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The Cauchy horizon inside a perturbed Kerr black hole develops an instability that transforms it into a
curvature singularity. We solve for the linearized Weyl scalars ψ0 and ψ4 and for the curvature scalar
RαβγδRαβγδ along outgoing null rays approaching the Cauchy horizon in the interior of perturbed Kerr black
holes using the Teukolsky equation, and compare our results with those found in perturbation analysis. Our
results corroborate the previous perturbation analysis result that at its early parts the Cauchy horizon
evolves into a deformationally weak, null, scalar-curvature singularity. We find excellent agreement for
ψ0ðu ¼ const; vÞ, where u, v are advanced and retarded times, respectively. We do find, however, that the
exponential growth rate of RαβγδRαβγδðu ¼ const; vÞ approaching the singularity is dramatically slower than
that found in perturbation analysis, and that the angular frequency is in excellent agreement.
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A singularity evolves inside every black hole (BH), as
guaranteed under very plausible conditions by the
Hawking-Penrose singularity theorems [1]. Relatively little
is known about the nature of BH singularities, including
their physical and geometrical properties, the possibility of
extension of the spacetime manifold beyond them, or the
role played by quantum gravity.
Based on properties of spherical toy models and of

cosmological singularities in addition to perturbative and
nonperturbative analysis of rotating BHs, it is believed that
three types of singularities could exist, and possibly coexist,
inside realistic BHs: first, a Belinskii-Khalatnikov-Lifshitz-
type singularity [2], a spacelike, anisotropic, homogeneous
and chaotic singularity, in which Kasner epochs alternate
independently along different timelike approaches to the
singularity; second, the Poisson-Israel mass-inflation sin-
gularity [3], a null and deformationally weak singularity that
evolves along the generators of the BH’s Cauchy horizon, or
ingoing inner horizon, because of the capture of future
perturbations; and third, the Marolf-Ori singularity [4], a
null shock-wave singularity that evolves along the gener-
ators of the outgoing inner horizon because of the capture of
past perturbations.
Here we are mostly concerned with the mass-inflation

singularity inside rotating BHs, and specifically with the
properties of the singularity in its early parts. The mass-
inflation singularity was simulated in fully nonlinear sim-
ulations for a spherical charged scalar-field toy model in
Ref. [5], where the properties of its general features were
confirmed. However, several key details of the features of
the mass-inflation singularity that were predicted by per-
turbative analysis [6] appeared to be inconsistent with the
nonlinear results of [5]. This discrepancy was resolved by
the careful simulations of Ref. [7], which showed that in the
early parts of the mass-inflation singularity perturbation

analysis is highly reliable and accurate. The picture of the
singularity structure in spherical, charged, scalar-field toy
models is that of a spherical, null, weak singularity, which is
accurately described by perturbation analysis at early times,
and that propagates at the speed of light while its null
generators contract, until eventually it contracts to zero
volumewhen the singularity becomes spacelike. The space-
like singularity found in spherical charged toy models is
strong, scalar-curvature, and monotonic [8], and is very
different from the Belinskii-Khalatnikov-Lifshitz singular-
ity. The occurrence of the mass-inflation singularity in
spherical symmetry was shown rigorously in [9].
Realistic black holes areneither spherical nor charged.The

evidence for the singularity structure inside rotating black
holes is made mostly of linear and nonlinear perturbation
analysis [10–12], in addition to nonperturbative studies
[13–15]. The early parts of the mass-inflation singularity
inside asymptotically-flat, vacuum, rotating BHs is the main
topicof thepresent paper.Weevolve a linearizedgravitational
field over aKerr spacetime using theTeukolsky equation, and
find the behavior of the (azimuthal modes of the) linearized
Weyl scalars ψ0 and ψ4 in the Kinnersley tetrad, and of the
linearized curvature scalar K ≔ RαβγδRαβγδ approaching the
mass-inflation singularity along an outgoing null direction.
Since our code is a linear one, this paper cannot address
inherently nonlinear phenomena such as the contraction of
the null generators of the Cauchy horizon, the formation of a
possible spacelike singularity, or the properties thereof. We
can find, however, much about the early parts of the mass-
inflation singularity. As detailed below, we first check, verify,
or critique results found by perturbative [11] and nonpertur-
bative [13] analyses, and then go beyond the latter and find
additional phenomenology. This is the first numerical sim-
ulation for the dynamical evolution of the gravitational field
inside a perturbed spinning BH. Addressing the nonlinear
questions requires nonlinear simulations of the full Einstein
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equations.With the coming of age of numerical relativity it is
hoped that a new era of numerical geometrodynamics will
commence.
In our numerical experiments we find the Teukolsky

