: λ0 = .005 and λj = λ02j .
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f vλ0 + 120 vλ1 + 120 vλ2 + 120
                                                

vλ3 + 120 vλ4
+ 120 vλ5

+ 120 vλ6
+ 120

                                                

Fig. 6. Representation of each vj for 0 ≤ j ≤ 6. Parameters: λ0 = .005 and λj = λ02j .

f uλ0

∑1
i=0 uλi

∑2
i=0 uλi

                                                

∑3
i=0 uλi

∑4
i=0 uλi

∑5
i=0 uλi

∑6
i=0 uλi

                                                

∑7
i=0 uλi

∑8
i=0 uλi

∑9
i=0 uλi

vλ9
+ 120

                                                

Fig. 7. The recovery of u given an initial noisy image of a woman. Parameters: λ0 = .0001,
k = 10, and λk = λ02j .
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f uλ0

∑1
i=0 uλi

∑2
i=0 uλi
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Fig. 8. Decomposition of a noisy image of a fingerprint for 10 steps. Parameters: λ0 = .0001
and λj = λ02j .

based on equidistribution of local variations. In the present context of hierarchical
decompositions, we propose two different refinement criteria to decide whether to stop
the refinement of the current box Ωj,k:

(i) The BV norm of the local residual—the refinement continues until ‖vλ‖BV (Ωj,k)

is below a given tolerance factor, δ.
(ii) A weaker stopping criterion based on the value of the localized minimizer—if

J(vj , λj)Ωj,k
≤ δ, then the refinement stops. Comparing the optimal pair [uj+1, vj+1]

with the trivial decomposition [vj , 0] implies that the first criterion is indeed stronger
for J(vj , λj) ≤ ‖vj‖BV . In practice, however, the numerical results presented below
show the two refinement criteria yield similar results.

Let us describe the details for the second adaptive procedure with a typical ex-
ample of an image of 2m × 2m pixels (the initial size of an image is always extended
to next dyadic size by reflection). We let Ω0 denote this initial computational do-
main, and we recall that at each stage the computational boxes need to be padded
with five additional rows on each side to implement reflection boundary condition.
If J(f, λ,BV (Ω0), L

2(Ω0)) ≤ δ, then we pursue the hierarchical decomposition of f
in Ω0. Otherwise, if J(f, λ,BV (Ω), L2(Ω)) ≥ δ, we split the initial 2m×2m region into
four equal images, each of 2m−1 × 2m−1 pixels; see Figure 10. They are augmented
with an extended boundary of five rows on each side, making four computational
boxes, Ω1,k, k = 1, . . . 4, each of (2m−1 + 10)× (2m−1 + 10) pixels. Note that there is
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Fig. 9. Decomposition of an image of a galaxy for 10 steps. Parameters: λ0 = .001 and
λj = λ02j . The last two images illustrate separation of scales.

overlapping between the new four images due to the reflection boundary conditions.
These artificial boundaries are ignored when subregions are pieced together to avoid
obvious lines along different zones where splitting took place. Now, for each of the
new four subregions, Ω1,k, we first check whether J(f, λ;BV (Ω1,k), L

2(Ω1,k)) ≤ δ,
and we continue the refinement until either the value of J becomes smaller than the
tolerance δ or we reach the smallest boxes of 2× 2 pixels. In each computational box
Ωj,k satisfying the refinement stopping criterion, we pursue our multiscale decom-
position seeking the minimizing pairs [uj+1, vj+1] of J(vj , λj+1, BV (Ωj,k), L

2(Ωj,k)).
While iterating these hierarchical stages, we check whether J(vj , λj+1) ≤ δ: if we do
not satisfy the desired tolerance at this point, we continue with the splitting process;
if we do, then we continue with our hierarchical expansion.
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Fig. 10. Method of splitting the domain into four equal regions. The shaded region represents
the first image.

f
∑9

i=0 uλi Decomposition of Ω New Approximation                                                

                                    

                                    

Fig. 11. Adaptive decomposition of f and Ω using J(uλ) as a refinement criterion. We use
δ = 50 × 1282 as a tolerance threshold for all calculations. Parameters: Row 1: λ0 = .01, Row 2:
λ0 = .001, and Row 3: λ0 = .0005, where λj = λ02j .

