
DISCRETE AND CONTINUUM RELAXATION DYNAMICS OF
FACETED CRYSTAL SURFACE IN EVAPORATION MODEL

KANNA NAKAMURA∗ AND DIONISIOS MARGETIS†

Abstract. We study the connection of two scales in the relaxation of axisymmetric crystal
surfaces with a facet via an ad hoc evaporation-condensation model. We provide numerical evidence
that the continuum slope determined under “natural boundary conditions” at the facet, which are
derived solely from continuum thermodynamics, follows closely the underlying discrete dynamics. At
the microscale, the discrete scheme consists of a large system of differential equations for the radii of
repulsively interacting line defects (steps) separated by terraces. We solve this system numerically
and thereby describe step collapses on top of the facet. Each step velocity is proportional to the
step chemical potential, the variation of the total step free energy; the relevant discrete mobility is
assumed linear in the width of the upper terrace. At the macroscale, the facet is a free boundary
for a second-order, diffusion-like, nonlinear partial differential equation for the slope, which we study
via the extended gradient method, boundary layer theory and a self-similarity ansatz. The proof of
convergence of the discrete (step) scheme to the continuum solution is not addressed.
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1. Introduction. A challenging issue in non-equilibrium statistical mechanics
is to connect the dynamics of large particle systems to macroscopic evolution laws
amenable to computation and physically motivated predictions. Traditionally, much
insight into the kinetic limits of interacting particles has been gained in the context of
gas theory and the Boltzmann equation; see e.g. [5,58]. Inspired by these developments
and recent experimental advances, research efforts seek to analyze macroscopic limits
of other physical systems, particularly crystalline solids evolving near equilibrium.

The evolution of material surfaces and interfaces near equilibrium is often subject
to variational principles. In particular, crystal surfaces and grain boundaries relax, in
the absence of external material deposition, so that the flow of height profiles stems
from the variation of thermodynamics-based free energies (see, e.g. [7, 21, 23, 27, 33,
36, 44, 51, 59, 60]).

Below the roughening transition temperature, the crystal surface morphological
evolution is caused by the motion of atomic line defects (steps), which can be viewed
as particles, and can be characterized by macroscopic plateaus called facets [6, 8, 32,
42,43,50]. At the microscale, the equations of motion are large systems of differential
equations for step positions [17, 30, 31]. At the macroscale, away from facets, the
surface is described by partial differential equations (PDEs) for the surface height
or slope [14, 46, 48, 52, 59], which are more amenable to analytical predictions. The
connection of the two scales across surface peaks, valleys and facets is not adequately
understood.
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In this article, we aim to show that two distinct approaches, each based on the
above respective description, can be reconciled within a certain ad hoc (yet phys-
ically motivated) evaporation model in the absence of external material deposition
from above and nucleation. One of these approaches follows the motion of steps;
and has indicated that individual steps on top of facets can influence surface profiles
macroscopically [10, 30, 31, 39, 55]. Another approach relies on PDEs outside facets
with boundary conditions applied at the moving (“free”) facet boundaries via contin-
uum thermodynamics [38, 59]. This latter view is appealing since it is subject to a
variational formulation [33,56]; however, for surface diffusion this approach is known
to produce results that are in principle not consistent with step motion [30, 31, 39].
Here, we provide a, previously unnoticed, paradigm of step kinetics in which the two
approaches are mutually consistent across the facet of an axisymmetric structure.

Our intention is to shed light on the issue of how continuum thermodynamics
is related to underlying discrete schemes when step collapses occur on top of facets.
Evidently, the number of steps is not conserved in our radial setting. It is tempt-
ing to expect that this property implies lack of consistency of the discrete system
with the thermodynamics-based continuum limit [30, 31]. Most, but by no means
all [34], previous studies of facet evolution focus on surface diffusion in the absence
of evaporation; see, e.g., [1, 2, 30, 31, 39]. In [34], the authors point out the significant
influence of kinetics, especially nucleation, on the connection of continuum laws (i.e.,
the Hamilton-Jacobi equation for the height) to step motion near facets.

Here, we study aspects of evaporation dynamics. Evaporation, in which adsorbed
atoms (adatoms) are exchanged between steps and the surrounding vapor, is ubiq-
uitous in epitaxial phenomena [26, 50]. In principle, evaporation coexists with, but
is simpler to study than, surface diffusion. In the latter process, adatoms diffuse on
terraces and on step edges, and attach or detach at steps from or to terraces [32, 50].

To capture with minimal complexity the main elements that may cause close
agreement of discrete and continuum-scale dynamics, we focus on an ad hoc yet
physically plausible evaporation model that is rich enough to include step curvature,
elastic-dipole step-step repulsions [37,45], and a terrace-width-dependent discrete step
mobility. We are not aware if this simplified model has a concrete physical applica-
tion.1 Nonetheless, we anticipate that the model can serve as a reference case in
the study of realistic, more complicated microscopic theories. In fact, we also dis-
cuss how our model results from the simplification of a step scheme that includes
desorption, surface diffusion, and a negative (“inverse”) Ehrlich-Schwoebel (ES) ef-
fect [15,49,53,54,57], by which adatoms on terraces attach/detach at down-steps with
a kinetic rate that is larger than the rate for up-steps.

At the macroscale, our model reduces to a description of generic appeal: The
flow of the continuum-scale height is expressed as the variation of a familiar singular
surface free energy, which we consider as given [24, 59]. At the level of steps, the
step velocity is proportional to the step chemical potential, the variation of a total
step free energy, which we also consider as given; the respective coefficient, or discrete
mobility, is chosen linear in the width of the upper terrace, giving rise to a forward
difference scheme and stable step dynamics in the radial setting.

Our work has limitations. For instance, our analysis of the continuum limit is
formal. We only provide numerical evidence that a solution of the discrete scheme
for our ad hoc model approaches a solution of the thermodynamics-based continuum
limit. A rigorous proof of this convergence is presently elusive. The step model

1Hence, we consider our assumed discrete dynamics as a toy model.
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can of course be enriched to include more realistic physical effects such as non-radial
geometries but this task is left for future work.

We assume that the reader is familiar with the fundamentals of epitaxial growth.
For broad reviews on the subject, see, e.g. [32, 42, 43].

1.1. Microscopic model. Two of our reasons for choosing the particular evap-
oration model are: (i) its compatibility with the known thermodynamics-based PDE
outside facets [33, 59]; and (ii) the well-posedness of the ensuing discrete dynamics
problem even for zero step-step interaction. Our results aim to illustrate the intimate
connection of a special discrete model (and the underlying kinetics) to a well-studied
continuum description. Below, we outline how our ad hoc model can be viewed as a
variant of a certain model of surface diffusion on stepped surfaces.

1.1.1. Motivation. In our toy model, the step velocity law is

(1.1) dri/dt = ṙi = −νi(µi − µ0),

which expresses an exchange of adatoms between concentric circular step edges and
the surrounding vapor. In (1.1), ri(t) is the ith step radius, νi is the step mobility
(specified below), µ0 is the constant chemical potential of the surrounding vapor,
and µi is the step chemical potential; this µi incorporates two effects, namely, step
curvature (stiffness) and step-step elastic-dipole interactions [32]. We then obtain
a large system of coupled nonlinear ordinary differential equations (ODEs) for the
step radii. This system is expected to describe successive annihilations of the top
(extremal) layers of an axisymmetric structure. Of course, the height of the surface
structure is expected to decrease with time. Here, we use νi ∝ ri − ri−1 > 0 and
µ0 = 0 in (1.1); the corresponding model is referred to as M1, the focus of this article.

The formulation of M1 can be partly motivated with recourse to successive sim-
plifications of a discrete scheme based on surface diffusion and desorption (see sec-
tion 6.2). The starting model, herein called M3, is derived directly from the Burton-
Cabrera-Frank (BCF) theory of step flow [8]. The step velocity law for M3 is

(1.2) ṙi = −νG (ri − ri−1)(T + µi), G =
ri + ri−1

2ri
,

where ν is a constant and T is the Boltzmann energy (absolute temperature in units
where kB = 1). Note that in (1.2) the associated coefficient of µi (step mobility) is
different from that in M1 due to the appearance of the geometric factor G which sub-
stantially influences the velocity of the top step. Away from the facet, (1.2) gives rise
to a formal continuum limit for the slope profile same as M1. The discrete equations
of motion for M3 stem from a special limit of three combined kinetic processes [50]:
(i) atom evaporation (with finite desorption time, τ); (ii) adatom terrace diffusion;
and (ii) inverse ES effect. The procedure for obtaining (1.2) is outlined in section 6.2.

The model M3 can be further simplified by removal of (the constant) T from
(1.2). Thus, we wind up with the modified step velocity law

(1.3) ṙi = −νG (ri − ri−1)µi.

The model corresponding to (1.3) will be henceforth called M2. Our numerical sim-
ulations (section 6.2) indicate that, at long time and many steps, M2 admits self-
similar solutions for the discrete slopes, Mi ∝ (ri − ri−1)

−1, with similarity variable
ξi = ri/

√
t.2

2On the other hand, ODEs (1.2) of M3 are not expected to allow for a self-similar behavior. This
aspect is not studied any further here.
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The last stage of our simplifications leading to M1 is to replace G by 1 in (1.3).
Strictly speaking, this approximation is valid when ri − ri−1 ≪ ri but is expected to
break down near the top step (where ri − ri−1 ≈ ri). This approximation is close to
the spirit of the continuum limit.

Interestingly, we demonstrate numerically that the discrete slopes produced by
M1 are in excellent agreement with the continuum slope of the thermodynamics-
based approach. By contrast, discrete slopes by M2 are not compatible with the
thermodynamics-based continuum theory. This observation exemplifies the role of
extremal steps in facet evolution. Models M2 and M3 are the subjects of future work.

1.1.2. Properties of M1. One of our goals is to understand the behavior of
steps moving according to model M1. For this purpose, we first prove the existence of
a unique solution to ODE system (1.1), with the mobility νi ∝ ri − ri−1. Along with
this proof, we show that, in contrast to the surface diffusion case [17], the discrete
dynamics (forward scheme) here do not allow for step collisions even in the absence
of step interactions; hence, the ordering of steps, i.e., the property ri(t) > ri−1(t), is
preserved by the flow and steps do not touch provided ri(0) > ri−1(0) for all i.

Furthermore, we solve numerically ODEs (1.1) for many steps and thereby com-
pute the discrete slopes Mi = a/(ri − ri−1), where a is a step height, for all times
t ≥ 0. Our numerical data provides evidence that, for large enough t, the times tn
at which the top steps are annihilated behave as tn ≈ cnß for n ≫ 1; n enumerates
steps in the initial configuration and the constants c and ß depend on the material
parameters and the initial data [17,30]. To simplify the numerics, we assume an initial
conical profile, for which we find ß = 2. In addition, we numerically observe that,
consistent with the above behavior of tn, the discrete slopes, Mi, exhibit a self-similar
behavior, which is not uncommon for the radial geometry [30, 35, 61, 62].

The case with non-interacting steps deserves some special attention. By comput-
ing exactly the radii of the top two steps explicitly as functions of time, we are able
to test the validity of our numerics in this special case.