equation to be numerically unstable when expressed in
the common Boyer-Lindquist or ingoing Kerr coordinates.
Indeed, already in Schwarzschild spacetime the Teukolsky
equation forΨ0, for spin s ¼ 2, in numerically unstable. (In
Minkowski spacetime, it is the equation for Ψ4, for spin
s ¼ −2, which is unstable.) This numerical instability
comes about because of the presence of terms in the
Teukolsky equation that effectively act as antidamping
terms. This instability presents us with a challenge when
exploring the singularity of a Kerr BH.
Denoting the ingoing Kerr coordinates (~t; r; θ; ~φ) we

define the dimensionless compactified hyperboloidal
coordinates ðτ; ρ; θ; ~φÞ by τ ≔ ~t0 − r02=ðr0 þ SÞ þ
4 ln½S=ðr0 þ SÞ� and ρ ≔ r0=½1þ r0=S�, where ~t0 ≔ ~t=M
and r0 ≔ r=M. The free parameter S controls the numerical
domain and the foliation, and gives us some freedom in the
number of grid points and the size of the time steps [16]. In
these coordinates the horizons are located at

ρ� ¼ a2SþS2M2�S2M
ffiffiffiffiffiffiffiffiffiffi
M2−a2

p
a2þ2SM2þS2M2 , and the partial differential equa-

tion becomes mixed type hyperbolic-elliptic. Notice that
ρ ∈ ½0; SÞmaps the domain r ∈ ½0;∞Þ one-to-one. Figure 1
shows the coordinates on a Penrose diagram of a Kerr BH.

Inside the BH our coordinates have the unusual signature
ð−;−;þ;þÞ, and our computation method is solving an
initial value problem using Cauchy data. While the usual
situation is that the metric signature is ð−;þ;þ;þÞ (“one
time dimension”), one may still set up the evolution scheme
with our unusual signature. Figure 2 shows how the
Courant-Friedrichs-Lewy (CFL) condition can be satisfied
even when all equal-coordinate surfaces are spacelike (in a
1þ 1D toy model). Our numerical scheme satisfies the
CFL condition in practice. Part of the CFL condition is that
if viþj−1 and viþjþ1 are the retarded times of the two data
points on which Cauchy data are specified, and v is the
retarded time at which we want to find the field, then the
CFL condition requires that

maxðviþj−1; viþjþ1Þ − v > 0: ð1Þ

(A similar relation hold also for advanced time u.) Figure 3
shows the behavior of the CFL condition as a function of ρ.
Clearly, we can choose the Courant factor small enough so
that the CFL condition is globally satisfied in the domain of
integration. The CFL condition is of course only a
necessary condition. In addition to showing that the CFL
condition is satisfied, we have also tested numerically the
stability and convergence of the solution.
There are several advantages offered by the coordinates

ðρ; τ; θ; ~φÞ: First, they provide a clean solution to the so-
called “outer boundary problem.” One major challenge in
the numerical solution of a partial differential equation
arises from the fact that the computational domain needs to
be finite. Well-posed boundary conditions along with
transparent boundary data are required at the boundary,
which are difficult to construct and implement numerically.
Standard methods for boundary treatment lead to spurious
reflections from the outer boundary and contaminate the
solution. The standard approach currently in use by many

FIG. 1. The Penrose diagram for the domain of integration and
the coordinates. The solid (dashed) thin curves are hypersurfaces
τ ¼ const (ρ ¼ const). Notice that the τ ¼ const surfaces inter-
sect on the diagram with ℐþ, and penetrate through the event
horizon (EH) and the outgoing inner horizon (OIH), which is the
inner boundary for our computational domain. The earliest of
these surfaces is our partial Cauchy surface Σ. The dotted thin line
is a constant advanced-time ray (u ¼ const) that intersects with
the Cauchy horizon (CH).

