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1. Introduction. A black and white image can be realized as a graph of a discrete function
f : Q c R? = R. The values of this functiorf,(x), denote the intensity of the image at the
discrete pointx € Q: the functionf attains its maximum value at the brightest spots in the
image and minimum value of zero at the darkest spots. The graph of an image consists of
discrete pixels which for mathematical analysis, is postulated &$(&) function.

Many problems in image processing fall under two broad categorigaarfe segmen-
tation andimage restoration In image segmentatioone is interested in identifying con-
stituent parts of a given image, whera@amge restoratioraims to denoise and deblur an
observed image in order to recover its underlying “clean” image. Additive noise, denoted
by n, is inadvertently added to images due to various reasons, such as limitations of the im-
age capturing facilities or transmission losses. Besides noise, images could also be blurred
due to unfocused camera lens, relative motion between the camera and the object pic-
tured, etc; such blurring is modeled by a linear, continuous opef&toL,?(Q) — L3(Q),
e.g., convolution with a Gaussian kernel. Thus, the observed imggeguld be writ-
ten asf = TU + n, whereU is the clean image sought without blurring and noise.
The recovery of the clean image from its observed blurred and noisy vefsienthe
problem ofimage restoration This is an ill-posed problem which can be addressed by
several inverse problems solvers. We mention in this context variational techniques us-
ing Tikhonov-like regularization, PDE-based methods, filtering, stochastic modeling and
wavelets-based techniques that were developed for solving these image processing prob-
lems[i, 3,9, 10, 11, 12, 13, 15,17, 19, 20, 23, 24, 27).

Image restoration leads image decompositionFor example, an observed image
with additive noise and no blurring is naturally decomposed into a denoisedJpaend a
noisy party, = f —U,. Here,a is an algorithm-specifiscaling parameterin the case of
Gaussian smoothing, for example, the variance of the Gaussian kernel may serve as such
scaling parameter. Small scale features, categorized as noise, are then foregd ri@to
sulting in a larger scale versiod,,, of the original image . Thus, denoising of generates
a multiscale representatiodU, },ca With a varying scaling parameter € A. Our paper
deals primarily with image restoration using PDE-based methods. Indeed, the novelty of
our approach is the use of multiscale image representation baskiegro-differential
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equations. The image representation is motivated by the variational-based hierarchical im-
age decomposition oRp, 26]. Incidentally, this shows the intimate relation between the
PDE-based and variational approaches in multiscale algorithms for image restoration.

We begin with some examples where denoising methods give rise to multiscale repre-
sentations.

1.1. Multiscale representations using PDE-based modelsMe first discuss PDE-based
models which produce multiscale representatidg, t)}i-o for a given imagef. For con-
venience we use the time variablas the scaling parameter. One of the earliest PDE-based
methods for denoising a given imafe= U(-, 0) is the heat equation

oU oU
— =AU, U=UXT1: QxR R, — =
at (%0 QxR = on|

0. (1.1a8)
This yields a family of imagegU(-,t) : Q — R}, Which can be viewed as smoothed

versions off. In this linear set up, smoothing is implemented by a convolution with the

two-dimensional Gaussian kern@,(x) = >~ exp(—%’i), with standard deviation- =

2no?
V2t. Hence, details with a scale smaller thaf@t are smoothed out. Herd(t) := V2t
acts as &caling function We can say thgl (-, t)}io is @ multiscale representation bfas
U(., t) diffuses from the small scales fninto increasingly larger scales.
Image denoising by the heat equation is based on isotrofiicsitin, and consequently
blurs all edges, which may contain useful information about the image. This drawback was
removed by Perona-Malik (PM) model 3], which is based omonlinear dffusion

ou ou

o div(g(lVU|)VU), U:Q xR, — R; %LQ =0, (1.1b)

with an initial conditionU(-,0) := f. Here, the dtusion controlling functiong, is a real
valued function that vanishes at infinity, so that the amount ffision decreases as the
gradieniVU| increases. Thug is responsible for the anisotropic nature of the PM model.
The family of PM models are not well-posed. They also pose a problem for noisy images,
since noise produces high gradients which can be confused with relevant edges. These
shortcomings were removed by Gatt. al. p] by replacingg(lVU|) with g(IG, x VU]),
whereG, * VU denotes convolution of the two-dimensional Gaussian kespel