1.2. Macroscopic limit and facet problem. In the limit of a large number
of steps, the ODE system for steps is expected to reduce to evolution PDEs for the
surface height and slope profiles away from the facet; in our setting, the facet is a
region of spatially constant height. The rigorous study of this continuum limit lies
beyond our scope. In our formal discussion of this limit we primarily invoke the
(relatively simple) notion of pointwise convergence in order to express the passage
from the ODEs to the PDEs; this choice circumvents subtleties of weak convergence,
which may be a more appropriate notion for our system. The main assumption for
the validity of the continuum limit is that the terrace width is much smaller than the
radii of its bounding steps and varies slowly with the spatial (polar) coordinate.3

Within the continuum framework, there are at least two treatments of the facet.
One treatment is to apply the PDE (outside the facet) and view the facet edge as a free
boundary via enforcing appropriate boundary conditions [59]. Another treatment is
to extend the continuum theory everywhere, including the facet, by replacing the PDE
by a variational statement according to the known subgradient (extended gradient)
formulation [33]. The two treatments can of course become mutually consistent if the
facet boundary conditions are chosen to be the “natural boundary conditions” coming
from the variational formulation; these conditions are the continuity of height, of a

3In a rigorous analysis, this last assertion should not be an assumption but instead be deduced
from the discrete dynamics. We do not address the related issues here.
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radial vector interpreted as the flux germane to the height change with time, and of
slope for interacting steps (see section 5.1). We mainly choose these conditions in this
article; hence, we essentially make no distinction between the subgradient and the
free boundary approaches here (see, however, the discussion of section 5.1.2).

In our evaporation-condensation model M1, the large-scale slope profile predicted
via the subgradient formulation is found by numerics to be fully consistent with the
collapses of steps near the expanding facet. Our result implies that, in this particular
system, no information on the near-facet behavior is left out by the direct coarse-
graining of the discrete dynamics outside the facet.

We study the PDE for the slope profile (outside the facet) numerically, and an-
alytically via natural boundary conditions at the facet boundary [33, 59]. In the
non-interacting case, the PDE solution is determined exactly; it has a self-similar
structure and suggests treating the facet as a shock-like wave [19]. We extend the
shock wave notion to interacting steps. In this case, we solve the PDE numerically via
self-similarity of the slope, and gain some understanding of the (classical) solution via
boundary layer theory near the facet for weak step interactions, in the spirit of [38].

A note on previous works is in order. Progress in understanding the connection
of step flow and continuum theory has been made for semi-infinite facets at fixed
heights in one space dimension (1D) [1, 2, 41]. In this case, the surface height is a
convenient independent variable, by which the need to use a free boundary for the
facet is circumvented; furthermore, step collapses do not occur and, thus, the total
number of steps is preserved. The analysis becomes more involved for periodic surface
corrugations in 1D [31, 47] and radial geometries [30, 39] which have variable facet
heights. For such geometries, boundary conditions consistent with step flow should in
principle invoke microscopic parameters, e.g., step collapse times, which non-trivially
result from solving the discrete schemes for steps [30, 39].

1.3. Limitations. A couple of limitations of our study should be spelled out. A
rigorous proof for the convergence of the step ODE solution for M1 to the continuum
thermodynamics-based solution is not addressed here. We believe that a convenient
starting point for the analysis would be to formulate, by using appropriate variables,
the step ODEs as the steepest descent of a convex energy (see, e.g. [1, 2]). This
would indicate a treatment analogous to approaches in numerical (convex) analysis.
Some relevant analysis using the finite element method has been carried out in recent
years [3,11]. We note that, by contrast to a numerical analysis approach in which one
starts from a given PDE and has the freedom to choose a convenient discretization
scheme, here one is bound to the given discrete step structure, e.g. the form of the step
chemical potential. Exploring the connection of our model to methods of numerical
analysis or dynamical systems is the subject of work in progress.

Other possible developments of our study include investigating richer kinetics
(e.g., material deposition from above or nucleation) [50]. Furthermore, we only study
conical initial profiles; extension of our work to other initial geometries in two space
dimensions (2D) is unexplored. Another limitation concerns our observation of self-
similar slope profiles: we currently lack a rigorous understanding of this apparent
behavior even in the radial setting.

1.4. Outline. The remainder of the paper is organized as follows. In section 2,
we describe the geometry and discrete equations of motion. In section 3, we give a
proof for the existence of a unique solution to the ODE system of M1; we also prove
the corresponding non-crossing property for steps. In section 4, we review the formal
continuum limit for the height and slope profiles away from the facet. In section 5, we
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compute thermodynamics-based PDE solutions and compare them to discrete (step)
simulations. In section 6, we discuss a shock wave interpretation of the continuum
solution; and a connection of our discrete model M1 with M3 and M2 on the basis
of the BCF theory. In section 7, we summarize our results and outline a few open
problems. The appendices provide technical derivations invoked in the main text.

1.5. Notation conventions. The relation f = O(g) implies that f/g is bounded
as a variable approaches a limit; similarly, f ∼ g means that (f−g)/f approaches zero
when a variable tends to a given limit. A dot on top of a symbol denotes derivative
with respect to time, e.g., ṙ = dr/dt. The symbols N and (xi)i∈I denote the set of
natural numbers and a vector indexed by the set I, respectively; and Bd(r, δ) is the
open ball of radius δ > 0 centered at point r in d space dimensions (Euclidean space
R

d), where boldface symbols denote vectors in the main text (but not in Appendix A).

2. Formulation.

2.1. Geometry. The geometry is shown in Figure 2.1. At the macroscale, the
crystal surface is described by a continuous height profile, h(r, t), with respect to a
fixed (xy-) plane of reference, where r is the polar coordinate and t is time (r ≥ 0,
t ≥ 0). The (circular) facet has zero slope orientation, height hf(t) and radius rf(t).
We expect that ṙf(t) ≥ 0, i.e., the facet expands, by analogy with the surface diffusion
case [38].

At the microscale, this configuration consists of concentric circular layers (steps)
of constant atomic height, a. The ith step has radius ri(t), where initially (at time
t = 0) i = 0, 1, . . . , N and N ≫ 1; by convention, r−1 ≡ 0 (cf. (2.4)). We take N
to be large yet finite, so that the structure can be considered as semi-infinite for all
practical purposes (but not in section 3.2). Steps are expected to shrink and collapse
on top of the facet; only steps with n ≤ i ≤ N are present at times tn−1 ≤ t < tn,
where tn is the collapse time of the nth step of the initial configuration; by convention,
set rn−1(t) ≡ 0 if t ≥ tn−1 (n ≥ 0) where t−1 = 0. Thus, i is a variable index
enumerating steps that remain on the structure relative to the initial configuration.

We assume that ri+1(0) > ri(0) for all i.
4 Then, the discrete slopes defined by

(2.1) Mi =
a

ri+1 − ri

are positive (Mi > 0) and bounded, Mi ≤ O(1). Near the top step, ri+1 − ri is much
larger than a; thus, Mi is small (as we will show numerically).

Let htop(t) denote the height of the top layer at time t (see Figure 2.1). Because of
step collapses on top of the facet, htop(t) must decay; evidently, 0 < htop−hf = O(a) ↓
0 in the macroscopic limit. The everywhere-continuous surface height, h(r, t), is the
continuum limit of the discrete (piecewise constant) height hd(r, t) which satisfies

(2.2) htop(t)− hd(r, t) = (i− n)a,

for ri−1 < r < ri and tn−1 ≤ t < tn. In the continuum limit, where a → 0 and
ia = O(1), we can assert that

(2.3) ia→ hf(0)− h(r, t).

4If ri+1(0) > ri(0) (initially), the relation ri+1(t) > ri(t) for all later times, t > 0, should follow
from the step flow equations. We provide a proof of this property in section 3.
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Fig. 2.1. Schematic of axisymmetric surface structure with a facet. At the macroscale, the
height, h(r, t), is continuous; the facet height and radius are hf(t) and rf(t). At the microscale,
circular steps of atomic size a are evident and the height is uniformly discretized; tn is the n-th step
collapse time where n enumerates steps in the initial configuration.

2.2. Discrete equations of motion. Next, we formulate the discrete equations
of motion for an evaporation-condensation model. The (radial) velocity of the ith step
stems from (1.1) and is assumed to be

(2.4) ṙi = −ν ri − ri−1

a
(µi − µ0),

for all i of interest (n ≤ i ≤ N), where ν is a constant that has units of length/energy/time;
recall that ri−1(t) ≡ 0 if i ≤ n, tn−1 ≤ t < tn. In the limit a → 0, (2.4) becomes
∂th = −νµ, where µ is the macroscopic limit of µi, in agreement with a continuum-
scale model in [59] (see section 4 for details). Note that velocity law (2.4) updates
each step position through values for smaller step index, i; thus, we consider (2.4) as
a forward discrete scheme (in i).

To determine µi, we first describe the total step free energy, Est, which accounts
for step line tension as well as entropic and elastic-dipole step repulsive interactions:

(2.5) Est(t; a) =

N
∑

i=n

2πri(t)
[

g1a+ V(ri(t), ri+1(t); a)
]

,

where the pairwise interaction energy between steps of radii r and ρ is [30, 38, 40]

(2.6) 2πr V(r, ρ; a) = 2πǧ3
rρ

ρ+ r

(

a

ρ− r

)2

.

In (2.5) and (2.6), g1a is the step line tension (energy/length) and ǧ3 expresses the
strength of step-step repulsion per unit length of a step [38]; for later algebraic conve-
nience in comparing discrete and continuum slopes, we replace ǧ3 by the (macroscopic)
parameter [38]

(2.7) g3 =
3

2

ǧ3
a
.

The step chemical potential is defined through the variational formula [40]

(2.8)
∑

i

a

∮

Li

µivi ds = ΩĖst(t; a),
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where Li is the i-th step curve and vi is the step velocity. Relation (2.8) implies

µi =
Ω

a

1

2πri

∂Est

∂ri

=
Ωg1
ri

+
Ω

ri a

∂{ri[V(ri, ri+1) + V(ri−1, ri)]}
∂ri

=
Ωg1
ri

+
2

3
Ω
g3a

2

ri

{

ψ(ri, ri+1)− ψ(ri−1, ri) +
1

r2i

[

φ(ri, ri+1) + φ(ri−1, ri)
]

}

,(2.9)

where Ω is the atomic volume, Ω ≈ a3, and

ψ(r, ρ) =
2rρ

ρ+ r

1

(ρ− r)3
,(2.10)

φ(r, ρ) =

(

ρr

ρ+ r

)2
1

(ρ− r)2
.(2.11)

Accordingly, we obtain the step velocity law

ṙi = −Ωνg1
ri

ri − ri−1

a

{

1 +
2ga2

3

[

ψ(ri, ri+1)

−ψ(ri−1, ri) +
φ(ri, ri+1) + φ(ri−1, ri)

r2i

]}

,(2.12)

where n ≤ i ≤ N for tn−1 < t < tn and rN+1(t) ≡ 0. The parameter g ≡ g3/g1
expresses the relative strength of step line tension and step-step repulsion.

Remark 2.1. Equation (2.12) can be non-dimensionalized by use of the variables
r̃i = ri/a and t̃ = (νg1Ω/a

2)t; or, alternatively, via units with a = 1 = νg1. We
follow this route in sections 3 and 5.2–5.4. In sections 4 and 6, we choose to use
dimensional variables so as to indicate more transparently the passage to and nature
of the continuum limit outside the facet.

