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Abstract

We develop a model for describing the dynamics of imatinib-treated chronic myeloge-
nous leukemia. Our model is based on replacing the recent agent-based model of Roeder
et al. [10] by a system of deterministic difference equations. These difference equations
describe the time-evolution of clusters of individual agents that are grouped by discretizing
the state space. Hence, unlike standard agent-base models, the complexity of our model
is independent of the number of agents, which allows to conduct simulation studies with
a realistic number of cells. This approach also allows to directly evaluate the expected
steady states of the system. The results of our numerical simulations show that our model
replicates the averaged behavior of the original Roeder model with a significantly reduced
computational cost. Our general approach can be used to simlify other similar agent-based
models. In particular, due to the reduced computational complexity of our technique, one
can use it to conduct sensitivity studies of the parameters in large agent-based systems.

Keywords. chronic myelogenous leukemia, Gleevec, imatinib, agent-based models, differ-
ence equations, steady states.

1 Introduction

Chronic Myelogenous Leukemia (CML) is a blood cancer with a common acquired genetic
defect resulting in the overproduction of malformed white blood cells. It constitutes nearly
20% of all leukemias, affecting roughly 1 in 100,000 people. The cause of CML is an acquired
genetic abnormality in hematopoietic stem cells due to a reciprocal translocation between
chromosomes 9 and 22. This translocation, creating the Philadelphia (Ph) chromosome, has
associated oncogenic properties and can be detected in more than 90% of all patients with
CML [14]. The BCR-ABL fusion gene, drives increased and aberrant tyrosine kinase activity
due to the chromosomal rearrangement. It is this abnormal activity that leads to dysfunctional
regulation of cell growth and survival, and consequently to cancer [14]. Treatment and control
of CML underwent a dramatic change with the introduction of the new tyrosine kinase inhibitor
imatinib, which has proven to be an effective treatment available to nearly all CML patients,
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especially in chronic phase [3]. While it is widely agreed that imatinib does not represent
a true cure for CML, it does provide, however, an effective control measure available to be
undertaken between or in the place of more aggressive treatments such as an allogeneic bone
marrow or stem-cell transplantation [2].

In addition to experimental approaches for studying CML, in the past several years the
use of mathematical models has grown rapidly. The first mathematical models of CML date
back to 1969 and are due to Cronkite and Vincent [15], and Rubinow et al. [11, 12, 13].
A pioneering work originating from the hematopoietic system is due to Fokas, Keller, and
Clarkson [4]. A simple delayed differential equations model for the immune response in CML
is due to Neiman [8]. A more recent work is of Moore and Li [7]. Their ODE-based CML
model followed the dynamics of cancer cells, näıve T cells, and killer T cells. Rare versions
of CML have been mathematically studied by Mackey and co-authors [1]. Komarova et al.
[5] have used methods of stochastic networks to study drug resistance with applications to
imatinib. A recent mathematical model for CML with imatinib is due to Michor et al. [6].
By matching their ODE model to patients’ data, Michor et al. concluded that hematopoietic
stem cells are mostly immune to imatinib.

In [10], Roeder et al. present a stochastic agent-based model (ABM) for the interaction
between imatinib and CML. It could be considered as an extension of the Michor model [6].
Both models, [6] and [10], account for the progression of cells through the myeloid lineage. Mi-
chor et al. consider four stages of cell differentiation: stem cells, progenitor cells, differentiated
cells, and terminally differentiated cells. Similarly, Roeder et al. consider the differentiation
of cells through three stages: stem cells, proliferating precursor cells, and non-proliferating
precursor and mature cells. As an additional assumption, Roeder et al. divide the stem cells
into two compartments, proliferating and non-proliferating stem cells. Individual stem cells
circulate continually between the two compartments and are affected by imatinib only while
proliferating.

In this work we develop a model for describing the dynamics of imatinib-treated chronic
myelogenous leukemia. Our model is constructed by replacing the recent agent-based model
of Roeder et al. [10] by a system of deterministic difference equations. These difference
equations describe the time-evolution of clusters of individual agents that are grouped together
by discretizing the state space. When compared with the original ABM, the resulting system
has a significantly lower number of equations that are still simple enough so that the overall
computational complexity is significantly reduced. More importantly, the difference equations
enjoy much better scalability properties: the population sizes do not affect running times. This
is in contrast to ABMs where the number of equations is given by the number of agents. Hence,
in our approach it is possible to conduct simulations with a realistic number of cells. Another
advantage of our approach is that steady states of the system can be quickly evaluated without
having to run the ABM to its steady state. Due to the reduced computational complexity of
our approach, it is also possible to easily conduct sensitivity studies (such as Latin Hypercube
Sampling) in order to determine the sensitivity of the system of the choice of parameters.
While out technique is demonstrated for this particular leukemia modeling problem, we would
like to emphasize that it is not limited to this particular problem as it can be adapted to a
wider-variety of similar ABMs.