oU

% = div(g(G, *» VU|)VU), U:QxR, — R; = 0, (1.1c)

| 0Q

subject toU(-,0) := f.
The models 1.1) still suffer from a major drawback, namely, the solutid(t) diffuses
to the average valuﬁ f, ast —» . Thus, a stopping criteria = t. must be sought,
so that the desired denoised imddeg := U(t;) is obtained. This raises the question of
an appropriate stopping tinte. The necessity of finding a stopping time is removed in
Nordstdm’s biased anisotropic modei]]
ou ou

— =f-U+div(g(VU|)VU), U:Q xR, —R; o

= = 0. (1.2)

o

In this case, the solutiob(-,t) varies from the initial conditiotJ(-,0) = 0 to a desired
denoised imag¥., ast — . Thus, the famil{U (-, t)};>0 is an inverse scale representation
of U, with t acting as ainverse scalgparameter, e.g.1[, 16, 5]
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1.2. Multiscale representations using variational models.Variational approaches for
image processing like Mumford-Shah segmentatiii), [ 21], Rudin-Osher-Fatemi (ROF)
decomposition 34] etc., fall under a general category of Tikhonov regularizatidf.[

Here one solves the ill-posed problem of recoverirfgppm the observed = Tu+ 5. We

begin by restricting our attention to the pure denoising problem seeking a faithful, noise
free approximatioru € X of f = u+ 75 € L?, whereX ¢ L? is an appropriate space
adapted to measure edges and textures soughtamliscussion of the deblurring problem

is postponed to sectids). This leads to the following minimization problem:

f=w+vi,  [u,v] = arginf{ flulx + AMI}
f=u+v
The term||ul|x is a regularizing term and, + v, is a multiscale decomposition dfwhich
varies with the positive scaling parameter|n the case of the ROF mode&l4], for exam-
ple, edges are sought in the space of bounded variafioasBV(Q), e.g., B]. This yields
the BV, L?)-decomposition of :
f=utve, [unvi] = arginfuley + 4 IVIIZ.), (1.3)
=u+v
where||ul|gy = fQ |[Vu|. For small values ai, the minimizelu, is only a large-scale image,
consisting of only main features and prominent edgefs i@n the other hand, it is large,
thenu, is a small-scale image which contains many detail§.ofherefore, with viewed
as a varying parameter, the ROF variational decompositio®) §enerates a multiscale
representationu,},-o, of f, with A serving as annverse-scalgparameter. The behavior
of this multiscale decomposition, as a functionofs tied to the regularity of, once the
variational functional on the right is interpreted as an interpolatiefanctional, f].
The Euler-Lagrange equation characterizing the minimizgror the variational prob-
lem (1.3) reads,

1.
u ="+ 21 dIV( (1.4a)

vu, )
Vul )
For a fixed4, the minimizer of {.3) can be obtained as a steady state solution of the

nonlinear parabolic equation

ou 1 . u
E:f—u+ﬁd|v(—), u=su(xt): QxR —R;

@ =
an |0Q

Starting withu(-, 0) := f, the PDE {.4h) produces a multiscale representatiag, t)}io
which approaches the ROF minimizey, ast T «. Observe that in (1.4b) serves as a
forward-scaleparameter for the variational ROF mod#l3). Incidentally, the variational-

based PDEX 4D is related to Nordstrm model (..2) with g(s) := %s

1.3. A novel multiscale integro-differential model. In this paper, we introduce a novel
integro-djferential equation(IDE) for multiscale representation &f

t B Vu(x, t) ou
j;u(x,s)ds— f(x)+2/l(t) IV(|Vu(x,t)| 6_n|

subject to appropriate initial conditiom(-,0) = ug(X) outlined in sectior8 below. The
integral U(-,t) := fot u(-, s)ds gives a scaled version of the imagdefor a givent. The
scaling functionA(t) is at our disposal. The imadé(t) evolves witht, from a coarse (or
larger) scale images, to smaller scale images with finer detailt)ascreases with time.
Thus, (.5 is aninverse scalenethod, as opposed to tifierward scalemethods such as
heat equation or PM models.().