3. Existence of unique solution. In this section, we prove that, in some con-
trast to diffusion-limited kinetics [17], steps do not collide in our model even for zero
step interactions. We give separate proofs for g = 0 and g 6= 0. For g = 0, our proof is
uniform in the initial step number, N , whereas the uniformity is lost in the case with
nonzero g. Thus, for g = 0 we can strictly consider a semi-infinite surface structure.
Note that our choice of (radial) geometry is perhaps the simplest one for which step
motion is rich enough even for vanishing interaction; in 1D, the g = 0 case is trivial.

3.1. Case with g=0. The absence of step collisions can be loosely explained
by inspection of (2.12) for g = 0. Suppose two steps tend to coalesce at some time;
then, the innermost step moves faster whereas the other step is slowed down (because
of the governing forward scheme), and step collision is thus avoided. Note that the
assumed forward scheme is deemed natural in our setting, given that the preferred
direction of motion of each step (with a minus sign in (2.4)) is towards the origin.

The main result of this subsection can be stated as follows.
Theorem 3.1. Let N ∈ N be the initial number of steps and I = {0, 1, · · · , N}.

Consider the vectors r(t) = (r0(t), r1(t), · · · , rN (t)) and f(r) = (f0(r), f1(r), · · · , fN(r))
where

(3.1) fi(r) =

{

−ri − ri−1

ri
ri 6= 0

0 ri = 0
,
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and r−1(t) ≡ 0 in the definition of f0.
Then, there exists a unique global solution to the initial value problem (IVP)

(3.2) ṙ = f(r), r(0) = rin, rin ∈W =
{

x ∈ R
N |0 < x0 < · · · < xN

}

in the domain Ω = {x = (xi)i∈I |xi 6= 0, i ∈ I}. Furthermore, this solution stays in
W for t ∈ [0, t0) and in Wi =

{

x ∈ R
N |0 = x0 = · · · = xi, xi+1 < · · · < xN

}

for t ∈
[ti, ti+1), where ti is the time when ri reaches 0; here, 0 < t0 < t1 < · · · < tN < ∞.
The solution is smooth for all t 6= t0, · · · , tN . More precisely, ri(t) is continuous for
all t and smooth on [0, ti).

Proof. First, we prove the existence of a unique local solution to problem (3.2).
Observe that each fi is smooth on W with ∇fi = (0, · · · , 0, 1

ri
,− ri−1

r2
i

, 0, · · · , 0). So,

for every r ∈W , let 0 < δ < mini∈I{ri}. Then, for any y ∈ BN (r, δ) we have

(3.3) |∇fi(y)|2 =
1

y2i
+
y2i−1

y4i
≤
(

1

ri − δ

)2

+
(ri−1 + δ)2

(ri+1 − δ)4
<∞

for each i. Hence, f is locally Lipschitz; by the Picard-Lindelöf theorem [25], IVP (3.2)
has a unique local solution in Ω. This local solution is smooth since f is smooth.

Let rin ∈ W and suppose that [0, T ) is a maximal interval on which the problem
ṙ = f(r), r(0) = rin has a solution in W . Since r0 = rin0 − t, we establish that

(3.4) T ≤ rin0 <∞.

We will show that r(t) approaches ∂W as t ↑ T . Suppose by contradiction that r(t)
does not approach ∂W as t ↑ T . Then, in particular, we have mini inft∈[0,T ) ri(t) > 0
and f is uniformly bounded on the image r([0, T )). Thus, r(t) is Cauchy-continuous.
Therefore, by a standard theorem in the theory of ODE [12] which states that an
extension of the solution exists at T if limt↑T r(t) exists in W , the (classical) solution
can be extended to [0, T + b). This assertion contradicts the maximality of T . We
thus conclude that r(t) approaches ∂W as t ↑ T .

Now, define the set V1 = {x ∈ R
N | ∃ i ∈ I \ {0} such that xi = xi−1} and

V2 = ∂W \ V1. Suppose by contradiction that r(T ) ∈ V1. Let {rj}j∈J be a set
consisting of all components of r such that rj(T ) = rj−1(T ). In particular, J is
not empty. So let j0 ∈ J be the smallest index. Then, j0 − 1 /∈ J , which means
that |ṙj0−1| is bounded from below by some K > 0 on [0, T ). Since ṙj0−1(t) ≤ 0
on [0, T ), this implies that ṙj0−1(t) < −K. On the other hand, given any ǫ > 0,

there exists some interval (T − c, T ) on which ṙj0 = − rj0−rj0−1

rj0
> −ǫ. By taking

ǫ = K, we see that d
dt(rj0 − rj0−1) = ṙj0 − ṙj0−1 > −K + K = 0 on (T − c, T ).

Hence, limt↑T [rj0(t) − rj0−1(t)] 6= 0 and j0 cannot be in J . By this contradiction,
we conclude that (3.2) has a unique global solution which becomes and remains zero
when the trajectory meets the subset {r0 = 0} \ V1 of a hyperplane {r0 = 0} at some
finite time T . Define t0 := T . Then by the definition of f0, r0(t) ≡ 0 for t ∈ [t0,∞).
Next, we proceed as in the above argument with the dimension of the solution reduced
by 1. Continue this procedure until r = 0.

Remark 3.2. In the above proof, tn are the step collapse times. For g = 0 and
conical initial data (i.e., ri(0) linear with i), we will obtain an explicit solution for
the top two steps of ODEs (3.2), with indices i = n, n + 1 and t ∈ (tn−1, tn). For
this special case, the explicit solution indicates that steps do not collide, as verified
through our numerics; cf. section 5.2.2.
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Remark 3.3. A direct consequence of Theorem 3.1 is that the discrete slopes
Mi remain positive and bounded for any N .

Remark 3.4. The proof of Theorem 3.1 holds as N → ∞ (for semi-infinite
structure).

A statement about the continuum limit is in order.
Corollary 3.5. If the continuum limit of the solution to IVP (3.2) exists, this

limit yields a monotone continuum-scale height for all time t > 0 provided the height
profile is strictly monotone at t = 0.

In fact, we will verify this last statement for the case of conical initial data through
an exact solution of the evolution PDE for the slope (see section 5.2).

3.2. Case with g > 0. For nonzero g, the proof for the existence of a unique
solution to ODE system (2.12) and the non-crossing property of steps for such a
solution is similar to the proof for the case with g = 0. However, for g 6= 0, ṙ(t)
becomes unbounded as rj → rj−1 for some j. So, the proof that we provide below
holds only when N is finite.

Theorem 3.6. Let N ∈ N be the initial number of steps and I = {0, 1, · · · , N}.
Consider r(t) = (r0(t), r1(t), · · · , rN (t)) and f(r) = (f0(r), f1(r), · · · , fN (r)) where

fi(r) = −ri − ri−1

ri

{

1 +
2g

3

[

ψ(ri, ri+1)− ψ(ri−1, ri)

+
φ(ri, ri+1) + φ(ri−1, ri)

r2i

]}

if ri 6= 0,(3.5a)

(3.5b) fi(r) = 0 if ri = 0.

Here, ψ and φ are defined by (2.10) and (2.11), respectively; and r−1(t) ≡ 0 in the
definition of f0 while rN+1(t) ≡ 0 in the definition of fN . Then, there exists a unique
global solution to the IVP

(3.6) ṙ = f(r), r(0) = rin, rin ∈W =
{

x ∈ R
N |0 < x0 < · · · < xN

}

in the domain Ω = {x = (xi)i∈I |xi 6= 0, i ∈ I}. Furthermore, this solution stays in
W for t ∈ [0, t0) and in Wi =

{

x ∈ R
N |0 = x0 = · · · = xi, xi+1 < · · · < xN

}

for t ∈
[ti, ti+1), where ti is the time when ri reaches 0. Here, 0 < t0 < t1 < · · · < tN < ∞.
This solution is smooth for all t 6= t0, · · · , tN . More precisely, ri(t) is continuous for
all t and is smooth on [0, ti).

Proof. In the spirit of the proof for g = 0, we first prove the existence of a unique
local solution to problem (3.6). Observe that each fi is smooth onW . For each vector
r ∈ W , let 0 < δ < mini∈I{ri, (ri − ri−1)/4}. Then, by recourse to ODEs (2.12), for
all y ∈ BN (r, δ) we note the following bound in regard to partial derivatives of fi:

∣

∣

∣

∣

∂

∂yi

(

yi − yi−1

yi
ψ(yi, yi+1)

)∣

∣

∣

∣

2

=

∣

∣

∣

∣

2yiyi+1

yi(yi + yi+1)

1

(yi+1 − yi)3
− (1− yi−1

yi
)(3.7)

2yiyi+1

(yi + yi+1)2
1

(yi+1 − yi)3
+ 3(1− yi−1

yi
)
2yiyi+1

yi + yi+1

1

(yi+1 − yi)4

∣

∣

∣

∣

2

≤ K(δ),

where K(δ) = O(1/δ3) for small δ. In (3.7), we used an inverse triangle inequal-
ity, |yi − yi−1| ≥ |ri − ri−1| − |yi − ri| − |yi+1 − ri+1| ≥ 2δ in order to obtain a
bound for each term; for example, the first term in the right-hand side is bounded by
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(ri+δ)(ri+1+δ)
(ri−δ)(ri+ri+1−2δ)

1
4δ3 . We omit the details on the rest of partial derivatives for each

fi, since the procedure is similar to the one above. Thus, every |∇fi| is bounded from
above by a finite number. Therefore, f is locally Lipschitz; by the Picard-Lindelöf
theorem [25], we assert the existence of a unique local solution to problem (3.6).

Now, as before, let rin ∈W and [0, T ) be a maximal interval on which the problem

(3.8) ṙ = f(r), r(0) = rin

has a (classical) solution inW . Notice that onW , ṙ0(t) < ṙ
(0)
0 (t) where r

(0)
0 (t) denotes

the first component of the solution for IVP (3.2). Thus, r0(t) < r
(0)
0 (t) = rin0 − t and

we obtain an upper bound for T :

(3.9) T ≤ rin0 <∞.

By neglecting the negative terms in (3.5) for each i, we obtain an inequality, viz.,

(3.10) ṙi(t) ≤
C

(ri − ri−1)2
, C = 4g/3.

We now show that r(t) approaches ∂W as t ↑ T . Suppose by contradiction that
this statement is false. Then, ri 9 ri−1 and the right-hand side of (3.10) is clearly
bounded above on [0, T ). Hence, f(r) is uniformly bounded on the image r([0, T ))
and, by recourse to the argument given in the proof for the case with g = 0, we
conclude that r(t) approaches ∂W as t ↑ T .

Let V1 and V2 be the sets defined in the proof for Theorem 3.1. Next, we prove
that r(t) → V2 as t → T . Let {rj}j∈J be a set consisting components of r such that
rj(T ) = rj−1(T ). Suppose by contradiction that r reaches V1 at time T . In particular,
this implies that the set J is nonempty. If, for some j ∈ J , ṙj grows unbounded in the
positive direction near time T yet ṙj−1 is bounded above, then ṙj − ṙj−1 > 0 on some
interval (T − c, T ), which contradicts the definitions of T and J . Thus, the desired
result follows by this contradiction: r does not reach V1 by time T .