FIG. 2. Sketch of the numerical scheme for Cauchy data with
two timelike coordinate (t, x). Cauchy data are specified for t0 at
x−1 and at x1. With one spacelike x coordinate one normally finds
the fields at ðt1; x0Þ. Here, that event is outside the domain of
influence of the initial data. One may, however, find the fields at,
say, ðt1=2; x0Þ, which is inside the domain of influence. Shown
also are retarded and advanced times.
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communities is to place the outer boundary far enough that
these reflected spurious waves are unable to interfere with
the physical solution. This approach makes the computa-
tional domain unnecessarily large and the computation very
expensive. With the approach of compactification of the
computational domain, one is able to extend the domain to
infinity, thus offering a clean solution to this problem.
Second, because the compactified computational domains
have a rather modest extent (in our simulations we set
S ∼ 20) one has the ability to perform computations with
grid-resolutions that are enormously high at very low cost.
For instance, in this work we use uniform grid-spacings (in
ρ) on the scale of 1=2; 000. This dense computational grid
allows us to obtain results which are accurate to 1%. (In
addition, we take full advantage of GPU-accelerated
computing to perform our computations efficiently.)
Third, the compactification allows us to extract signals
at (future null) infinity (ℐþ) directly, because it is part of
the computational domain. And finally, these coordinates
also resolve the aforementioned instability problem. See
Ref. [17] for more detail.
Notably, our coordinates compactify ℐþ, thereby allow

us to compactify the domain of computation without
introducing reflection of the waves back into the interior
region. This way, we avoid one of the main difficulties
associated with the compactification of spatial infinity. In
fact, our hypersurfaces are different from the Boyer–
Lindquist hypersurfaces in such a way that approaching
ℐþ the spatial wavelength of outgoing radiation is
unbounded in our foliation (“τ ¼ const hypersurfaces are
asymptotically wave fronts”). Therefore we can resolve the
field on the compactified grid and do not encounter

spurious reflections due to compactification near the outer
grid boundary [18].
A 2þ 1D code for the m modes of Ψ0 and Ψ4 based on

the (τ; ρ; θ; ~φ) coordinates [and which solves for the fields
as functions of ðτ; ρ; θÞ], is numerically stable and con-
vergent for both fields in the entire domain of interest [19],
and reproduces results in agreement with known or
expected ones, such as the behavior of the fields along
the event horizon, as demonstrated in Fig. 4. These are the
first numerical results for both the decay rate and the
oscillation frequency for the fields along the event horizon
for nonaxisymmetric gravitational perturbations.
We transform the azimuthal coordinate d ~φ → d ~φ� ≔

dφ −Ω�dt, where t;φ are the Boyer-Lindquist coordi-
nates. The horizon frequency Ω� ¼ a=ð2Mr�Þ. The
horizon-regularized coordinates (~t; r; θ; ~φ�) are appropriate
coordinates for the description of fields interacting with
observers, and also allow us to directly compare our results
with those of [11–13].
We note that while a scalar Z (such as ψ0, ψ4, or K) is

invariant under coordinate transformations, its m modes
are not. That is, we decompose Z in our code as
Z ¼ P∞

m¼0 Z
ðmÞeim ~φ, but we wish to present our results

for the modes Z ¼ P∞
m¼0 Z

ðmÞ
� eim ~φ� . The two decomposi-

tions are related by d ~φ ¼ d ~φ� þ Ω�dv, such that

ZðmÞ
� ¼ ZðmÞeimΩ�v, where v is retarded time.
Perturbation analysis predicts the asymptotic behavior

of ψ0ðu ¼ const; vÞ approaching the Cauchy horizon.
Specifically, Refs. [11,12] found that as v=M → ∞