0. (1.4b)

), u: QxR - R; =0, (1.5

Q
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The motivation behind this IDE comes from the hierarchi@,(?) multiscale image
decomposition of Tadmor et. al2%, 26], which we will elaborate upon in the next section.
In particular, in sectio®.1we show how the choice of scaling functigft) dictates the size
of the residual imag¥/(t) := f—U(t). In sectiongt.1and4.2, we propose further extensions
of our IDE approach which introduce further refinements to tangential smoothing. A final
extension of the IDE model for dealing with deblurring is presented in seétiofihe
details of the numerical schemes used to implement the various IDE models are outlined in
the Appendix.

2. Motivation for the Integro-Di fferential Equation (IDE). Rudin, Osher and Fatemi
introduced a BV-based minimization functional for image denoisin@#, fwhich in turn
led to the unconstraine®y, L?) decomposition.3) in [7, 8]. The minimizer of (.3), u,,
is a coarse representation of the imdgecontaining smooth parts and prominent edges,
whereas the residual, contains texture and finer details, declared as “noisef.ofThe
parameten is theinversescale parameter afy, i.e. a small value of corresponds to more
details inv, and thus, the image, is more coarse and vice versa.

As a first step, we realize that the intensity of images is quantized. If wedehote
the small intensity quanta, then we rescale the coarse representafiorr-units. The
correspondingBV, L?) image decompositiori(3) takes the form

. Ao
f =1l + Vi [Usps Vo] := arginf{ [lullev + = IVIIZ.}. (2.1)
f=ru+v T

Tadmor, Nezzar and Vese observedis][that for a small value of the scaling parameter
Ao, the residual image,, may still contain important details when viewed at a finer scale.
Thus,v,, can be further decomposed using a refined scaling pararheteny,

Vip =Ty, +Va,, Uy, V,] 1= arginf {lulley + = IMIZ).
Vo =TUHV T
We can continue this process foy < 43 < 15...
. : 4 2
Vi, =ty Vi, [ug,va]i= argin {lulley + = IMIZ). (2.2)
Vitj_y STUHV T

Repeating this refinement step, we obtain the followirgarchicalmultiscale representa-
tion of f, [25]

f=1uy + Vv,
= ‘I'U/10 +TUy +Vy

=TUy, + TUy, +...TUy + V-

Thus, we have

N
Z Uy T = f = vy (2.3)
=0
The Euler-Lagrange equations characterizing minimizerg @j are
1 Vu,.
=7Uy — —di =, 24
Vi, = TUy, 20 IV(|VU/11|) (2.4)

From (2.4) and @.2) we get
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and inserting this intoA.3) yields the hierarchical decomposition bhs

N
vu
> uyr=f+ 1 div( A ) (2.5)
< VU, |

We consider a multiscale scaling, continuous in timg,t) : Q x R, +— R such that
Uy (¥) = u(x, t) := j7). Observe that the right hand side @f) is homogeneous of degree
zero. Lettingr — 0, the hierarchical descriptio.6) motivates a multiscale representation
u(x, -) which is sought as a solution to our IDE.5),

t ~ 1 Vu(xt) u-_
fo u(x, s)ds= f(x) + 210 d“’(wu(x,t)l)’ %Lg )

0. (2.6

The IDE 2.6) needs to be augmented with a proper choice of a scaling fung(ipand
one needs to set the initial condition®) andu(x, 0). These will be discussed in section
3.2

An an example for the IDE multiscale representation of an imfage

{U(-,t) = fot u(-, s)ds} ,
>0

is depicted in figure3.1. Here,u(x,t) denotes thespeedat which the image&J(t) changes
with time. The numerical scheme for its evolution using the IDES)Y(is prescribed in
sectionb.

Remark 1. Itis instructive to compare our IDE modél.g) with the time dependent PDE
used in solving the ROF minimizatiori.@). In contrast to the forward scale PDE realiza-
tion of (1.4, where the solution evolves frong-, 0) = 0 to a bigger scale image, our
IDE model .6) is an ‘inverse scale’ model, whose solution evolves figm 0) = ug(-) to

f asA(t) — .