The structure of this paper is as follows. In Section 2, we briefly review the model of
Roeder et al. [10]. In Section 3 we reformulate the Roeder model as a system of difference
equations. In Section 4, we compare the steady state behavior, the dynamics of CML genesis,
and the dynamics of imatinib treatment between the ABM and difference equation model.
Concluding remarks are provided in Section 5. These remarks include a discussion on ap-
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proaches to increasing the numerical accuracy of the difference equation model, an extension
to a general method for obtaining deterministic versions of ABMs, and remarks about the
utility of deterministic approximations of stochastic ABMs.

2 An overview of the Roeder model

In the Roeder model [10], hematopoietic stem cells (HSCs) exist in two growth compartments:
non-cycling, denoted by A, and proliferating, denoted by Ω. At every time step (of 1 hour),
each stem cell has a probability of changing its compartment.

At the beginning of every time step, the algorithm stochastically determines whether a
cell transfers from A to Ω with probability ω or from Ω to A with probability α. Each stem
cell has an affinity, denoted by a(t), and the affinity ranges between amin and amax which are
estimated to be 0.002 and 1.0, respectively [10]. A cell with a high affinity has a high chance
of remaining in or transferring to the A environment. Likewise, a cell with a low affinity is
more likely to remain in or transfer to the Ω environment, where it starts proliferating.

The probabilities ω and α are given by

ω(Ω(t), a(t)) =
amin

a(t)
fω(Ω(t)),

α(A(t), a(t)) =
a(t)

amax
fα(A(t)).

(2.1)

Here A(t) and Ω(t) denote the total number of cells in each compartment. In addition, the
functions fα and fω are sigmoidal functions whose definition is given in equation (B.1) in
Appendix B.

Proliferating cells in the Ω compartment progress through various stages of the cell cycle:
G1, S, G2, and M. The G1 phase is the longest period of growth during which the cell generates
new organelles. The S phase is the period when DNA synthesis and replication occurs. The
G2 phase is the short period of growth when the cell prepares for mitosis, and the M phase, or
mitosis, is when the cell replicates its DNA and divides into two daughter cells. Only Ω cells
in the G1 phase of the cell cycle can transfer to A. In the Roder model, Ω cells spend about
two-thirds of their time in the G1 phase [10].

For each cell that remains in the A compartment, its affinity increases by a factor of r
(estimated in [10] as 1.1). Similarly, cells that remain in Ω, decrease their affinity by a factor
of d (estimated in [10] as 1.05). Once a cell reaches maximum affinity, amax, its affinity stops
increasing. Stem cells whose affinity reaches amin, differentiate into a proliferating precursor
and then into a non-proliferating mature cell.

In addition, each cell in Ω has a time counter, c(t), that indicates its position in the cell
cycle. At each time step, this counter increases by 1. After the counter reaches its maximal
value of 48, it recycles back to 0 at the next time step, resulting in a 49-hour cell cycle. Cells
entering Ω start with a counter that is set at c(t) = 32 corresponding to beginning of the S
phase. For the first seventeen hours, the cell progresses through the S, G2, and M phases and
divides into two cells once c(t) = 48. Then, for the next thirty-two hours, (c(t) = 0, ..., 31),
the cell remains in the G1 phase. If at the end of this period the cell has not transfered to A,
it re-enters the S, G2, and M phases and the cycle repeats. See Figure 2.1.
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Figure 2.1: A state diagram for the Roeder model [10]. (1) At every time step, stem cells may
transfer between the A (non-proliferating) and Ω (proliferating) compartments. While in A,
a cell’s affinity increases by a factor of r up to the maximum affinity, amax. While in Ω, a
cell’s affinity decreases by a factor of d until it reaches the minimum affinity, amin. (2) Ω cells
progress through the G1, S, G2, and M phases of the cell cycle. The counter c(t) increases
cyclically from 0 to 48. When a cell first enters Ω, c(t) = 32 to mark the beginning of S phase.
Only cells in the G1 phase can transfer back to A. (3) When a cell’s affinity a(t) drops below
amin, it differentiates into a precursor cell. Precursor cells proliferate for 20 days, dividing
once per day. (4) At the end of 20 days, precursors differentiate into mature cells and live for
8 additional days without dividing.

3 A difference equations model

The Roeder model has the advantage of simulating stem cell dynamics to a very high res-
olution (i.e., each cell is considered individually); however, it has the disadvantage of being
computationally demanding. To make the computations feasible, Roeder et al. down-scaled
absolute cell numbers to 1/10 of the realistic values in patients and verified that the scaling
did not affect the qualitative behavior of the system [10].