Because J is nonempty, there exists the smallest index j0 ∈ J and the largest
index j∗ ∈ J such that the sequence j0, j0 + 1, · · · , j∗ − 1, j∗ is contained in J . Since
j0 − 1 /∈ J , we have that rj0−1 − rj0−2 9 0 and ψ(rj0−2, rj0−1) is bounded. Thus, the
only positive term in fj0−1(r) is bounded near time T , so ṙj0−1 = fj0−1(r) is bounded
from above in some interval (T − c̃, T ). On the other hand, j∗ + 1 /∈ J implies that
ψ(rj∗ , rj∗+1), φ(rj∗ , rj∗+1) are both bounded. Also, since j∗ ∈ J , we deduce that
φ(rj∗−1, rj∗) grows as (rj∗ − rj∗−1)

−2 whereas ψ(rj∗−1, rj∗) grows as (rj∗ − rj∗−1)
−3.

Thus, ṙj∗(t) must grow unbounded in the positive direction as t→ T .
Hence, the properties that rj0−1 is bounded and rj∗ is unbounded warrant that

there exists some j ∈ J for which ṙj grows unbounded above for times near T yet ṙj−1

is bounded above. We conclude that IVP (3.6) has a unique global solution r(t) that
ends when the trajectory meets a subset {r0 = 0} \ V1 of the hyperplane {r0 = 0} at
some finite time T . Define t0 := T . By the definition of f0, r0(t) ≡ 0 for t ∈ [t0,∞).
We proceed as in the above argument with a new problem in which the dimension of
the solution is reduced by 1. Continue this procedure until r = 0.

Remark 3.7. The above proof relies on the fact that J is a finite set and there
exists the largest index in J (i.e., J is bounded). In particular, it is necessary that N
be finite. Thus, we may not use our proof for nonzero g in order to assert positivity
of the slope for a semi-infinite structure (as N → ∞).

Remark 3.8. For nonzero g, one can state a result analogous to Corollary 3.5.
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4. Formal continuum limit outside facet. In this section, we review the
derivation of PDEs for the surface height and slope profiles away from the facet on
the basis of the step velocity law (2.12). Our computations are formal, primarily
invoking notions of pointwise convergence (with the exception of (4.6) for µ); simi-
lar, yet more detailed, heuristic derivations are presented in [38, 40] as parts of the
(technically more involved) case with surface diffusion in 2D, where the step velocity
is the difference of adatom fluxes each of which is expressed in terms of differences
of step chemical potentials of neighboring terraces. We emphasize that the derived
continuum laws are valid only for r > rf(t). The a priori unknown facet position,
rf(t), should be determined from solving a free boundary problem (see section 5).

Consider N ≫ i ≫ n ≫ 1 with ia = O(1), in view of (2.3).We assume that the
discrete slopes, Mi, are kept fixed; cf. (2.1). On each terrace, ri−1 < r < ri, we have
hd(r, t) = const.; as r ↑ ri(t), the differentiation of hd(r, t) with respect to time yields

(4.1) ṙi → ∂th(r, t)/m(r, t)|r=ri(t) as a→ 0,

where m(r, t) = −∂rh(r, t) and r > rf(t). Equation (4.1) reveals the limit of the
right-hand side of (2.12).

On the other hand, the discrete mobility, νi = ν(ri − ri−1)/a, approaches

(4.2) νi → ν/m(r, t)
∣

∣

r=ri(t)
, r > rf(t).

Thus, if µi(t) → µ(r, t), the continuum-scale chemical potential, (4.1) and (4.2) yield

(4.3) ∂th(r, t) = −νµ(r, t) r > rf(t).

There are at least two routes to obtaining a formula for µ. One way is to directly
take the limit of (2.9) under the condition O(a) = ri − ri−1 ≪ ri for large i. For this
purpose, the right-hand side of (2.9) is expressed in terms of discrete slopes, Mi, with
the main substitution

ri±1 ∼ r ± a

m(r, t)
, r = ri.

The algebraic manipulations of this procedure are detailed in [38] (see also [30]). The
resulting formula reads [38]

(4.4) µ(r, t) =
Ωg1
r

+Ωg3
1

r

∂

∂r
(rm2), r > rf(t).

Alternatively, by (2.5) and (2.8) one can write µ(r, t) as the first variation of the
continuum limit of Est(t; a). In view of the coarea formula

∑

i a
∮

Li
· ds→

∫

|∇h| · dA
[40], this limit is the well-known surface free energy [24]

(4.5) Est −−−→
a→0

E(h) =

∫ ∫
(

g1|∇h|+
g3
3
|∇h|3

)

dA,

where dA = dx dy and integration is carried out on the crystal reference (“basal”)
plane. The free energy density γ(|∇h|) ≡ g1|∇h|+ (g3/3)|∇h|3 is manifestly singular
at the zero slope surface orientation, ∇h = 0, which defines the facet. Now, µ is
obtained through [38, 40]

(4.6) 〈µ, ∂th〉 = ΩĖ ⇒ µ(r, t) ≡ Ω
δE

δh
, r > rf (t),
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where 〈µ, ϕ〉 =
∫∫

µ(x, y)ϕ(x, y) dA denotes the usual L2-inner product, and δE/δh
is the variational derivative of E(h). Equation (4.6) is consistent with continuum
thermodynamics and is valid outside the facet. The use of (4.5) and integration by
parts lead to (4.4).

Equations (4.3) and (4.4) yield a PDE for the height,

(4.7) ∂th = −νΩg1divξ, r > rf(t),

where the radial vector ξ is

(4.8) ξ = ξ er, ξ(r, t) = 1 + gm(r, t)2,

and er is the unit radial vector. The PDE for the positive slope, m = −∂rh > 0,
outside the facet is

(4.9) ∂tm = −νΩg1
{

r−2 − g∂r
[

r−1∂r
(

rm2
)]}

.

It is worthwhile noting that (4.7) has the form of a mass conservation statement,
where ξ plays the role of a vector-valued flux associated with ∂th. This observation
will later enable us to interpret a boundary condition at the facet via notions of shock
wave theory (see section 6.1).

5. Computations for surface profile. In this section, we describe continuum
solutions for the height and slope profiles and make comparisons to discrete simula-
tions. For this purpose, we invoke elements of the subgradient theory [33] in order
to pose a free boundary problem for the facet [59]. We then solve the free boundary
problem for (4.9) for g = 0 (non-interacting steps) and 0 < g ≪ 1; in the latter case,
we apply boundary layer theory in the spirit of [38]. For g > 0, we solve numerically
PDE (4.9) for the slope profile by assuming self-similarity.

5.1. Formulation of boundary conditions. As mentioned above, within the
continuum framework, there are at least two approaches to facet evolution: the sub-
gradient formulation, which replaces the PDE outside the facet by a statement of
variational nature everywhere; and the free boundary approach. The two approaches
can of course be made compatible if the boundary conditions at the facet edge (free
boundary) are chosen to be appropriate natural boundary conditions resulting from
the subgradient theory. In this section, we start with the subgradient formulation in
order to indicate the corresponding boundary conditions. Furthermore, we entertain
the scenario of replacing one of these conditions with a statement about the facet
speed, which can in principle incorporate discrete effects.

5.1.1. Elements of subgradient and free boundary approaches. A guid-
ing principle in the analysis of the continuum law (4.6) is that the height profile evolves
so that the energy, E(h), decreases most rapidly [47]. Note that (4.6) is ill-defined on
the facet due to the singularity of E(h) at ∇h = 0. We invoke the extended gradient
theory to circumvent this difficulty [33].

The main idea stemming from the extended gradient formulation (reviewed in Ap-
pendix A.1) is to state the evolution law for h in the form (4.7) everywhere, including
the facet. Thus, (4.7) is replaced by the statement

(5.1) ∂th(r, t) = −νΩg1divξ(r, t) for all r ≥ 0,

where divξ is expressed in terms of δE/δh only outside the facet. The flux ξ is uniquely
determined from (5.1) under the assumption of sufficient regularity; in addition, the
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subgradient formulation with the energy density g−1
1 γ(|∇h|) = |∇h|+ g|∇h|3 asserts

that |ξ| ≤ 1 on the facet (see Appendix A.1) [33].
Equation (5.1) states that there is mass conservation globally for the height, h.

Hence, by the continuity of h (a necessary condition for any physical situation), it is
reasonable to impose continuity of ξ [33,59]. In other words, if ξ were discontinuous,
the finite speed of the free boundary (facet edge) would imply that h exhibits a jump
across the facet edge. These statements are placed on firmer ground in Appendix A.1.

Next, we write down explicit boundary conditions for (4.7). Note that four (three)
conditions are needed, since the PDE for h is of second (first) order for g > 0 (g = 0),
and rf(t) and hf(t) are (a priori unknown) parts of the solution. If r < rf(t) then
h = hf(t). By continuity of height, we write

(5.2) hf(t) = h(r, t) as r ↓ rf(t).

Equation (5.1) on the facet reads ḣf = −νΩg1r−1∂r(rξ), by which νΩg1ξ = −(r/2)ḣf+
C(t)/r if r < rf(t); C(t) ≡ 0 so that ξ be bounded. Thus, continuity of ξ(r, t) entails

(5.3) −rf(t)
2

ḣf = νΩg1[1 + gm(r, t)2], as r ↓ rf(t).

On the other hand, for large r, the solution must be compatible with the prescribed
initial data:

(5.4) h(r, t) ∼ h(r, 0); or m(r, t) ∼ −∂rh(r, 0), as r → ∞,

which is a “far field” condition.
For g > 0, one more condition must be imposed. Recall that |ξ| ≤ 1 on the facet

(as explained in Appendix A.1), ξ = 1+ gm2 > 1 outside the facet (r > rf(t)), and ξ
is continuous. Thus, the slope is continuous at r = rf(t):

(5.5) m(rf , t) = 0.

Equations (5.2)–(5.5) form the desired set of conditions for PDE (4.7) in the facet
free boundary problem. In view of (5.5), the differentiation of (5.2) with respect to t
can be used to replace (5.2) and (5.3) by a single condition via elimination of ḣf .

5.1.2. Alternate boundary condition: step collapses. Next, we address the
following scenario. Suppose that we need to inject information about step collapses
into the continuum theory. We now show that this information can be recast to an
approximation for the speed, −ḣf , of the facet. In the spirit of [39], we entertain the
idea of using this approximation in the place of the continuity of ξ. In section 5.2.2,
we numerically show that this modified boundary condition turns out to be consistent
with the flux (ξ) continuity for our model (section 5.1.1).

The starting point is to require that the facet height decrease by multiples of
a [30,39], while keeping intact the surface height and slope continuity (for g > 0), and
the far field condition. We thus impose the relation [30, 39]

(5.6) hf(tn−1)− hf(tn) = a.

To extract a statement for ḣf(t), we view tn as the (continuous) time, t, for large
enough n. By Taylor-expanding (5.6) at t = tn, we obtain [39]

(5.7) −ḣf(t) ≈
a

δt(t)
,
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which relates the speed −ḣf with the differences, δt(t) = tn − tn−1, of step collapse
times. Here, we heuristically set n ≈ n(t) via tn ≈ t if n≫ 1; for instance, if tn ∼ cnß

then n ≈ n(t) = c−1/ßt1/ß and thus δt(t) ∼ ßcnß−1 ≈ ßc1/ßt(ß−1)/ß.5 Note that we
must assume tn ≫ 1 so that tn− tn−1 ≪ tn, which is needed for the Taylor expansion
to make sense.