ψ0ðu ¼ const; vÞ ∼ Δ−2eiωpvv−αp ½1þOðv−1Þ�; ð2Þ
where ωp ¼ mΩ−, and where for the fastest-growing
gravitational mode αp ¼ 7. Here, Δ ≔ ðr − rþÞðr − r−Þ,
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FIG. 3. The left hand-side of inequality (1) as a function of ρ for
various values of the Courant factor, for a Kerr BH with
a=M ¼ 0.8. The horizons are at ρþ ¼ 1.479 and ρ− ¼ 0.392
(S ¼ 19.6). When the Courant factor is smaller than ∼0.8 the
CFL condition is globally satisfied. The condition on advanced
time is satisfied globally for all Courant factors ≤ 1.
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FIG. 4. The Teukolsky fields Δ−2Ψ4 [panels (a) and (b)] and
Δ2Ψ0 [panels (c) and (d)] along the event horizon on the
equatorial plane as functions of retarded time for a=M ¼ 0.8
and m ¼ 2 in horizon regularized coordinates.
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and logðΔ=r2Þ ∝ −v=M as v=M → ∞. (Reference [13]
does not calculate the frequency.) We note that [11] does
not make a prediction for ψ4ðu ¼ const; vÞ [although it
does make a prediction for ψ4ðu; v ¼ constÞ.]
We next present the behavior of fields approaching

the Cauchy horizon along an outgoing null direction.
Figure 5 shows the behavior of the Weyl scalars ψ0 and
ψ4 as functions of retarded time. Note that the numerical
solution solves for the fields starting at magnitudeOð1Þ and
ending atOð10∼300Þ close to the Cauchy horizon. In Table I
we parametrize our solution for ψ0. We find it to agree well
with that of perturbation analysis in both the power-law
decay rate and its frequency. Note that our numerical
solution has a global phase difference compared with the
solution of [11], which results from a shifted origin of
retarded time, but no dephasing.
We also solved for ψ4ðu ¼ const; vÞ. Here we have no

predictions from perturbation analysis with which to
confront our numerical results. Instead, we postulate an
Ansatz, and find the parameters that best fit it. Specifically,
we postulate that in ingoing Kerr coordinates

ψ4ðu ¼ const; vÞ ∼ e−iωve−v=mW: ð3Þ
The lower panel of Fig. 5 and Table II show our solution for
ψ4. Our data suggest that the angular frequency ω ¼ mΩ−,
and that the phenomenological free parameter W increases
rapidly with a=M. Therefore, in horizon regularized coor-
dinates ω ¼ 0, and ψ4 does not oscillate approaching the
Cauchy horizon.
From the Weyl scalars ψ0 and ψ4 are next find the

linearized curvature scalar

K ¼ 8ðψ0ψ4 þ 3ψ2
2 − 4ψ1ψ3Þ þ c:c:

As pointed out in [11,13], K is dominated approaching the
Cauchy horizon by K ∼ 8ψ0ψ4 þ c:c:

In Fig. 6 we presentK as a function of retarded time. Our
previous results suggest to us that as v=M → ∞, the fastest
growing mode of

Kðu ¼ const; vÞ ∼ Δ−2eimΩ−ve−v=mWv−7: ð4Þ

The analysis of Ref. [11] finds, however, that

Kpðu ¼ const; vÞ ∼ Δ−2eimΩ−vv−7:
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FIG. 5. The Weyl scalars Δ2ψ0 in regularized coordinates
(upper panel) and ψ4 in ingoing Kerr coordinates (lower panel)
as functions of v=M along an outgoing null ray that intersects
with the early part of the Cauchy horizon (as v=M → ∞). For
Δ2ψ0 (ψ4) we present in addition to our numerical results in a
solid curve also the prediction of perturbation analysis [Ansatz
(3)] in a dashed curve. Here, a=M ¼ 0.8 andm ¼ 2 and the fields
are on the equatorial plane.