3. Specifying the augmenting parameters for the IDE.To complete the formulation of
the IDE .6), one has to specify a scaling functiot{t) and theinitial conditions w(x) =
u(x,0). The functioni(t) serves as amverse scaling functianasA(t) — oo, the image
computed in2.6)
t
u() := f u(x, s)ds
0

extracts consecutively smaller scale slices of the original infag€he residualV/(t) :=
f —U(t) contains texture and noisy partsfaf The choices ofi(t) andug(x) are outlined in
sections3.1and3.2 below.

3.1. On the scaling function A(t). Itis argued in g that the dual norm,

(W, ¢)
W, := sup ————,
lelev=0  llellBy

is a proper norm to measure texture. The critical role of the scaling funetipm the IDE
model @.6) and its relationship with the star-norm is outlined in the following theorem.

Theorem 3.1. Consider the IDE mod€P.6)

ftu(x,s)ds= f(x) +
0

and let [, t) be the residual

vu(x, t)
21(1) IV(|Vu(><, )| ) ’

V(1) = f— UG, 0).
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Then size of the residual is dictated by the scaling functigp

VG, Ol = 20" (3.1)
Proof. For ¢ € BV(Q2) we have the following
(1 VUt 1
EIE ‘( o) d.v(wu(_, t)|)’“")' < Zglelev (32)
Thus, we havgiV(:, t)|, < Tl(t) Lettinge = u(-, t), we get
1 . (Vut) 1
i ()40 = gt vt 39
From 3.2) and (3.3) we get the desired resuls.(). m]

t=10

Ficure 3.1. The imagesU(t) = fotu(~,s)ds of the IDE (.5 att =
1,4,6,10. Here A(t) = 0.002x 2,

The importance of Theoref1lies in the fact that it enables us to dictate the star-norm
of the residual. For small values dft), we get a significant amount of texture in the
residual and thus, the imag#t) := fot u(-, s) dswill contain only features with big scale.
On the other hand, aXt) increases, more and more details will appeadif). Hence,
the functionA(t) can be viewed as annverse scale functiorfor U(t). In particular, if
we choose the scaling functiotft), such that linp,., A(t) = ¢ with a prescribed constant
¢, then lim_ .|Vl = 2—1C Thus, Theoren3.1 enables us to denoise images to any pre-
determined level in th&8V* sense.

The previous theorem establishes a weak convergence iB-tbpology [L8, §1.14],
U(t) — f, for all L>-images. In fact, a strongér-convergence holds for slightly more
regular images, e.gf, € BV. To this end we first prove the following energy decomposi-
tion, interesting in its own sake, along the lines 2%,[theorem 2.2].
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Theorem 3.2. Consider the IDE mod€P.6) associated with an4- image f, and let ., t)
be the residual, ¥f) = f — U(t). Then the following energy decomposition holds

t 1
f g uC- Iy B+ IVEDIE: = IFIE.. (3.9)

To verify (3.4), integrate 2.6) againstu(-, t) in space and time to find

t t 1
LO(U(-,S),US(-,s))ds—(f,U(-,t))=—f 2 M- SNlev ds

The expression on the left is then rewritten as
t
1 2
| (U906, 9)ds— (1.UC.0) = FIVC.IE: = (F.UED)

1
= S[(Ven - fuey - 1)) - ||f||L2,
and @.4) follows from the last two equalities.

Remark 2. A different, equivalent way of stating Theoren? is that ((t), V(t)) form a

maximal pairin the sense that they turn the inequality ¢) < |W|svll¢ll« into an equality:
(uC, 1), V(. 1) = IuC, HllevlVE Bl (3.5)

Indeed, diferentiating 3.4) with respect to time we find

/l(t) UG, Yllsv + 2(V(-, 1), —u(-, 1) =

and @.5) follows in view of (3.2), [[V(, t)|l. = 1/24(t).