Next, we relate δt(t) with the derivative of m2 at r = rf . Suppose g > 0. By
differentiating (5.2) we have ḣf(t) = −m(rf , t)ṙf + ∂th = ∂th as r ↓ rf(t) via (5.5) for
finite ṙf . Thus, in view of PDE (4.7), relation (5.7) becomes

(5.8) νΩg1
[

1 + g∂r(rm
2)
∣

∣

r↓rf (t)

]

∼ rf(t)
a

δt(t)
,

for large enough t (and n).
The case with g = 0 is special, because m is not continuous at r = rf ; cf. (5.22)

of section 5.2. The relation ḣf = −mṙf + ∂th as r ↓ rf now implies

(5.9) νΩg1 +mf ṙfrf(t) ∼ rf(t)
a

δt(t)
, mf = lim

r↓rf
m,

for large t; notice the appearance of the term mf ṙfrf on the left-hand side.
Equations (5.8) and (5.9) would in principle require input from discrete (step)

simulations for δt(t) if these conditions aimed to replace the continuity of ξ, condition
(5.3). Then, the boundary conditions would finally be (5.2), (5.4), (5.5), and (5.8) for
g > 0; or, (5.2) and (5.9) for g = 0.

Remark 5.1. Alternatively, suppose that we retain the continuity of ξ and seek
an approximate formula for δt(t) accordingly. By (5.3), (5.5) and (5.6), we obtain

(5.10) δt(t) ≈ a

2νΩg1
rf(t),

which is applied for large enough t and all finite g ≥ 0 (with g1 > 0). In section 5.2.2,
we show that for our ad hoc model M1, (5.10) yields a prediction for tn in agreement
with the discrete simulations for large n.

Initial data. In the remainder of this article, to simplify analytical and numerical
computations, we consider an initial conical profile of unit slope, viz.,

(5.11) h(r, 0) ≡ h0(r) =

{

hf0, r < rf0,
hf0 − (r − rf0), r > rf0,

where rf0 = rf(0) and hf0 = hf(0). This profile corresponds to the initial step train

(5.12) ri(0) = rf0 + ia,

where the top layer is located at height hf0.

5.2. Case with zero step interaction (g = 0). We now describe the continuum-
scale height and slope profiles stemming from the thermodynamics approach (sec-
tion 5.1.1) in the special case without step-step interaction, g = 0. In this case,
the continuity of slope, equation (5.5), is not necessarily applicable. The resulting
formula for m(r, t) exhibits a self-similar behavior, which we verify by discrete simu-
lations. This finding motivates the computations of sections 5.3 and 5.4. For algebraic
convenience, in the remainder of section 5 we employ units with νΩg1 = 1 = a.

5We loosely use the symbol ≈ to state that an integer, here n, is approximated by a continuous
variable in some appropriate (yet not precisely defined here) sense when n is large.
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5.2.1. Exact continuum solution. For g = 0, PDE (4.7) reduces to

(5.13) ∂th = −1

r
, r > rf(t),

which has the general solution

(5.14) h(r, t) = h0(r) −
t

r
, r > rf(t).

It remains to compute the facet radius, rf(t).
The differentiation of (5.2) with respect to t under initial data (5.11) entails

(5.15) ḣf(t) = −ṙf(t)−
1

rf(t)
+

t

rf(t)2
ṙf(t).

On the other hand, the continuity of ξ, (5.3), yields

(5.16) −rf(t)
2

ḣf = 1.

Equations (5.15) and (5.16) lead to

(5.17) ṙf =
rf

r2f − t
, rf(0) = rf0,

which can be solved exactly via inversion, t = T (rf): t = T (rf) = −(r3f0/3)r
−1
f + r2f /3.

Thus, rf(t) satisfies r3f − 3trf − r3f0 = 0 and turns out to be equal to [4] rf(t) =

[r3f0/2+ϑ(t)]1/3+ [r3f0/2−ϑ(t)]1/3 where ϑ(t) =
√

r6f0/4− t3 (the positive square root
is taken for t < 2−2/3r2f0). For t > 2−2/3r2f0, the solution for rf reads

(5.18) rf(t) = 2
√
t cos

(

1

3
tan−1

√

4t3 − r6f0
r3f0

)

.

By (5.18), we compute

(5.19) rf(t) ∼
√
3t as t→ ∞.

Once rf(t) is evaluated, hf(t) follows via continuity of height, hf(t) = hf0+rf0−rf−t/rf ;
in particular,

(5.20) hf(t) ∼ hf0 + rf0 −
4√
3

√
t as t→ ∞.

By (5.14), the surface slope profile is

(5.21) m(r, t) = 1− t

r2
, r > rf(t); m ≡ 0, r < rf(t).

Clearly, this slope has the form m(r, t) = m(η) with self-similarity variable η = r/
√
t.

By (5.19), we note that

(5.22) m(r, t) → mf := m(
√
3) =

2

3
as r ↓ rf(t), t→ ∞;

interestingly, the slope is discontinuous at the facet edge.
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Fig. 5.1. Exact continuum slope m(r, t) (solid line) and discrete slopes Mi (symbols) as func-
tions of r/

√
t (where r = ri) for g = 0 and initial cone of unit slope with N = 400 steps. The slope

m(r, t) is computed from (5.21) and (5.18); and Mi(t) are obtained at t = tn by numerically solving
(2.12). The vertical line indicates the (continuum-scale) facet position, ηf = rf (t)/

√
t ≈

√
3. Inset

shows corresponding simulation data for Mi versus ri at different collapse times t = tn.

5.2.2. Numerical solution. To compare (5.18) and (5.21) to the discrete step
flow for non-interacting steps, we numerically solve (2.12) for g = 0 under initial
data (5.12) and compute the corresponding discrete slopes, Mi = 1/(ri+1 − ri); see
Appendix B where we exactly determine the positions of the two top steps for vali-
dation purposes. In Figure 5.1, we plot simulation data for Mi versus ri at different
times t = tn, and observe that the data collapse to a single graph if ri is scaled by√
t. Figure 5.1 shows that the numerically computed Mi(t) follow closely the exact

m(r, t).

It is of interest to estimate the step collapse times, tn, and their differences tn −
tn−1 for n≫ 1 via (5.19) and (5.21) with recourse to Remark 5.1, particularly (5.10),
for t ≫ 1 (with νΩg1 = 1). Thus, we obtain δt(t) ∼

√
3t/2, by which tn ∼ cnß

with ß = 2 and c = 3/16. In Figure 5.2, the collapse times tn are plotted versus
n; the above scaling law including the prefactor c are thus verified by our numerics.
This observation about tn provides some additional evidence that, for g = 0, the
subgradient-based boundary conditions are consistent with the discrete step flow; and,
in particular, the continuum version of step collapses, condition (5.9), is compatible
(and hence can replace) the continuity of ξ.

5.3. Self-similar slopes for g > 0. In this section, we study PDE (4.9) via
numerics for arbitrary g > 0 under the assumption that the slope is self-similar
at long time. We are motivated by (i) the exact solution of section 5.2, where we
found m(r, t) = m(η) with η = r/

√
t and rf(t) ∼

√
3t for t ≫ 1, and (ii) numerical

computations for Mi(t). Our task is to reduce the evolution PDE for m(r, t) to
an ODE; solve this ODE numerically for g > 0 with boundary conditions from the
subgradient formulation (section 5.1.1); and compare the continuum predictions to
simulations for discrete slopes. The possibility and nature of self-similarity in our
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Fig. 5.2. Log-log plot of step collapse times tn versus n for g = 0 (asterisks) and g = 1
(circles), numerically computed from (2.12) for initial cone of unit slope. The dot-dashed (straight)
line indicates the numerically computed large-n asymptotic behavior of tn for g = 0. The scaling
law tn ∼ cnß is verified for n ≫ 1 with ß ≈ 2 for g = 0, 1. For g = 0, we find c = 0.1879 ≈ 3/16, in
close agreement with the prediction of section 5.2.2.

radial setting is not clarified analytically here.

First, we provide some numerical evidence that the discrete slopes have an ap-
parently self-similar structure for large enough time: In Figure 5.3 (inset) we plot Mi

versus ri for g = 1 at different times, t = tn; and observe the data collapse once ri is
scaled with

√
t, which indicates self-similarity.

Next, we simplify PDE (4.9) by setting m(r, t) = m(η), η = r/
√
t, for arbitrary

g > 0. By use of the similarity variable η, the facet position is ηf = rf(t)/
√
t ∼

√
3.

Thus, PDE (4.9) is converted to an ODE for m(η):

(5.23) − 1
2ηm

′(η) = −η−2 + g[η−1(ηm2)′]′ η > ηf ;

the prime denotes differentiation with respect to the argument, here η. By elimination
of ḣf in (5.2)–(5.5), we wind up with the boundary conditions

g
(

ηm2
)′

= 1 , η ↓ ηf ,(5.24)

m(η) → 1, η → ∞,(5.25)

m(η) = 0, η ↓ ηf .(5.26)

Note that there are three boundary conditions for a second-order ODE, because (the
unknown) ηf is a part of the solution. We have not been able to analytically solve
(5.23)–(5.26), and hence proceed to find a numerical solution. We assume (but not
prove) that m(η) ≥ 0 for η ≥ ηf .

5.3.1. Numerical solution. To solve the (free) boundary value problem of
(5.23)–(5.26), we first apply a transformation of (η,m) that (i) maps (ηf ,∞) to a finite
interval, and (ii) renders linear the highest-order derivative in ODE (5.23) [17, 19].

So, we apply a simple translation, s = η−ηf . This maps (ηf , E) to (0, Ĕ = E−ηf)
where E ≫ ηf is a large number that replaces infinity. In addition, we convert
ODE (5.23) to a system of first-order ODEs for the variables M1(s) = m

2(η) and
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M2(s) = (m2)′(η). The resulting system reads

M
′
1(s) = M2(s),

M
′
2(s) =

1

g

[

−1

4
(s+ ηf)M

−1/2
1 M2 + (s+ ηf)

−2

]

+ (s+ ηf)
−2

M1 − (s+ ηf)
−1

M2,

along with boundary conditions at s = 0 (facet edge) and s = Ĕ obtained from (5.24)–
(5.26); in particular, M1(Ĕ) = 1. To find a numerical solution, we seek an expansion
of M1 in powers of s according to6

(5.27) m(η) = M1(s)
1/2 ∼

k
∑

l=1

cls
l/2 =: Sk(s),

which satisfies condition (5.26). By (5.24), we compute c21 = (gηf)
−1. The remaining

coefficients, cl (for l = 2, . . . , k), are found via dominant balance in (5.23); notice
that cl = cl(ηf) for l ≥ 1. Then, we evaluate M1(s) at a fixed point s0 near 0 in terms
of ηf , and apply an iterative algorithm (e.g., the bvp4c Matlab routine [29]) based on
a suitable initial guess for M1(s) that aims to satisfy M1(Ĕ) = 1. In Appendix C, we
provide the coefficients cl for l ≤ 13; this helps evaluate the Sk of (5.27) for k = 13.