Our goal is to replace the Roeder model by a smaller system of difference equations. In the
process we would like to decrease the total number of variables by discretizing the state space.
Time is already discretized in the original model since cell numbers are updated at fixed time
steps of one hour, so the only quantities that have to be discretized are the cell affinities.

We note that log r = log(1.1) = 0.0953 and log d = log(1.05) = 0.0488, which means that
the ratio (log r)/(log d) is approximately 2. If we let ρ = 0.0488 and replace r by e2ρ = 1.10252
and d by eρ = 1.05001, we obtain the ratio (log r)/(log d) = 2.

The value of the minimum affinity is amin = 0.002, giving log amin = −6.2146, which is
between −128ρ and −127ρ. Thus, with our modified values of r and d, any cell starting with
an affinity a(t) = e−kρ can only attain affinities of the form a(t) = e−kρ where 0 ≤ k ≤ 127.
Stem cells with affinities other than e−kρ only exist transiently, because these cells either lose
affinity and differentiate or remain in A long enough to attain the maximum affinity of 1.
Hence, for the purposes of studying long-term behavior, it suffices to assume that the only
possible affinities are of the form e−kρ for 0 ≤ k ≤ 127.
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3.1 System of difference equations

With the new values of r and d there are only finitely many affinity values, so we can fully
categorize the stem cell populations at time t by the following variables:

Ak(t) = Number of cells in A with log a(t) = −kρ,

Ωk,c(t) = Number of cells in Ω with log a(t) = −kρ and c(t) = c,

where k ∈ {0, ..., 127} and c ∈ {0, ..., 48}. Then, the Roeder model can be reformulated as the
following system of difference equations:

Ak(t + 1) =







(A0(t) − B0(t)) + (A1(t) − B1(t)) + (A2(t) − B2(t)), k = 0

(Ak+2(t) − Bk+2(t)) +
∑31

c=0 Ψk,c(t), k = 1 . . . 125
∑31

c=0 Ψk,c(t), k = 126, 127

(3.1)

Ωk,c(t + 1) =































B0(t), k = 0, c = 32
2Ωk−1,48(t), k > 0, c = 0
Ωk−1,c−1(t) − Ψk−1,c−1(t), k > 0, c = 1 . . . 31
(Ωk−1,31(t) − Ψk−1,31(t)) + Bk(t), k > 0, c = 32
Ωk−1,c−1(t), k > 0, c = 33 . . . 48
0 otherwise

(3.2)

In these equations, the random variables Bk and Ψk,n denote the number of cells transferring
from states Ak and Ωk,n, respectively, and they are given by the following binomial distribu-
tions:

Bk(t) ∼ Bin
(

Ak(t), ω(Ω(t), e−kρ)
)

,

Ψk,c(t) ∼ Bin
(

Ωk,c(t), α(A(t), e−kρ)
)

, c = 0, ..., 31,

where A(t) =
∑

k Ak(t) and Ω(t) =
∑

k,c Ωk,c(t) are the total number of cells in A and Ω,
respectively, and the transition probabilities, α and ω, are given by (2.1).

The three terms in the first line of (3.1) (corresponding to k = 0) denote the number of
cells in states A0, A1, and A2 that do not transfer to Ω. At the end of the time step, these
cells end up in state A0. The first term in the second line of (3.1) denotes the number of cells
in state Ak+2 that do not transfer to Ω. At the end of the time step, these cells shift to state
Ak. The summation corresponds to the number of cells in Ω that transfer to Ak. The third
line of (3.1) is the same as the second line, except that there are no cells with log a(t) lower
than −127ρ that can shift into A126 and A127.

The first line in (3.2) (corresponding to k = 0, c = 32) is the number of cells that transfer
from state A0. These cells always start with c(t + 1) = 32. Since no cells in Ω can have
log a(t) = 0 except for those that have just transferred from A, we have Ω0,c(t + 1) = 0 for all
k = 0, c 6= 32, which is the last line of (3.2).

The second line of (3.2) represents the number of cells that have completed division and
are recycling back to the beginning of the G1 phase. The factor of 2 accounts for the increase
in population due to cell division. The third line of (3.2) corresponds to cells that have been in
the G1 phase during the previous and current time steps. The expression denote the number
of cells that do not transfer to A. These cells shift to the next state, Ωk,c.

The following line (k > 0, c = 32) pertains to cells at the beginning of S phase. As above,
the first term represents the number of cells that do not transfer to A. These cells shift to the
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Ωk,32 state. The second term represents the number of cells that transfer from state Ak. The
next to last line in (3.2) applies to cells in the S, G2 or M phases. These cells do not transfer
to A, so they all shift to the next state, Ωk,c.