We now turn to upper-bound thé-size of the residual. Using the usual duality estimate
together with 8.1) to find

IVC DI < IVE DIV Dlley = 52 IV, Dllev, (3.6)

2/l(t)
and it remains to study how faig¥/(-, t)||sv grows. To this end we write
t/2 t
V(xt) = f(x) - f u(x, s)ds— f u(x, s)ds
s=0 s=t/2
which implies
t/2 1
A(s)
Inserting this into 8.6) we end up with the desired upper bound,
1 A(Y2) '
V(- t —||f
IVCBIE, < 2/l(t)” llsv + 2/1(t)” 1122 w2 2109

Now, the first term on the right vanishes fére BV at thet = co-limit as A(t) T oo; the
second term vanishes if(t) increases fast enough to form a Hadamard sequence so that
A)/At2) T oo (e.g., A(t) ~ 2); and the third term vanishes &l oo as the tail of the
uniformly bounded time integral in the energy boud4. We summarize by stating the
following.

t
VG Ylley < [fllsy + (/2) f L ju(. 9llevds+ A() f 1(1 It Sl ds

5= uC, 9llsvds
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Theorem 3.3. Given an image fe BV, we consider the IDE modé€2.6) with rapidly
increasing scaling function(t) so that

A(Y2) toeo

A(t)
Then, f admits the multiscale representation (where equality is interpretet sehse)
f(x):f u(x, s)ds (3.7a)
s=0
with energy decomposition
© 1
fzzf ——|lu(-, 9)llgv ds 3.7b
1117 o /l(s)” (-, 9llsv ( )

3.2. Setting the initial conditions. At t = 0, the IDE @.6) reads
1 . (Vu(0)
f =
20 d'v(wu(-, 0)|) 0
Theoren.1tells us that it has no solution if the initial value of the scaling functi¢®) =
Ao is set such that(0) # 1/(2||f|l.). To gain a better understanding for the choice of the

initial parametersd(0) = Ao andug, we return to the underlying discrete version of the
IDE, given by hierarchical decompositioB.t)

This is a discrete version of the IDE.E), where the term on the LHS is a quadrature of the
t
corresponding integraf u(x, s)ds sampled at the equidistant time-stefps; jr, with 7

0
being the basic intensity quanta.
At t = 0,u(0) = uy() is determined as the solution of

1 . (Vu(,0) )
uO)yr = f + div .
=1+ 55(Foco)
This is the Euler-Lagrange equation associated with the ROF variational decomposition

(2.1), and according to1[8, Theorem 3], 25, Corollary 2.5], the minimizer of the latter
vanishesy(0) = O, if

A0) < 5 (3.8)

Assuming that§.8) holds, then at the solution at the next hierarchical siép= 7) = u,,

is determined by
1 . (Vu(,7)
=f .
u(t)r + 20 dlv(|Vu(-,T)|)
Viewed as the corresponding minimizer) will vanish if A(r) = 11 < 1/(2||f|l.). This
process will continue to produce vanishing solutiog) = u,, = 0 until the first time,
to := jor, when the scald(to) = 1, becomedarge enougiso that

Ato) > (3.9a)

1
2lIf]l."
At this scale, the IDE picks up the first large features of the imiag&th non-trivial initial
conditions,u(to),

_ 1 . VU(',to)
uto)r=f + 20(0) le(IVU(-,to)I)' (3.9b)
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t=10

Ficure 4.1. The imagedJ(t) = fot u(-, s) ds for the modified IDE 4.1)
att = 1,4,6,10. Hered(t) = 0.002x 2'.

The IDE .6),(3.9) then can be equivalently written as

. ) Vu(x, t)
fto u(x, s)ds= f(x) + 2100 d'V(|Vu(x,t)|

where the initial timelp is determined as the first scale such tf&af) holds. This setup
is in complete analogy with the initialization process of the hierarchical decomposition in
[26, section 2.3].

ou
— = t>t A
) w0tz GO
Q

4. Extensions of the IDE model. Our IDE model is motivated by a variational formula-
tion. An important advantage of the IDE model, however, is that it is no longer limited
to a variational formulation and we can therefore extend it using PDE-based modifications
similar to (L.1H and (L.19. We will discuss such modifications in sectiohd and4.2
below.