A satisfactory initial guess for M1(s), which apparently causes our numerical
scheme to converge to a reasonable slope profile, is constructed through boundary
layer theory [38]. Although this theory is in principle valid for 0 < g ≪ 1, we apply it
for g that is not small, e.g., g = 1, as a means of obtaining an initial guess for the slope
within our numerical scheme; see section 5.4 for the formal boundary layer analysis.

In Figure 5.3, we plot the discrete slopes Mi and continuum slope m versus r/
√
t

for g = 0.1 and 1, demonstrating the agreement of step simulations and macroscopic
(subgradient-based) predictions.

Remark 5.2. The facet size is expected to be monotonically decreasing with
g = g3/g1 at fixed time t [39]. Physically, this effect can be attributed to the tendency
of steps to cover a larger part of the surface if their repulsion (g3) increases or their self-
energy (line tension, g1) decreases. As a result, in principle any microscale events on
top of the facet, e.g., collapses of individual steps, are expected to be more pronounced
for smaller g (see, e.g. [39] for a model of diffusion limited kinetics).

Remark 5.3. The self-similar behavior of the slope profile implies a scaling law
for the step collapse times, tn. By (5.8), we find tn − tn−1 = δt(t) ∼ c(g)

√
t for some

g-dependent constant c, and thus tn ∼ c2n2/4 for n ≫ 1 (cf. Figure 5.2 for g = 1).
This c(g) should decrease with g since stronger step repulsions should cause steps to
shrink faster on top of the facet [39]. By Figure 5.2, we find numerically (via discrete
simulations) a value for c consistent with condition (5.10).

5.4. Boundary layer theory, 0 < g ≪ 1. In this section, we apply boundary
layer theory in order to construct a solution to the free boundary problem described
by (4.9) and (5.2)–(5.5) when 0 < g ≪ 1 [28, 38]. The main observation is that by
setting g = 0 in the evolution PDE (4.9) it is impossible to obey the continuity of
slope, (5.5). So, we split the domain outside the facet into two regions: an“outer”

6We alert the reader that expansion (5.27) is postulated. This expansion is consistent with the
structure of the evolution PDE; and it is partly motivated by an expansion of the same form derived
systematically via iterations of integral equations in [41] for evaporation dynamics of a 1D step train
connecting two semi-infinite facets. We do not pursue a rigorous justification for (5.27) at this stage.
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Fig. 5.3. Continuum slope m(r, t) (solid line) and discrete slopes Mi (symbols) as functions
of r/

√
t for initial cone of unit slope; g = 0.1 (asterisks) and g = 1 (triangles). The slope m(r, t)

is computed from numerically solving (5.23)–(5.26); and Mi(t) are determined from (2.12). Inset
shows discrete slopes Mi versus position r = ri at distinct times t = tn for g = 1; the data collapse
to the graph of main figure.

region, in which the step self-energy (line tension) dominates over the step interaction
energy; and the “inner” region (boundary layer), in which the step interaction energy
is significant [38]. The width of the boundary layer scales with a positive power of g
(cf. (5.28)). Inside the boundary layer, the slope m should vary smoothly from its
zero value (m = 0) at the facet edge to the behavior predicted for g = 0 in the outer
region, ; cf. (5.21). The outer solution should be compatible with the continuity of
height and flux, and the far field condition. Hence, we only need to compute the inner
solution by imposing zero slope at the facet edge.

For later algebraic convenience, we set [38]

(5.28) m(r, t) = a0(t)f0(ζ, t), ζ =
r − rf(t)

gαw(t)
,

where gαw(t) measures the (a priori unknown) width of the boundary layer and α is
a suitable exponent (to be determined); the amplitude a0(t) will be chosen via the
matching of inner and outer solutions; and (for ease of notation) rf(t) ≡ rf(t; g = 0)
denotes the facet radius for g = 0 (see, e.g. (5.18)). The substitution of (5.28)
into (4.9) yields

ȧ0f0 + a0∂tf0 − g−αa0
w
(ṙf + gαẇζ) ∂ζf0

= − 1

(rf + gαwζ)2
+ g1−2α a

2
0

w2

×∂ζ
{

(rf + gαwζ)−1∂ζ [(rf + gαwζ)f2
0 ]
}

.

By treating ζ as well as a0, f0, w, rf and their derivatives as O(1), we observe that
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the O(g−α) term on the left-hand side of the last equation must be balanced by the
O(g1−2α) term on the right-hand side; thus, α = 1.

The resulting equation for f0 reads

(5.29) ∂ζζ(f
2
0 ) = −ℓ∂ζf0, ζ > 0; ℓ = wṙf/a0.

By matching a0(t)f0(ζ, t) as ζ → ∞ and r ↓ rf(t) with the outer solution for m given
by (5.21), we take

(5.30) a0(t) = 1− t

rf(t)2

while we set

(5.31) f0 → 1 as ζ → ∞.

By integrating (5.29), in view of (5.31), we obtain

(5.32) (f2
0 )ζ = ℓ(1− f0), ζ > 0; f0 → 0 ζ ↓ 0,

where we imposed the condition of vanishing slope at the facet. We henceforth con-
sider ∂tf0 ≡ 0 and set ℓ = const. By solving (5.32) we obtain 2f0 + ln(1− f0) = −ℓζ,
which must be compatible with (5.31). Thus, ℓ > 0; without loss of generality, set
ℓ = 1. Accordingly, the solution f0 satisfies the transcendental equation

(5.33) f0(ζ) = 1− e−ζ/2e−f0(ζ), ζ > 0 .

It is of some interest to point out that f0 is given by

(5.34) f0(ζ) = 1 +W (ς(ζ)), ς(ζ) = −e−1−ζ/2,

where W (x) is the Lambert function [13]. By the definition of ℓ, equation (5.29), we
find the width

(5.35) w(t) =
a0(t)

ṙf(t)
= ṙf(t)

−1

[

1− t

rf(t)2

]

.

This finding concludes our computation of the inner solution for m. Formulas (5.30)
and (5.35) can be simplified for t≫ 1 which entails rf(t) ∼

√
3t.

Remark 5.4. A composite solution, which accounts for both the inner and outer
solution, can be formally constructed by adding the slope of (5.21) to a0(t)f0(ζ) and
subtracting their common limit [28]:

(5.36) m(r, t) ∼ 1− t

rf(t)2
+ a0(t)[f0(ζ)− 1], r > rf(t),

where rf(t), a0(t) and f0(ζ) are given by (5.18), (5.30) and (5.34).

6. Discussion. In this section, we make an attempt to offer more insight into
our model M1. First, we discuss the compatibility of the subgradient formulation
with notions of shock wave theory. This point of view is heuristic. In this context,
an unconventional definition of the facet is introduced by invoking elements of shock
waves [64]. This interpretation of the facet aims to provide some physical intuition
about the character of the continuum theory for our model. Second, we discuss two
more physically transparent models (M2 and M3) derived as a special case of surface
diffusion in the BCF framework; M1 follows from simplification of these models.
For g = 0, we show by numerics that the discrete dynamics of one of these models
(M2) apparently respect self-similarity but are not consistent with the corresponding
subgradient theory.
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6.1. Shock wave interpretation and facet definition. Next, we provide a
connection of facet motion with shock waves, by interpreting the continuity of flux
ξ, condition (5.3), as a statement for the speed of the facet boundary viewed as a
shock. This viewpoint aims to render more transparent the relation of the continuum
(subgradient) theory to step flow, and was recently invoked in a study of surface
diffusion [19]. The shock wave picture is deemed appealing, especially because it
bears some analogy with a kinematic description of step motion by Cabrera, Frank
and Vermilyea [9, 20].

The shock wave notion emerges naturally in Lagrangian coordinates of motion [18,
19], i.e., the step radius and the surface height, which are treated as the dependent
and independent continuum variables respectively. Thus, set ri(t) ≡ R(χi, t) where
χi = ia becomes the continuous variable χ = hf(0) − h = O(1) as a → 0 (in the
macroscopic limit). Hence, (2.12) reduces to a PDE for R. This PDE is recast to

(6.1) ∂t(R
2) + 2νΩg1∂χ

[

R

(

1 + g(∂χR)
−2

)]

= 0,

outside the facet, χ > χf(t) = hf(0) − hf(t). Note the relation (∂χR)
−1 = m and

the fact that the continuity of h is inherent in the use of χ as a continuous variable.
Equation (6.1) reads as the volume conservation law ∂t̺ + ∂χJ = 0 with “density”
̺ = πR2 (area of a layer) and “flux” J = (2πR) νΩg1[1 + g(∂χR)

−2]. For g = 0, (6.1)
becomes a simple kinematic, traffic-flow-type, equation. This form of PDE is known
to develop shock wave solutions [64]. Here, we heuristically extend the shock wave
notion to the present case with a facet and g > 0. However, it is compelling to point
out some subtleties: By contrast to typical traffic flow situations, PDE (6.1) is (i) of
second order for g > 0 and (ii) not valid on one side of the facet edge (viewed as a
shock in the (χ, t) plane). We are aware that, despite the possible intuition gained by
this formalism in the context of the continuum theory, the shock wave picture based
on (6.1) so far does not convey any information about how steps actually behave as
a → 0. In other words, the issue of convergence from the discrete to a continuum
solution is not clarified here.

We give the following alternate definition of the facet boundary at r = rf(t).
Then, we point out that the shock wave theory using this definition of the facet is
compatible with the subgradient theory.

Definition 6.1. Define the facet so that at the facet edge (χ = χf) each of the
variables ̺ and J has a jump discontinuity. Specifically, in the direction of decreasing
χ, these variables decrease from the values ̺ = πr2f and J = (2πrf)νΩg1(1 + gm2) on
the right (outside the facet) to zero on the left.

Intuitively, we view the zero values for ̺ and J as dictated by the totally collapsing
step (with R = 0 for χ < χf) on top of the facet, where PDE (6.1) ceases to hold. We
now show that Definition 6.1 can be made consistent with the subgradient formulation
(section 5.1.1). By adopting the conventional theory of shocks, we choose to apply to
the present setting the Rankine-Hugoniot condition [64], by which the shock speed is
determined by conservation of volume across the jump. Thus, we write

(6.2) χ̇f(t) = −ḣf(t) =
[J ]

[̺]
,

where [Q] = Qright − Qleft is the discontinuity of Q = ̺, J ; see Appendix A.2.
Equation (6.2) leads to (5.3).
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6.2. Evaporation model as limit of BCF-type model. Next, we provide a
modified evaporation-condensation model, M3, which is derived as a special limit of
surface diffusion in the context of BCF theory [8, 50] in the presence of desorption
and an inverse ES effect. M3 is subsequently simplified to another description, model
M2, which has a structure resembling M1. Outside the facet, these models reduce to
the same PDE for the slope profile. We provide numerical evidence that, for g = 0,
discrete slopes produced by M2 are not in agreement with the subgradient-based
continuum theory.