3.2 Difference equations for differentiated cells

Once a cell’s affinity drops below the minimum value (log a(t) < −127ρ), the cell differentiates
into a proliferating precursor and later a non-proliferating mature cell. The cell remains in the
proliferating precursor state for λp = 20 days (480 hours) and divides every τ̃c = 24 hours. At
the end of 480 hours, the precursor cell differentiates into a mature cell and lives for λm = 8
additional days (192 hours) without dividing. These durations are given in [10] and restated
in Table B.1.

The difference equations for the differentiated cells are given by

Pj(t + 1) =







∑48
c=0 Ω124,c(t) −

∑31
c=0 Ψ124,c(t), j = 0

2Pj−1(t), j = 24, 48, 72, ..., 456
Pj−1(t), otherwise

(3.3)

Mj(t + 1) =

{

2P479(t), j = 0
Mj−1(t), otherwise

(3.4)

where Pj(t) denotes the number of cells that have been precursors for j hours, j = 0, ..., 479,
and Mj(t) is the number of cells that have been in the mature state for j hours, j = 0, ..., 191.

The first line in (3.3) represents the number of cells with log a(t) = −127ρ that have not
transferred from Ω to A at time t. All these cells differentiate into precursors at time t + 1.
The second line applies to cells that have completed a cycle of division. Cell divisions occur
every 24 hours, and the factor of 2 accounts for the increase in population due to division.
The last line accounts for cells that increase in age by one hour between times t and t + 1.
The equations in (3.4) are analogous to those in (3.3), and we assume that precursor cells
perform one final division before differentiating into a mature cell. Once a cell has matured,
it no longer divides.

3.3 Modeling leukemia cells and the effects of imatinib

As in the Roeder model, we label leukemia cells as Ph+ and non-leukemia cells as Ph−. These
labels indicate whether a cell possesses the Philadelphia chromosome, which is present in
the majority of CML cases. The Roeder model considers three populations: Ph− cells, Ph+

cells, and imatinib-affected Ph+ cells. In some cases, the model includes a fourth population,
imatinib-resistant Ph+ cells, but in this paper we only consider the first three. In our model,
we formulate a separate set of equations for each population. The difference equations for the
three populations are similar to (3.1) to (3.4) with a few modifications.

We denote the Ph− populations by A−

k , Ω−

k,c, P−

j , and M−

j , and their equations are exactly
the same as the original equations (3.1) to (3.4).

We denote the unaffected Ph+ populations by A+
k , Ω+

k,c, P+
j , and M+

j . These cells are

governed by the transition functions, fα/ω, given by the parameters corresponding to Ph+

cells in Table B.1. Otherwise, the difference equations (3.1), (3.3), and (3.4) remain the
same for A+

k , P+
j , and M+

j . On the other hand, proliferating stem cells, Ω+
k,c, may become

imatinib affected with probability rinh at every time step. In our formulation, we assume these
transitions take place at the beginning of a time step, before any other transition. In other
words, we first remove the cells that become imatinib-affected and then evaluate all other state
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transitions and divisions according to (3.2). More explicitly, let Ω
+/R
k,c (t) denote the cells that

remain unaffected by imatinib throughout the current time step and Ω
+/I
k,c (t) denote the cells

that become affected at time t. Then, we have

Ω
+/R
k,c (t) = Ω+

k,c(t) − Ω
+/I
k,c (t),

where Ω
+/I
k,c (t) ∼ Bin

(

Ω+
k,c(t), rinh

)

. Finally, we substitute Ω
+/R
k,c (t) into the right hand side of

(3.2) to obtain Ω+
k,c(t + 1).

It is unclear in [10] whether it is assumed that imatinib-inhibition takes place before or
after other transitions within a time interval. However, these two options are almost identical,
since the end of one time interval is the beginning of the next. Hence, the only difference
between the two options is that the former gains one extra step of imatinib-inhibition at the
beginning of treatment. Since the inhibition probability rinh = 0.050 is small, the extra step
hardly makes a difference.

Finally, we denote the imatinib-affected Ph+ populations by A
+/A
k , Ω

+/A
k,c , P

+/A
j , and M

+/A
j .

These cells are governed by the transition functions, fα/ω, given by the parameters correspond-
ing to imatinib-affected Ph+ cells in Table B.1. Furthermore, at each time step, every pro-
liferating Ph+ cell (whether imatinib-affected or not), Ω+/A and Ω+, may undergo apoptosis
with probability rdeg. We assume these cells die and are removed at the beginning of every

time step. Other than these adjustments, the difference equations for A
+/A
k , Ω

+/A
k,c , P

+/A
j ,

and M
+/A
j follow (3.1), (3.3), (3.2), and (3.4). A summary of the algorithm is presented in

Appendix A.