4.1. IDE with filtered di ffusion. Recall that one of the drawbacks in using the heat equa-
tion (1.19 for denoising is that it results in an isotropididision. The PM modell(1b)
removes this drawback by introducing dfdsion controlling function, that controls the
diffusion near prominent edges in a given image. We propose a similar modification to our
IDE model, seekingi(x,t) : Q x R, — R such that

t
_ 9(IGs * VU D) . ( Vu( 1)) du
fou(x,s)ds— f(x) + 210 div Nux i)’ ‘9”|m =0, (4.1a)
subject toug(x) = u(:, 0) such that
1 - Vug ) 9(Gs * Vi)
Up = f + —=09(G, x Vug|) div ——], A0)> ——
0= 2% o (lVU0| O =5,
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Similar to the PM modelsl(1b), we can choose the pre-factor functigso that it van-
ishes at infinity to control the ffusion at prominent edges in the image. Thus, the function
g acts here as a high-pass filter which retains prominent edges in the ﬁwa@e s)ds
without diffusing them. As choices for suctgdilter, figure4.1 displays the results of the
modified IDE @.19 with

1
o(s) = YO (4.1b)
Here, the constatdetermines the extent to which edges are preserved: for ginakle-
vant edges are preserved whereas for Igigethey are dfused. Detailed discussion of the
numerical scheme for the filteredfiilision model 4.1) is given in sectiorb. Comparing

t=1 t=10

Ficure 4.2. The imaged)(t) = fot u(-, s) ds, of the standard IDEI(5) at
t=1,4,6,10. HereA(t) = 0.002x 2.

t=10

Ficure 4.3. The imaged)(t) = fot u(-, s)ds of the filtered IDE {.19 at
t=1,4,6,10. HereA(t) = 0.002x 2.

the results of the filtered IDE4(19 shown in figured.1, we observe that edges, which are
diffused by the basic IDE2(6) as depicted in figur&.1, are preserved in figuré. 1 This
phenomenon is more apparent for smaller valuets dife to the fact that asincreases,
U(-,t) in both models approachds and consequently, fier from less dtusion of the
edges. The usefulness of the filtereffuion IDE model becomes apparent when certain
edges are required in the scale-space for smaller value$-of example, in figuré.2, the
edges are blurred for smaller valuestafith the standard IDEI(5), but with the filtered
diffusion IDE @.19 we retain relevant edges, as shown in figlir@

4.2. IDE with tangential smoothing. The approach of using theftlision controlling
function works well with natural images with moderate gradients. With other images,
however, such as those which often arise in computer vision and industrial applications,
the boundaries of their internal objects are marked with large, sharp gradients; for exam-
ple, characteristic functiogp, whereD c Q. In such cases, we can choose to smooth
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fatt=0 t=1 t=4 t=7

Ficure 4.4. A given noisy imagd and the IDE imagesLt u(-, s)ds of
(1.5 att = 1,4, 7. Here, the scaling function it) = 0.002x 2!. Most
of the noise is present at scdle 7.

only in the tangential direction to the boundaries of the objects, &]gT¢ this end, write
AU = UrT + UyN, Whereurt anduyy are the tangential and normaldision components,
ie.
Vu Vu Vu
Urt = Au— Uy = [Vuldiv| = |, unn = (=, Veu—).
TT nn = VUl (|VU|) NN <|Vu| qu|>

Restricting the dtusion in our IDE model to tangential directions, this leads to modified
IDEs with tangential smoothing,

t 1 [ Vu(xt)). ou
fou(x, s)ds= f(x)+m|Vu(x,t)|d|v(|Vu(X’t)|), %lm =0, 4.2)
and with tangential smoothing and filtering,
t
_ g(IG, * Vu(x, t)]) A Vu(xt)), ou
ﬁu(x, s)ds= f(X) + 210 [Vu(x, t)| div Nux D)’ 6n|m_ .
(4.3)

As before,u : Q xR, — R evolves in inverse scale space starting wifd) andug(x) =
u(-, 0),
1 - Vuo 9(IG * V)| Vuo|
=f + =—=0g(G, *x Vup|)|Vup| div[ =— ., A(0) >
ot = T+ 23y MG * VeIVl 'V(Wuol) © 211l

Numerical experiments are shown in figurésy-(4.6). Compare the standard IDE results
(1.5 shown in figure4.4 with the tangential smoothingt(2) shown in figure4.5and with
additional filtering, ¢.3), in figure 4.6. the point here is that tangentialfidision model
preserves the edges, while denoising the rest of the image in a much faster rate than in the
standard IDE model.