TABLE I. Parameters for the numerically simulated ψ0 ap-
proaching the Cauchy horizon in regularized coordinates: for
a=M ¼ 0.8 for various values ofm (top panel), and form ¼ 2 for
various values of a=M (bottom panel). The parameters α and ω
are found from the numerical simulations. The parameters αp and
ωp are the predictions of perturbation analysis. Data, on the
equatorial plane, are presented in horizon regularized coordi-
nates.

m α ωM αp ωpM

1 7.19 1.00 7 1.000
2 7.22 2.00 7 2.000
3 8.83 3.00 9 3.000

a=M α ωM αp ωpM

0.800 7.22 2.00 7 2.000
0.866 7.28 1.73 7 1.732
0.917 7.26 1.53 7 1.528

TABLE II. Parameters for the numerically simulated ψ4 ap-
proaching the Cauchy horizon: for a=M ¼ 0.8 for various values
of m (top panel), and for m ¼ 2 for various values of a=M
(bottom panel). The parameters W and ω are found from the
numerical simulations. The relative difference between ωM and
mΩ−M is denoted by δ. Data, on the equatorial plane, are
presented in ingoing Kerr coordinates.

m W=M ωM mΩ−M

1 3.68 1.15 1.000
2 3.09 2.18 2.000
3 3.64 3.17 3.000

a=M W=M ωM mΩ−M δ

0.800 3.09 2.18 2.000 0.083
0.866 6.56 1.85 1.732 0.063
0.917 16.5 1.60 1.528 0.047
0.954 71.3 1.40 1.363 0.024
0.980 9 × 102 1.25 1.225 0.017
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(See also [13].) We find that the growth rates of curvature
are dramatically different: The exponential growth rate for
curvature approaching the Cauchy horizon that we find is
slower than that found in [11]. Therefore, the difference
between the two expressions for the curvature grows
exponentially with retarded time.
We conjecture that the reason for this discrepancy

between the perturbative results of Ref. [11] and our results
is that [11] finds ψ0ðu ¼ const; vÞ and ψ4ðu; v ¼ constÞ,
and uses these in order to calculate Kpðu ¼ const; vÞ. This
approach amounts to tacitly assuming that ψ4ðu ¼
const; vÞ ∼ const asymptotically. As we show above in
Fig. 5 and in Table II, this tacit assumption is unrealized in
our numerical simulations.
We note that this disagreement is based on the fit

parameters for the Ansatz (3). While this Ansatz for the

fit functions fits the data very well, the data represent a
rather short interval of retarded time. Consider, say,
the hypothetical alternative Ansatz ψ4ðu ¼ const; vÞ∼
e−iωvðe−v=mW þ AÞ. If the parameter A ≪ 1 it is hard to
find numerically a nonzero value for A unless the interval in
retarded time is very long. In our numerical simulations it is
difficult to significantly increase the retarded-time interval:
the function we solve for,Δ−2Ψ4, grows exponentially with
retarded time, and floating-point arithmetics limits the
interval.
Consequently, our data represent evolutions to

v=M ¼ 500. In the context of external perturbations this
length of evolution typically allows for only a crude
estimate of power law indices, even when combined with
an evaluation of the local power index [20] and its
extrapolation to infinite time. We believe this is the case
also here, contributing to the disagreements reflected in
Tables I and II. Specifically, our results do not depend on an
Ansatz regarding the asymptotic form of the fields (such as
assuming a Price law behavior at finite times along the EH),
such that subdominant terms may still contribute.
Even if the aforementioned retarded-time problem can be

resolved, we face the fact that there is little sense in
continuing our evolution beyond the level that curvature
becomes Planckian. While general relativistic nonlinear
effects may be ignored at the early parts of the Cauchy
horizon, we do not yet know what any quantum gravity
effects may be. Our results may have important implica-
tions for the latter.
It will be interesting to use a similar code in order to

study the behavior of fields along the Cauchy horizon, and
also along and across the outgoing inner horizon. Further
details of this work will appear elsewhere.
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