3.4 Computational complexity

One of the main advantages of our difference equation model when compared with the Roeder
model is that fewer variables have to be updated at every time step.

Specifically, we note that for k = 0, . . . , 16, the variable Ωk,c is nonzero only when 32 ≤
c ≤ 32 + k. Similarly, for k = 17, . . . , 48, the variable Ωk,c is nonzero only when 32 ≤ c or
0 ≤ c ≤ k − 18. Hence, at every time step of the difference equation model, we only have to
update 128 variables Ak and 128 × 49 − 48 × 49/2 = 5096 variables Ωk,c. This makes a total
of 5224 variables. Hence, when we consider the three populations, Ph−, Ph+, and Ph+ cells
affected by imatinib, there are about 15,600 variables to update.

By counting the number of variables updated at each time step, our model runs about 6
times faster than the Roeder model, when assuming a population of about 105 stem cells. A
much larger improvement will be obtained if the number of cells is rescaled back to the more
realistic order of 106 stem cells. The number of difference equations does not change with
population, while the number of variables in the Roeder model has to increase proportionally.

An additional gain can be obtained by converting the stochastic model into a deterministic
model. This can be done by replacing all binomial random variables Bin(N, p) with the
constant expected value Np and allowing population sizes to be continuous. This modification
eliminates all random number generations, leading to an immense increase in computation
speed. In our case, the deterministic model runs about 80 times faster than the original
Roeder model (with 105 stem cells). We will show that, on average, the deterministic version
does not deviate greatly from the original stochastic, agent-based version.

Whereas the difference equation model can be readily converted into a deterministic form,
it is unclear how to rewrite the stochastic, agent-based model as a deterministic process. The
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main obstacle is that each agent (i.e. cell) is quantized. In particular, we cannot make a
fraction of a stem cell transfer to the alternative compartment, while the remainder stays in
the current compartment. Indeed, dividing agents into fractional agents is impractical, since
this would require doubling the number of agents at every time step.

4 Simulations

4.1 Comparison of steady-state concentrations

Since affinities are quantized in the deterministic model, we can plot the distribution of cells
as a bar graph. For comparison, we group the cells of the ABM into affinity wells, where the
kth well corresponds to cells with affinities between e−(k+1/2)ρ and e−(k−1/2)ρ for k = 0, ..., 127.
Figure 4.1 shows the bar graphs of Ph− cells for the deterministic and ABM model at steady
state.
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Figure 4.1: Steady state profiles for the Ph− stem cell populations. Cells are grouped into
wells based on their affinity values. The upper graph corresponds to Ω cells, and the bottom
graph corresponds to A cells.

In the deterministic simulation, the total number of Ph− precursor cells and Ph− mature
cells at steady state is 8.5308 × 109 and 6.8246 × 1010, respectively. In the ABM simulation,
the steady state population of Ph− precursor cells is 8.5233±0.1244×109 and the steady state
population of Ph− mature cells is 6.8232± 0.0555× 1010, where populations are written in the
form mean ± standard deviation. Hence, the steady state precursor population of the ABM
differs from that of the deterministic model by 0.09%, which is more than 16 times less than
the standard deviation. Also, the steady state mature population of the ABM differs from
that of the deterministic model by 0.02%, which is more than 39 times less than the standard
deviation. Thus, in the steady state case for Ph− cells, the deterministic model approximates
the ABM very closely.

4.2 Comparison of CML genesis

To simulate CML genesis, we follow the method of Roeder et al. Specifically, we introduce one
proliferating Ph+ cell (i.e. Ω cell) into the Ph− steady state of the ABM [10]. The exact state
variables for the initial Ph+ cell are not included in [10], so we choose to introduce one Ω cell
with maximum affinity (a = 1) and time counter set to the beginning of S-phase (c = 32). We
add a leukemic cell to the deterministic model by setting Ω+

0,32(TL) = 1 where TL is the time
of leukemia introduction. Note that since this Ph+ cell begins at the start of S-phase, it will
automatically divide into two leukemia cells after seventeen hours.

The law of large numbers does not hold at CML genesis, and so the stochasticity of the
ABM greatly affects the rate of initial cancer expansion. To examine the variability in CML
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progression, we ran 100 simulations of the ABM out to 15 years. The data is reported in
Table C.1 of Appendix C. Of the 100 runs, sixty-four resulted in extinction of the cancer stem
cells.

In the thirty-six runs that did not result in extinction, the cancer populations expanded
to a BCR-ABL1 level of over 99% within fifteen years of CML inception. To calculate the
BCR-ABL1 transcript ratio, we applied the same formula used in [10], i.e.