6.2.1. Formulation and simplifications. Let Ci be the concentration of adatoms
on the ith terrace, ri−1 < r < ri, and τ be a typical desorption time. In juxtaposition
to our ad hoc model M1, here we adopt the viewpoint that the step velocity is driven
by changes in the adatom flux across terraces. So, we start with a diffusion equation
for the concentration, Ci, of adatoms including desorption under the quasi-steady
approximation:

(6.3)
∂2Ci

∂r2
+

1

r

∂Ci

∂r
− κ2Ci = 0, ri−1 < r < ri,

where κ2 = 1
Dsτ

. Equation (6.3) is Bessel’s differential equation [63]; thus, it has the
general solution

(6.4) Ci(r) = AiI0(κr) +BiK0(κr),

where I0(z) and K0(z) are modified Bessel fuctions of zeroth order; and Ai and Bi

are integration constants to be determined from the boundary conditions at the step
edges. These conditions are

−Ji(r, t) = Ds
∂Ci

∂r
= ku(Ci − Ceq

i ), r = ri,(6.5a)

Ji(r, t) = −Ds
∂Ci

∂r
= kd(Ci − Ceq

i+1), r = ri+1,(6.5b)

where Ji(r, t) = −Ds
∂Ci(r,t)

∂r is the adatom flux on the ith terrace and Ceq
i is the

equilibrium concentration at the ith step edge. By (6.4) and (6.5) we obtain

Ai =
1

Di

{

− ku
Dsk

Ceq
i

[

K ′
0(κri+1) +

kd
Dsκ

K0(κri+1)

]

− kd
Dsk

Ceq
i+1

[

K ′
0(κri)−

ku
Dsκ

K0(κri)

]}

,

Bi =
1

Di

{

kd
Dsκ

Ceq
i+1

[

I ′0(κri)−
ku
Dsκ

I0(κri)

]

+
ku
Dsκ

Ceq
i

[

I ′0(κri+1) +
kd
Dsκ

I0(κri+1)

]}

,

where the prime denotes differentiation with respect to the argument and

Di =

[

I ′0(κri)−
ku
Dsκ

I0(κri)

] [

K ′
0(κri+1) +

kd
Dsκ

K0(κri+1)

]

−
[

I ′0(κri+1) +
kd
Dsκ

I0(κri+1)

] [

K ′
0(κri)−

ku
Dsκ

K0(κri)

]

.(6.6)
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The step velocity law for surface diffusion reads [8]

(6.7) ṙi =
Ω

a
(Ji−1 − Ji), r = ri

By (6.4), the step velocity becomes

(6.8) ṙi = −Ω

a
κDs [Ai−1I

′
0(κri) +Bi−1K

′
0(κri)−AiI

′
0(κri)−BiK

′
0(κri)] .

We now simplify the expressions for Ai and Bi under the conditions

(6.9) kuτ ≪ ri, κri ≪ 1, ku ≪ kd, |ri − ri−1| ≪ kdτ.

Note that the second inequality implies that the diffusion length
√
Dsτ is large com-

pared to the step radius. The third inequality expresses an inverse ES effect [15, 54].
By combining (6.8) and (6.9) with the Gibbs-Thomson relation [32], Ceq

i =
Ceqexp(µi/T ) ∼ Ceq(1 + µi/T ) for |µi| ≪ T , we obtain the simplified ODEs

(6.10) ṙi = − Ω

T a
1

τ

ri + ri−1

2ri
(ri − ri−1)(T + µi),

where νi = ri+ri−1

2ri
(ri − ri−1) is the step mobility. Equation (6.10) describes M3;

cf. (1.2). Recall that model M2, equation (1.3), results from (6.10) by removal of
the constant T . Subsequently, M1 results from replacing (ri + ri−1)/2ri by 1 in the
description of M2.

6.2.2. Numerical results on M2. We now provide numerical evidence that,
for g = 0, the discrete slopes produced by ODEs (1.3) of M2 are not consistent
with the continuum slope of the subgradient formulation. Note that the discrete
mobility of M2 is νG (ri − ri−1) and differs from the mobility of M1 by the prefactor
G = ri+ri−1

2ri
. Evidently, models M2 and M1 reduce to the same continuum theory in

the macroscopic limit, since G → 1 in this limit.
From Figure 6.1, we observe that the positions of facets predicted by the two

theories, i.e., ODEs for M2 and subgradient formulation, are different. This result
contrasts our corresponding findings for M1; in particular, the facet size predicted by
M2 is smaller than the one predicted by M1.

The discrepancy between models M1 and M2 is mainly attributed to the disparate
behaviors of their mobilities near extremal steps. For model M1, the prefactor G is 1
for all i. In M2, on the other hand, this factor becomes 1

2 at the top step and then
approaches 1 asymptotically as i increases.

The study of M3 lies beyond the scope of our work. An apparent feature of
discrete slopes produced by this model (according to our numerics) is their lack of
a self-similar structure. Hence, we do not deem as compelling a comparison of
predictions of M3 to our results here.

7. Conclusion. We studied an example of a discrete scheme for a train of de-
scending steps with a facet in the radial setting. The scheme expresses a simple
mechanism of evaporation-condensation kinetics: steps move in response to the dif-
ference of the step chemical potential from that of the vapor. The relevant mobility
is taken proportional to the width of the upper terrace. The resulting ODEs describe
steps collapsing on top of the facet. On the other hand, the continuum limit expresses
the height change with respect to time as the variational derivative of a familiar sin-
gular energy and can be analyzed via the (continuum) subgradient formulation. Our
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Fig. 6.1. Continuum slope m(r, t) (solid line) and discrete slopes Mi (symbols) as functions of
r/

√
t for long times, g = 0 and initial cone of unit slope. The slope m(r, t) is computed from (5.19)

and (5.21); and Mi(t) are determined from numerically solving ODEs (1.3).

main finding via self-similarity of the slope, numerics and an initial conical shape
is that the discrete slopes are in agreement with the slope profile predicted in the
context of the subgradient theory.

The continuum limit of our model belongs to a class of widely used macroscopic
theories for surface relaxation by evaporation [59]. Nonetheless, our primary discrete
model (M1) was constructed from an ad hoc scenario of microscopic evaporation which
essentially leaves out fine details and subtleties of the radial geometry; for instance,
the mobility of M1 does not contain any geometric factor that distinguishes extremal
from other steps. In fact, our model can stem from a simplification of a BCF-type
model with desorption and an inverse ES effect. Our discussion suggests that the
more realistic variants of M1 (herein called M2 and M3) that describe geometrically
altered velocities of top steps may produce discrete slopes incompatible with the
thermodynamics-based prediction. Our work suggests a mechanism, through the effect
of the geometric factor G (cf. (1.2)), that is plausibly responsible for the discrepancy
between discrete and thermodynamics-based continuum solutions in the radial setting.

The proof of convergence of the discrete dynamics to the subgradient law was
not touched upon. Loosely speaking, a difficulty in studying the connection of (dis-
crete) step dynamics to continuum theories near facets lies in the lack of a method
or prescription that defines the facet within the discrete system. In fact, the facet is
typically viewed as a fully continuum concept. A goal is to understand if and how
the notion of the facet can be defined in a discrete setting, asymptotically for a large
number of steps. Motivated by this broader question, we proposed a shock wave in-
terpretation of the facet which is compatible with the subgradient formulation (and,
thus, with model M1 for a large number of steps). By use of Lagrangian coordinates,
this interpretation qualitatively suggests that for our particular ad hoc model M1 the
facet edge signifies a free boundary between two disparate behaviors: on the right
of this boundary, step motion can be replaced by a PDE; on the left, the discrete
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scheme reduces trivially to a collapsed step at the origin. It is a remarkable feature of
model M1 that this simple continuum picture of Lagrangian coordinates is consistent
(according to our numerics) with the step ODE solution.

In addition to our comparison of discrete and continuum dynamics, we proved
the existence of a unique solution for the discrete system. (The existence of a unique
solution for the continuum limit has been proven within the subgradient theory [22]).
Also, we proved that steps do not collide when the initial step train is strictly mono-
tone.

A few more remarks on open questions are in order. We stress that a proof
of convergence to the continuum solution was not pursued here. Some technical
complications stem from the nonlinear structure of step motion laws and influence of
step collapses on top of the facet. The task of proving convergence is left for near-
future work. The existence and nature of self-similar discrete and continuum solutions
in our radial setting need to be addressed rigorously. Although our numerics indicate
a self-similar structure of the slope, a precise description of the origin of this structure
is still missing. The modified, closer to BCF-type theories, models M2 and M3 that we
discussed briefly deserve more attention. Our study, so far limited to radial geometries
with conical initial data, should be extended to the full 2D geometry. An ensuing
difficulty is the possibility of meandering instabilities; to the best of our knowledge,
there is no widely accepted measure of meandering for closed steps (say, perturbations
of circles). For example, it is debatable whether our choice of implementing an inverse
ES barrier results in an instability of a perturbed radial geometry; this issue is the
subject of work in progress.

Appendix A. Elements of rigorous continuum theory.
In this appendix, we provide ingredients of known mathematical theories which

have some relevance to the continuum description of facets. We focus on (i) the
subgradient formalism, and (ii) the derivation of a formula, the conventional Rankine-
Hugoniot condition for the shock speed, which is invoked in section 6.1. For ease of
notation, vectors are not boldface in this appendix.

A.1. Concept of subgradient. We now briefly describe elements of the sub-
gradient theory which underlies the free boundary approach of section 5.1.1, assuming
some familiarity of the reader with functional analysis. The subgradient formalism
provides a means of analyzing evolution laws that have a steepest descent structure
with respect to a singular energy functional (i.e., the variable of interest evolves so
that a non-smooth energy decreases most rapidly in some suitable metric [33, 47]).
The singularities of the energy may correspond to points in space where the solution
develops facets (plateaus) with moving boundaries. An elementary exposition to the
subgradient system for a surface diffusion system can be found in [47].

Formally speaking, the notion of the subgradient extends the concept of conven-
tional gradient (or derivative) to convex functions or functionals that are not necessar-
ily differentiable everywhere. Let H be a Hilbert space and F be a convex functional
on H. The subgradient, ∂F (x), of F at the point x of H is the set of all vectors v in
H that satisfy the inequality

(A.1) F (x+ h)− F (x) ≥ 〈v, h〉 for all h in H,
where 〈v, h〉 denotes the inner product of H.

Consider first the classic example of the convex function f(x) = |x| where −1 ≤
x ≤ 1. In this case, H is the one-dimensional space [−1, 1] equipped (trivially) with
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the product of reals. Since f(x) is differentiable at x 6= 0, we find ∂f(x) = {sgn(x)},
a singleton, where sgn(x) = x/|x| is the sign function. The notion of ∂f(x) becomes
particularly useful for x = 0, where f(x) is not differentiable. To compute ∂f(0), one
notices that for any real h, f(h) − f(0) = |h| ≥ |̟h| only if |̟| ≤ 1. It is easily
deduced that ∂f(0) = [−1, 1], the set of all possible slopes of linear graphs bounded
above by the graph of y = |x| in the xy plane. This example can be extended to d
space dimensions. Consider f(x) = |x|, where x is any point in the d-dimensional
Euclidean space, Rd. Then, ∂f(x) = {x/|x|} if x 6= 0, and ∂f(0) = Bd(0, 1).

The above ideas can be generalized to functionals, i.e., mappings of vectors in
H to real numbers, or more generally to its underlying algebraic field. A motivation
for this generalization comes from the need to analyze evolution PDEs that have a
steepest descent structure. An abstract formulation suggests that such evolutions can
be viewed as ‘trajectories’ of elements of H, in a way analogous to dynamical systems
(ODEs). The associated evolution PDE for u is replaced globally by a statement of
the form

(A.2)
du(t)

dt
∈ −∂F (u(t)) for all t > 0,

with the initial condition u(0) = u0 ∈ H. A known theorem of convex analysis asserts
that there exists a unique (sufficiently smooth) u(t) in H for all t > 0 provided the
functional F satisfies certain conditions such as appropriate convexity [22].