5. The IDE model for deblurring. We now extend our IDE model to deblurring of im-
ages. Blurring is modeled by a continuous, linear oper&tot 2(Q) — L2(Q). Examples

of a blurring operator include convolution with a Gaussian kernel, directional averaging etc.
Thus, an observed image is expressedl asT U, whereU is the original unblurred image
which we aim to recover. Hierarchical decomposition of blurred images was discussed in
[26]. To this end, one sets a sequence of increasing scaling paramgters; < A,....
Starting withv_; = f, we get the following iteration

_ A
Vi, =TT Uy + vy, arginf {llulley + — IMIE)- (5.1)

Vaj_y =TT UV
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fatt=0 t=1 t=4 t=7

Ficure 4.5. The same noisy imadeand the correspondinﬁ u(-, s)ds
of the IDE with tangential smoothingl(2) att = 1,4, 7. The same scal-
ing function as before)(t) = 0.002x 2'. Large portion of the noise is
suppressed at= 7 but there is normal diusion of edges.

fatt=0 t=1 t=4 t=7

Ficure 4.6. The same noisy image and the imagf@t:u(, s)ds of IDE
with tangential smoothing and filterind.@Q) att = 1,4,7. Here,A(t) =
0.002x 2! andg(s) = 1/(1 + (s/5)?). Noise is suppressed with minimal
normal edge diusion.

This gives us dierarchical multiscale representatiasf the blurred imagd presented
in [26],
f=1T U,lo + V,{O
=11 Uy, + T Uy, +Vy,

= TTU,IO +TTU/11 +...TTU/1N + V-

Thus, after applying the conjugaié to the above equation we obtain,

N
TZ T'Tuy, = T = T*v,. (5.2)
j=0

Using the Euler-Lagrange characterization of the minimizebif)(

VU,1J )
IVuyl )

1 .
T*V/lj—l = TT*T u/lj - i d|V(
]

which, in view of T*v,, , = 7T*Tuy; + T*v,; implies

1 Vu,,
T*v, = ——div L.
VT (|Vuﬂ,|)
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@) (b)

Ficure 5.1. Image(a) shows a blurred image of Lenna blurred using a
Gaussian kernel with- = 1. Image(b) shows the result of the deblurring
IDE model 6.4), ast — oo.

Using the above expression we can rewrie) as

N
1 .. (Vu,
E TTur=T"f+ —div|=—2|. 5.3
o T (quaNl) 9

As 1 — 0, the expressiorb(3) motivates the following integro-fierential equation (IDE)
for deblurring, whereu(x, t) : Q x R, — R is sought such that

- - 1 (Vuxb), du
fOTTu(x,s)ds_T f(X)+2/l(t) dlv(qu(x,t)I)’ 6n|m_0' (5.4

t
In this IDE,f u(-, s) dsprovides a multiscale representation of timolurred image Ux, t) :=
0

fot u(x, s)ds Note that the blurring operatdr is in general non-invertible for generiaf
images, but it is assumed to be invertible on the restricted set of multiscale representations
t

T*Tu(x, s)ds Thus, the deblurring IDEX(4) gives us a recipe to extract the unblurred

0
imageU from its blurred versiorf.
We can see the deblurring result 6t4) in figure5.1 Furthermore, we can modify the
deblurring integro-dterential equation using edge enhancing filtering, whett>at) =
t

f u(x,s)ds: Q xR, — R is sought as a solution of
0

TTUX D) = T f(x) + LG x U D) div( Vu(x, 1) ) ou

2A(t) IVu(x. 1))’ an|_ 0 (5:5)
Conclusions. We introduced a novel integrofrential equation (IDE) for multiscale de-
composition of images. This is a continuous analogue of the hierarchical decomposition in
[25, 26] with the same computational complexity of one ROF solver per time step. The ba-
sic IDE evolves in inverse time scale. Its continuous formulation enables us to incorporate
related techniques from PDE-based methods of filtering, anisotropic tangential smoothing
and deblurring. The resulting family of IDE models depend on a scaling funct{tn at
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our disposal, which is shown to dictate the size of the error measured in theBvEak
norm. Numerical simulations show the utility of our IDE model as a promising alternative
for PDE-based models. In particular, the deblurring results based on the IDE model are
particularly striking.