BCR-ABL1 ratio =
# of mature Ph+ cells

(# of mature Ph+ cells) + 2· (# of mature Ph− cells)
.

We defined the barrier crossing time to be the duration between cancer inception and the
moment the BCR-ABL1 ratio first reaches or surpasses 99%. Of the thirty-six simulations in
which cancer survived, the average barrier crossing time was 111300 ± 6000 hours (mean ±
std. dev.). For the deterministic model, the barrier crossing time was 112911 hours. Figure 4.2
shows the time evolutions of the mature Ph− and Ph+ populations for the deterministic model
and for the fastest and slowest CML expansions among the ABM simulations.
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Figure 4.2: Time evolution of the Ph− and Ph+ populations during CML genesis. The leftmost
graph corresponds to run number 87 of the ABM simulations in reported in Table C.1. It
crossed the 99% BCR-ABL1 barrier at 99286 hours. The rightmost graph corresponds to run
number 80 in Table C.1. It crosses the 99% BCR-ABL1 barrier at 127161 hours. The solid
black line in the center corresponds to the deterministic solution.

The fastest and slowest CML expansion in Figure 4.2 have barrier crossing times of 99286
hours and 127161 hours, respectively. Of the thirty-six ABM simulations that attained the
99% BCR-ABL1 barrier, twenty-four crossed the barrier earlier than the deterministic solution,
while twelve crossed later. As expected, the CML expansion rate of the deterministic solution is
slightly slower than the average CML expansion rate of the ABM, because the high extinction
probability in the ABM translates to a slower initial growth rate in the deterministic model.

4.3 Comparison of imatinib treatment

To simulate imatinib treatment, we use the end data from Run 4 of the ABM simulations as
the initial condition (see Table C.1.) Run 4 crosses the 99% BCR-ABL1 barrier at 112935
hours, near the crossing time of the deterministic model. Using the method of Section 4.1,
we group the cells from Run 4 into affinity wells and translate the ABM data into population
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variables for the deterministic model. It is impractical to fully specify the end data of Run
4, and therefore we do not include this information in the paper. In any case, the starting
condition hardly makes a difference for the results as long as both models start with the same
initial condition.

Setting the imatinib-related parameters to rinh = 0.050 and rdeg = 0.033, we simulate the
time evolution of the Ph−, Ph+, and imatinib-affected Ph+ populations over 1000 days. As in
[10], we conduct 20 ABM simulations and average the results to reduce stochastic variability
from low cancer populations.

Figure 4.3 shows the deterministic solution and the average of 20 ABM simulations of
imatinib treatment. The deterministic solution follows the ABM solution very closely over the
entire 400 day interval, and if there is any negligible tendency of the deterministic solution to
diverge from the ABM solution, it shows up near the end of the 400 days when the cancer
population has dropped to such a low level that stochastic effects begin to be noticeable. Both
our deterministic and ABM solutions show biphasic declines as noted in [10] and [6].
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Figure 4.3: BCR-ABL1 progression under imatinib treatment. The figure displays the de-
terministic solution and the average of 20 ABM simulations. Over time, the deterministic
solution begins to slightly overestimate the BCR-ABL1 ratio of the ABM simulations.

In Figure 4.4, we show the absolute and relative errors between the deterministic solution
and the average of 20 ABM simulations. We only show errors for the mature Ph− and mature
imatinib-affected Ph+ populations, because the unaffected Ph+ population quickly drops to
zero in both models. From the figures, we notice that the deterministic model overestimates the
mature imatinib-affected Ph+ population as time progresses. This divergence occurs because
both Ph+ populations become very small under prolonged imatinib treatment. As the Ph+

populations drop, the stochastic behavior of the ABM becomes more pronounced, leading to
a slight divergence between the ABM and the deterministic model.

5 Conclusion

In this paper, we present a paradigm for reformulating stochastic ABMs as deterministic
models. This methodology is demonstrated on a mathematical model of chronic myelogenous
leukemia. The main advantage of our approach is that the deterministic model can closely
reproduce the results of the agent-based model, with a significantly reduced computational
cost.

The primary reason for devising ABMs is to capture the individual variability within a
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Figure 4.4: Absolute and relative errors between the deterministic solution and the average of
20 ABM simulations. (a) Shown is the absolute error given by Mdet −MABM, where Mdet de-
notes the population for the deterministic model and MABM denotes the average population ob-
tained from 20 ABM simulations. (b) Shown is the relative error given by (Mdet−MABM)/Mdet.
As time progresses, the deterministic solution overestimates the imatinib-affected Ph+ popu-
lation.

population. Most deterministic models lack this variability, because they treat large collections
of agents as homogenous populations that interact homogeneously. However, our method does
not eliminate the intra-population diversity of the original ABM. Instead, it groups similar
agents into common wells and treats each well as a collective agent. By creating wells that are
small enough we can almost entirely recapture the individual variability in the original ABM.
Even if we formulate a deterministic version with as many wells as the ABM has agents, the
deterministic version has the advantage that it requires no random number generations.