In Figure 11, we consider J(vj), and in Figure 12, we use ‖vj‖BV . The first col-
umn represents the general, nonadaptive hierarchical algorithm. The middle column
represents the adaptive refinements of Ω where lighter indicates more texture. The
last column contains the new adaptive expansion. The resulting image u is therefore
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f
∑9

i=0 uλi Decomposition of Ω New Approximation                                                

                                    

                                    

Fig. 12. Adaptive decomposition of f and Ω using the total variation of vλ as a refinement
criterion. We use δ = 50 × 1282 as a tolerance threshold for all calculations. Parameters: Row 1:
λ0 = .01, Row 2: λ0 = .001, and Row 3: λ0 = .0005, where λj = λ02j .

comprised of some regions which required as much as 10 terms, while others need only
3 terms. What is remarkable is how close the adaptive approximation is to the full
algorithm, even with a fairly large tolerance δ. Also, both stopping criteria, based on
‖vj‖BV ≤ δ and J(vj , λj+1) ≤ δ, yield similar results.

4.5. The hierarchical (BV, L2) decomposition scheme for color images.
We record here the formulae for color images, which are realized in terms of vector-
valued functions f = (f1, f2, f3) ∈ L2(R2)3. The corresponding minimizer for color
image restoration of Rudin, Osher, and Fatemi [25] reads

J(f , λ) = inf
u∈BV

{
λ‖f − u‖2

L2 + ‖u‖BV

}
.

Here, the BV and L2 norms of the corresponding 3-vectors, u = (u1, u2, u3) and
v = f − u = (v1, v2, v3), are defined in terms of their Euclidean structure:

‖u‖BV := sup
ϕ∈C∞

0

{∫
〈u,∇ϕ〉 | ‖ϕ‖L∞ ≤ 1

}
, ‖v‖2

L2 =

∫
|v|2dx.

Formally minimizing the above energy with respect to u1, u2, and u3 yields the
following Euler–Lagrange system of coupled PDEs:

u	 −
1

2λ
div

(
∇u	

|∇u|

)
= f	, � = 1, 2, 3, |∇u| =

√
|∇u1|2 + |∇u2|2 + |∇u3|2.

(4.8)
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Its approximate solution is computed through an iterative scheme similar to the
previous scalar case, except the need to solve three coupled equations for the 3-vector
of unknowns, un

i,j = ((u	)
n
i,j), � = 1, 2, 3, with the corresponding regularized gradients

c	;E =
1√

ε2 + (D+x(u	)
n
i,j)

2 + (D0y(u	)
n
i,j)

2
,

c	;W :=
1√

ε2 + (D−x(u	)
n
i,j)

2 + (D0y(u	)
n
i−1,j)

2
,

c	;S :=
1√

ε2 + (D0x(u	)
n
i,j)

2 + (D+y(u	)
n
i,j)

2
,

c	;N :=
1√

ε2 + (D0x(u	)
n
i,j−1)

2 + (D−y(u	)
n
i,j)

2
.

Solving for (u	)
n+1
i,j , we obtain the vector-valued iteration scheme

(u	)
n+1
i,j =

2λh2(f	)i,j + c	;E(u	)
n
i+1,j + c	;W (u	)

n
i−1,j + c	;S(u	)

n
i,j+1 + c	;N (u	)

n
i,j−1

2λh2 + c	;E + c	;W + c	;S + c	;N
,(4.9)

� = 1, 2, 3.

Figure 13 demonstrates the hierarchical decomposition for a vector-valued MRI image
in RGB mode.

5. Extensions. The hierarchical (BV,L2) decomposition was introduced in the
context of the J-minimizer of Rudin, Osher, and Fatemi [25]. It applies to other vari-
ational models arising in image analysis, and we shall mention three examples: a BV
minimizer weighted by the presence of a blurring operator, a multiplicative version of
the J-minimization (which is adapted for multiplicative rather than additive denois-
ing), and the Mumford–Shah segmentation model [21] which for the purpose of our
computations is realized by the elliptic regularization of Ambrosio and Tortorelli [3].
We briefly discuss the hierarchical decompositions in these three models below. Pre-
liminary results are found in [22], and a more detailed account will be provided in a
forthcoming paper.