In particular, evolution PDE (4.7) for evaporation-condensation can be recast to
form (A.2), where u = h and F (u) ≡ E(h) =

∫∫

γ(∇h) dx, the singular surface free
energy (4.5); set g1 = 1 and g3 = g. The subgradient ∂E(h) extends the variational
derivative of E(h) to the facet (∇h = 0) in a fashion analogous to the extension of
the derivative of f(x) = |x| to x = 0 through the notion of ∂f(0). A characterization
theorem for subgradient systems states that, for such a functional F = E, a function
f belongs to ∂F (h) if and only if there is a pair of continuous vector-valued functions
ξ1 and ξ2 (in R

2 for our purposes) satisfying [22]

(A.3) f = div(ξ1 + gξ2),

where ξ1 is an element of ∂J1(∇h) and ξ2 is an element of ∂J2(∇h) with J1(p) = |p|
and J2(p) = |p|3/3. This characterization is a central ingredient of the formulation,
with direct implications to boundary conditions at the facet. By virtue of formulas

(A.4) ∂J1(p) =

{

{p/|p|} if p 6= 0
B2(0, 1) if p = 0

, ∂J2(p) = {|p|p} ,

one can assert that |ξ1| ≤ 1 and ξ2 = 0 for p = 0; therefore, |ξ| ≤ 1 on the facet.

In conclusion, by (A.2)-(A.4), there exists a continuous vector-valued ξ such that

(A.5) ∂th = −divξ everywhere,

where ξ belongs to ∂γ(p) for p = ∇h; in our radial setting, |ξ| ≤ 1 for r < rf(t) and
the term in ξ that multiplies g, i.e. the term corresponding to ξ2, is zero on the facet.
This consideration leads to boundary conditions (5.3) and (5.5) for g > 0. Since m is
continuous for g > 0, so is h. (For g = 0, this argument needs to be modified since m
ceases to be continuous [33].)
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A.2. Shock boundary condition. Next, we indicate a derivation of the con-
ventional Rankine-Hugoniot condition for the shock speed, invoked in section 6.1,
following the method in [16]. We apply the idea of an “integral solution” or “weak
solution” of a PDE that has the form ∂t̺ + ∂χJ = 0 as does (6.1). By contrast
to the case with steps of the main text, where the relevant PDE is defined only on
one side of the shock (facet edge), our derivation here assumes that the PDE holds
(in a weak sense) on both sides of the shock. This assumption results in the known
Rankine-Hugoniot condition.

Consider a smooth, compactly supported test function v(χ, t) that is defined
everywhere in the (χ, t) (spacetime) half-plane with t ≥ 0. Also, define Γ to be the
curve parameterized by χ = χf(t), where jump discontinuities of the density ̺ and
J may occur. In particular, choose v so that it is nonzero across Γ. Suppose that Γ
is the common boundary of two regions: Xr which corresponds to the region right of
the shock (for χ > χf), and Xl which corresponds to the region left of the shock. By
multiplying the PDE ∂t̺+ ∂χJ = 0 by v and applying integration by parts (recalling
that v vanishes for large enough χ and t) inside Xr, we obtain

∫ ∫

Xr

(∂t̺+ ∂χJ)v dtdχ = −
∫ ∫

Xr

(̺∂tv + J∂χv) dtdχ

+

∫

Γ

(̺rn
t + Jrn

χ)v ds,(A.6)

where n̂ = (nχ, nt) is the unit vector normal to Γ in the direction outward to Xr; and
̺r and Jr denote the limit values of ̺ and J on Γ from the right (the subscript r
here should not be confused with the polar coordinate).7 Similarly, we compute the
integral over Xl:

∫ ∫

Xl

(∂t̺+ ∂χJ)v dtdχ = −
∫ ∫

Xl

(̺∂tv + J∂χv) dtdχ

+

∫

Γ

(̺ln
t + Jln

χ)v ds.(A.7)

By adding (A.6) and (A.7), we obtain

∫

Γ

[(̺r − ̺l)n
t + (Jr − Jl)n

χ]v ds = 0.

Since this integral relation holds for all possible functions v, we conclude that

(A.8) (̺r − ρl)n
t + (Jr − Jl)n

χ = 0 on Γ,

for all time t ≥ 0. This condition leads to the conventional Rankine-Hugoniot condi-
tion, χ̇f(t) = [J ]/[̺], via parameterizing n̂ in terms of χf(t).

Appendix B. On discrete equations with g = 0.
In this appendix, we solve exactly the equations of motion (2.12) with g = 0

for the two top steps, aiming to obtain a recursion relation for the time differences
δn = tn − tn−1. Our results enable us to check the accuracy of our numerical scheme
for solving the step ODEs. We employ units with νΩg1 = 1 = a.

7More precisely, ρr and Jr denote the traces of ρ and J on Γ from the right.
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First, consider times tn−1 < t < tn for fixed collapse number n (n ≥ 1). For
g = 0, (2.12) reduce to

(B.1) ṙi = −ri − ri−1

ri
i ≥ n.

In particular, for i = n we have ṙn = −1 by which

(B.2) rn(t) = tn − t, tn−1 < t ≤ tn.

We proceed to determine rn+1(t), which satisfies rn+1ṙn+1 = −rn+1 + tn − t in
view of (B.2). We seek a solution in parametric form by using another independent
variable, say, τ . Let tn − t ≡ σ(τ) and rn+1(t) ≡ σ(τ)p(τ) where σ and p are to be
determined. The ODE for rn+1(t) yields

(B.3)
σ̇

σ
= − ṗp

p2 − p+ 1
,

which can be integrated exactly; σ̇ ≡ dσ/dτ . By setting p(τ) = τ (without loss of
generality), we find σ(τ) and thereby compute t and rn+1 as functions of τ :

rn+1(t(τ)) = C (τ2 − τ + 1)−1/2τ eK(τ),

t(τ) = tn − C (τ2 − τ + 1)−1/2 eK(τ),(B.4)

where τ > τ∗ (and τ∗ depends on n) and

(B.5) K(τ) =
1

2
√
3
tan−1

[
√
3(1− 2τ)

1 + 2τ − 2τ2

]

.

The (in principle n-dependent) constants C and τ∗ are determined by the initial
conditions t(τ∗) = tn−1 and rn+1(t(τ∗)) = rn+1(tn−1) ≡ Rn. Thus, we obtain

t(τ) = tn − δn

(

τ2∗ − τ∗ + 1

τ2 − τ + 1

)1/2

eK(τ)−K(τ∗),

rn+1(t(τ)) = δn

(

τ2∗ − τ∗ + 1

τ2 − τ + 1

)1/2

τ eK(τ)−K(τ∗),(B.6)

where

(B.7) τ∗ =
Rn

δn
.

As the nth step collapses, t ↑ tn and thus τ → ∞; the radius rn+1(tn) follows from
(B.6).

Now consider times tn < t < tn+1, after the nth step collapses. Then, rn+1(t) =
tn+1 − t. By continuity of rn+1(t) and use of (B.6), we find the recursion relation

(B.8)
δn+1

δn
=
√

τ2∗,n − τ∗,n + 1 e−K(τ∗,n),

where τ∗,n ≡ τ∗ = Rn/δn = rn+1(tn−1)/δn.
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It is of interest to discuss implications of (B.8) in the limit n → ∞, under the
assumption that δn+1/δn & 1. By (B.8), τ∗,n cannot approach 0. If in addition
δn+1/δn is assumed to be bounded with n, as is presumably the case for an initial
conical profile (where ri(0) in linear in i), we assert that τ∗,n must approach a finite
value: τ∗,n → τ◦ as n→ ∞. Thus, τ◦ obeys

(B.9) (τ2◦ − τ◦ + 1)1/2 e−K(τ◦) = 1.

By numerically solving this transcendental equation, we find τ◦ ≈ 1.66, in agreement
with our (independent) numerical simulations for (2.12).

Appendix C. On near-facet expansion for m(η).
In this appendix, we provide the coefficients cl for the sum Sk introduced in

(5.27) with k = 13. In this vein, we also invoke the coefficients, dl, of expansion

M1(s) ∼
∑k

l=1 dls
l. By dominant balance in the similarity ODE (5.23) along with

the facet condition (5.24) and after some algebra we derive the following formulas.

d0 = c0 = 0, d1 = (ηfg)
−1, c1 =

√

d1, d2 = −c1ηf/(3g), c2 = d2/(2c1),

d3 = −ηfc2
4g

+
1

2gη2f
+

c21
2ηf

, c3 =
d3 − c22
2c1

, d4 = − 4

15η2f

(

3η2f c1 + 3η3f c3
4g

+ 3d2ηf

)

,

c4 =
d4 − 2c2c3

2c1
, d5 = − 1

6η2f

(

3c2η
2
f + 2c4η

3
f

2g
+ 6d3ηf

)

, c5 =
d5 − 2c2c4 − c23

2c1
,

d6 = − 4

35η2f

(

3c1ηf + 9c3η
2
f + 5c5η

3
f

4g
+ 5d2/4 + 10d4ηf

)

, c6 =
d6 − 2c2c5 − 2c3c4

2c1
,

d7 = − 1

12η2f

(

3c2ηf + 6c4η
2
f + 3c6η

3
f

2g
+ 3d3 + 15d5ηf

)

, c7 =
d7 − 2c2c6 − 2c3c5 − c24

2c1
,

d8 = − 4

63η2f

(

c1 + 9c3ηf + 15c5η
2
f + 7c7η

3
f

4g
+ 21d4/4 + 21d6ηf

)

,

c8 = (d8 − 2c2c7 − 2c3c6 − 2c4c5)/(2c1),

d9 = − 1

20η2f

(

c2 + 6c4ηf + 9c6η
2
f + 4c8η

3
f

2g
+ 8d5 + 28d7ηf

)

,

c9 = (d9 − 2c2c8 − 2c3c7 − 2c4c6 − c25)/(2c1),

d10 = − 4

99η2f

(

3c3 + 15c5ηf + 21c7η
2
f + 9c9η

3
f

4g
+ 45d6/4 + 36d8ηf

)

,

c10 = (d10 − 2c2c9 − 2c3c8 − 2c4c7 − 2c5c6)/(2c1),

d11 = − 1

30η2f

(

2c4 + 9c6ηf + 12c8η
2
f + 5c10η

3
f

2g
+ 15d7 + 45d9ηf

)

,

c11 = (d11 − 2c2c10 − 2c3c9 − 2c4c8 − 2c5c7 − c26)/(2c1),

d12 = − 4

143η2f

(

5c5 + 21c7ηf + 27c9η
2
f + 11c11η

3
f

4g
+ 77d8/4 + 55d10ηf

)

,

c12 = (d12 − 2c2c11 − 2c3c10 − 2c4c9 − 2c5c8 − 2c6c7)/(2c1),

d13 = − 1

42η2f

(

3c6 + 12c8ηf + 15c10η
2
f + 6c12η

3
f

2g
+ 24d9 + 66d11ηf

)

,

c13 = (d13 − 2c2c12 − 2c3c11 − 2c4c10 − 2c5c9 − 2c6c8 − c27)/(2c1).
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