In our particular example, we ran the ABM and deterministic model in Matlab 7.0. Of the
36 ABM simulations of CML genesis that attained the 99% BCR-ABL1 barrier, the average
running time was 6 hours and 22 minutes. On the other hand, the average running time for
the deterministic version of CML genesis was 4 minutes and 32 seconds. Therefore, a single
run of the deterministic version of CML genesis is over eighty times faster than a single run
of the ABM. In addition, with ABMs, one usually conducts multiple simulations to obtain
the average behavior. These computations were performed with the population sizes reported
in [10]. Furthermore, increasing the number of stem cells by a factor of 10 to reach realistic
values would not change the running time of our model. However, the running time of the
Roeder model will substantially increase.

The disadvantage of deterministic models is that they eliminate the effects of stochasticity,
so they cannot simulate agent extinction or provide confidence intervals for statistical variables,
such as the average time to attain the 99% BCR-ABL1 barrier. Stochastic effects, and hence
probabilistic and agent-based approaches, become more important when the population size is
small. Nonetheless, fast and accurate versions of ABMs are highly useful for parameter fitting
and estimation or large-scale statistical sampling, such as with Latin hypercube sampling
(LHS).

Our model provides a fast way for approximating solutions of the Roeder model. In our
derivation we approximated log r/ log d by 2. Replacing this ratio with a closer estimate to the
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one used in [10] can make both models closer to each other. Alternatively, the resemblance
between the two models can increase by adjusting the value of ρ ≈ log d.

The methodology used in this paper can be naturally extended to other problems. In
particular, in many ABMs, agents are characterized by a set of state variables. The space
of state variables can then be discretized, and the populations can be grouped into clusters
according to state. Additionally, population variables can be assumed to be continuous. In
this manner, one can derive deterministic versions of many ABMs. Since ABMs operate
at fixed time steps, constant rates of change naturally give rise to discretized state spaces.
Furthermore, most ABMs have traits that change at uniform rates (such as age). However,
even if some rates vary, sufficiently fine discretizations can still approximate the continuous
range of state values.

Deterministic versions of ABMs generally work best if the number of agents is large enough
to approximate their populations with continuous variables. As a further extension, we can
take time steps to the continuum limit and convert ABMs into corresponding PDE models.
In a forthcoming work, we will demonstrate this idea. A related work that provides a PDE
description of a simiilar model is [9].
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ican Cancer Society to PPL. The work of DL was supported in part by the NSF under Career
Grant DMS-0133511. The work of PSK was supported in part by the NSF Graduate Research
Fellowship Program.

A Algorithm for the ABM

At every time step, the ABM performs the following set of actions.
A- Preliminary calculations:

1. Calculate the total populations of A and Ω cells.

2. During imatinib treatment:

• Remove the proliferative Ph+ cells (Ω+ and Ω+/A) that undergo apoptosis.

• Determine which unaffected proliferative Ph+ cells (Ω+) become imatinib-affected.

B- At this stage in the algorithm, all cells fall into one of three categories: A stem cells, Ω
stem cells, differentiated cells. Depending on the category of the cell at this stage, we perform
the following actions:

1. Actions performed on each A stem cell:

• Determine whether the cell transfers to Ω. If a cell transfers, skip the remaining
actions for A cells. Note that the transition function depends on whether the cell
is Ph−, Ph+, or imatinib-affected. Calculate transition probabilities based on the
total population of Ω calculated in Step A1.

• Increase the cell’s affinity by a factor of r.

2. Actions performed on each Ω stem cell:

• Determine whether the cell transfers to A. If a cell transfers, skip the remaining
actions for Ω cells. Calculate transition probabilities based on the total population
of A calculated in Step A1.
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• If the cell’s affinity is less than or equal to amin, the cell becomes a differentiated
cell of age 0. If the cell differentiates, skip the remaining actions for Ω cells.

• If a cell’s affinity is greater than amin, decrease the cell’s affinity by a factor of d.

• Increase the counter c by 1.

• If the counter c is greater than or equal to 49, set c to 0 and create a new cell with
identical attributes and state values as the current cell.

3. Actions performed on each differentiated cell:

• Increase the cell’s age by one.

• If the cell’s age is a multiple of 24 between 24 and 480, inclusively, create a new
differentiated cell with with the same age as the current cell.

• If a cells age reaches 672, that cell dies.