5.1. Hierarchical decomposition of blurred images. Given f ∈ L2(Ω), a
cut-off parameter λ > 0, and a blurring kernel K (a linear and continuous operator
from L2(Ω) to L2(Ω)), we consider a decomposition of f provided by the following
JK(f, λ) minimization in the presence of blur; see, e.g., [19, section 1.14], [15]:

JK(f, λ;BV,L2) := inf
u∈BV

{
λ‖f −Ku‖2

L2(Ω) + ‖u‖BV (Ω)

}
.(5.1)

Let vλ := f − Kuλ denote the “texture” so that f = Kuλ + vλ. Starting with
λ = λ0 in (5.1) we proceed, as before, iterating the hierarchical decomposition, vj =
Kuj+1 + vj+1, at scale λj = λ02

j . We end up with hierarchical expansion of the
blurred image f ,

f = Ku0 + Ku1 + · · · + Kuk−1 + Kuk + vk, λj := λ02
j ,

which in turn paves the way for hierarchical, multiscale denoised representation
∑k

j uj .
In particular, the total energy of (sufficiently smooth) f is decomposed into its dyadic
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Fig. 13. Decomposition of a vector-valued MRI image for 10 steps. Parameters: λ0 = .00025
and λk = λ02j .

building blocks,

‖f‖2
2 =

∞∑
j=0

[
1

λj
‖uj‖BV + ‖Kuj‖2

2

]
.

Arguing along the lines of (2.16) we find that the last statement has an equivalent
energy decomposition, ‖f‖2

2 ∼
∑

j ‖uj‖BV /λj , where the explicit dependence on the
blur K is removed.

5.2. Hierarchical decomposition of images with multiplicative noise.
Following [26], we consider a multiplicative degradation model where we are given a
blurred image f = u · v, with u > 0 being the original image and where v models



578 EITAN TADMOR, SUZANNE NEZZAR, AND LUMINITA VESE

the multiplicative noise, normalized such that
∫
Ω
v(x, y)dxdy = 1. Let uλ be the

minimizer of the corresponding total variation functional in the multiplicative case [26]

M(f, λ;BV,L2) := inf
u∈BV+(Ω)

{
λ

∥∥∥∥fu − 1

∥∥∥∥
2

L2(Ω)

+ ‖u‖BV (Ω)

}
.(5.2)

Setting vλ := f
uλ

we end up with the one-scale decomposition f = uλvλ. We construct
the hierarchical decomposition as before, except that sums and differences are replaced
by products and divisions. Thus the iterative step at scale λj reads vj = vj+1uj+1,
leading to the multiplicative hierarchical decomposition

f = u0, u1, . . . , uk × vk, λj = λ02
j .

5.3. The hierarchical (SBV, L2) decomposition. We want to apply the
hierarchical decomposition to the Mumford and Shah functional [21]. To this end we
consider its elliptic approximation of Ambrosio and Tortorelli [3],

AT ε(f, λ) := inf
{w,u,v |u+v=f}

{∫
Ω

[
w2|∇u|2 + |v|2

]
dx + λ

[
ε‖∇w‖2

L2 +
‖w − 1‖2

L2

ε

]}
.

Let [uλ, vλ] be the minimizer of AT ε(f, λ) (depending on w). Here f is modeled as
a uλ which is restricted to the smaller SBV space (a special subclass of BV space,
consisting of measure gradients free of the Cantor component [3]), while the texture vλ
lives in L2. We proceed to construct the hierarchical (SBV,L2) decomposition of f
in the same manner as before, letting [uj+1, vj+1] be the AT minimizer

[uj+1, vj+1] = arginf
u+v=f

AT ε(vj , λj), λj = λ02
j .

We end up with the hierarchical decomposition

f = u0 + u1 + · · · + uk + vk.

Here, at each hierarchical step, we also obtain the edge detectors 1 − wj = 1 − wλj
,

which are (essentially) supported along the boundaries of objects enclosed by edges
identified by uj .
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