Note that differentiated cells of age less than 480 are considered to be proliferating precursors,
whereas differentiated cells of age greater than or equal to 480 are considered to be non-
proliferating mature cells.

B Parameter estimates

The sigmoidal transition functions are given in [10] by

fα/ω(NA/Ω) =
1

ν1 + ν2 exp

(

ν3
NA/Ω

ÑA/Ω

) + ν4, (B.1)

where

ν1 =
(

h1h3 − h2
2

)

/ (h1 + h3 − 2h2) ,

ν2 = h1 − ν1,

ν3 = ln(h3 − ν1/ν2),

ν4 = fα/ω(∞),

and

h1 = 1/
[

fα/ω(0) − fα/ω(∞)
]

,

h2 = 1/
[

fα/ω(ÑA/Ω/2) − fα/ω(∞)
]

,

h3 = 1/
[

fα/ω(ÑA/Ω) − fα/ω(∞)
]

.

The transition characteristics fα/ω(.) are given in Table B.1.

C Data for 100 ABM simulations
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Param Description Ph− Ph+/imatinib-affected

amin Min value of affinity a 0.002 0.002
amax Max value of affinity a 1.0 1.0

d Differentiation coefficient 1.05 1.05
r Regeneration coefficient 1.1 1.1

τc Cell cycle duration 48 hours 48 hours
τS Duration of S phase 8 hours 8 hours
τG2/M Duration of G2 and M phases 8 hours 8 hours

λp Lifespan of proliferating precursor cells 20 days 20 days
λm Lifespan of mature cells 8 days 8 days

τ̃c Cell cycle of proliferating precursors 24 hours 24 hours

fα(0) Transition characteristic for fα 0.5 1.0

fα(ÑA/2) Transition characteristic for fα 0.45 0.9

fα(ÑA) Transition characteristic for fα 0.05 0.058
fα(∞) Transition characteristic for fα 0.0 0.0

ÑA Scaling factor 105 105

fω(0) Transition characteristic for fω 0.5 1.0 / 0.0500

fω(ÑA/2) Transition characteristic for fω 0.3 0.99 / 0.0499

fω(ÑA) Transition characteristic for fω 0.1 0.98 / 0.0498
fω(∞) Transition characteristic for fω 0.0 0.96 / 0.0496

ÑA Scaling factor 105 105

Table B.1: Parameters from [10].

Param Description Estimate

rinh Inhibition intensity 0.050 (no resistance)
0.001 (partial resistance)
0.000 (no resistance)

rdeg Degradation intensity 0.033 or 0.028 (no resistance)
0.0021 (partial resistance)
0.000 (complete resistance)

Table B.2: Imatinib-related parameters from [10]. The inhibition intensity, rinh, refers to
the probability that a proliferative Ph+ cell (i.e. an Ω cell) becomes imatinib-affected in a
given time interval. The degradation intensity, rdeg, refers to the probability that an imatinib-
affected, proliferative Ph+ cell dies in a given interval.
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Run Extinction/
# *Barrier*

time (hrs)

1 129
2 137
3 129
4 *112935*
5 1330
6 6552
7 2958
8 5111
9 690
10 *111734*
11 741
12 423
13 146
14 332
15 4189
16 1369
17 4001
18 *109724*
19 719
20 4571
21 *109706*
22 570
23 *108138*
24 736
25 *104632*

Run Extinction/
# *Barrier*

time (hrs)

26 129
27 *110593*
28 1184
29 1205
30 *116056*
31 *110861*
32 *112148*
33 2131
34 166
35 129
36 7251
37 *108604*
38 1248
39 1925
40 2039
41 *106971*
42 4657
43 2121
44 *105988*
45 605
46 *104553*
47 *114991*
48 166
49 129
50 935

Run Extinction/
# *Barrier*

time (hrs)

51 1068
52 960
53 2118
54 *109045*
55 1375
56 *103524*
57 137
58 134
59 *119755*
60 907
61 *108138*
62 736
63 *104632*
64 129
65 *110593*
66 1184
67 1205
68 *116056*
69 824
70 *111606*
71 *112950*
72 3830
73 *115972*
74 *105358*
75 160

Run Extinction/
# *Barrier*

time (hrs)

76 152
77 *126311*
78 5105
79 906
80 *127161*
81 11602
82 *109026*
83 *109276*
84 2481
85 *117133*
86 412
87 *99286*
88 13591
89 *109257*
90 3307
91 134
92 *120749*
93 1358
94 1770
95 605
96 *116000*
97 320
98 *109026*
99 1847
100 536

Table C.1: Extinction and barrier crossing times for 100 ABM simulations. Barrier crossing
times are listed between asterisks (*).
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