6. Appendix: numerical discretizations. In this appendix we describe the humerical im-
plementation of 1.5 and 6.4). First let us concentrate on the basic IDE modeb),
rewritten here for convenience:

vuxy ) . 6.1)

t 1
u(x,s)ds= f(x) + div
[ e9as= 109+ 5 oy
t
As usualU(t) := f u(x, s) dsis the exact solution. Leit be the time step and™* will
0
denote the corresponding computed solutioti*at= (n + 1)At:
Un+1 =U"+ Wn+1 Wn+1 - Wn_+1 .: u_nJ_rlAt
9 - |’] . |’J 9
whereu’* = u™(ih, jh) is the approximate solution of the IDE at grid poiftt,(h). With
this, the IDE 6.1) is discretized at = t"™*:

n k+1 _ ¢ .

k k+1 k+1 k
L1 Wit1j ~ W] Wij T Wi
2/1(n+1)h2 K K K K
| e? + (Daek )2 + (Doyek)? \/32 + (D_x)? + Doy, )7 |
6.2)
k k+1 k+1 k ]
1 Wi~ Wi Wi T Wij

+ 2/1(n+1)h2

| £? + (Dowk)? + (D)2 (22 + (Dowesk )2 + (D_yek )|

The nonlinear systen6(2) is solved using Jacobi iterations which leads to the fixed-point
iterations for computing)<+*:

(MHD)R2(f . _ 0 k k k k
w!(*_'l _ 21 h (fl,J Ui,j) + CEwi+1,j + wai_l’j + Csa)i’j_'_l + CNwi,j—l (6 3a)
) 210+ Dh2 4 ¢z 4+ o + Cs + Cy ' ’

Here, 2™ = 1(t™1) are the discrete scaling parameters eaaby, Cs, Cy are the discrete
codficients

1 1
Ce = , Cw:= s
\/82 + (Daxt )2 + (Doyek )2 \/,92 + (Dox))? + (Doy ;)
1 1
Cs = , Cn = s
\/52 + (Do,(a)ik!j)2 + (D+ya)i‘fj)2 \/82 + (DOXO):fj,l)z + (D—y“’:(,j 2

In the computations above we det= 1. To minimize the grid ffects, we alternate
the directions in which the above iterations were carried out, starting at the top-left corner
position (11), fixingi = 1 we varyj = 110 jmax (East-South direction), initiating the
next iteration at the top-right corner, and so on. This fixed point iterati6rés)(yield

k—o0

W — W™ = y"1At and we can update the computed imabe
U™l =uyn+wmt (6.3b)
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Next, we consider the filtered IDE (13, which is rewritten here for convenience as

t B (G, * Vu(x, 1)) ,. ( Vu(x1t)
Lu(x, s)ds= f(x) + 210 dlv(|Vu(x,t)|)'

The only diference here is the additionafiision controlling functiorg(|G, » Vu(x, t)]),
whereG,; is the two-dimensional Gaussian smoothing with standard deviatioThe

functiong(s) = Wl/ﬁ)z with 8 = 5 is used in our numerical experiments. We approximate

Vwi“j
g(le‘(r * VU(X, t)|) ~ g(|G(r * A_t”) >

and the expression on the right enters into the RHS6af).( We end up with the same
discrete IDE schemes(3) with ™ - A0/g(|G, x Va/At]).

Finally, we describe the numerical implementation of the deblurring IDE mo8efs (
and its filtered versiony(5). The equationq.4) is rewritten here for convenience.

—_ . vu(x 1)
T Tfo u(x,s)ds=T"f(x) + 210 dlv(qu(x,t)|)' (6.4)
t
LetU(t) := u(x, s)ds As before, the left hand side of the above equation is approxi-
mated as follgws
U™t =unewWmh o W = Wit = u AL, (6.5)

and time-marching to a steady solution 6f4) yields the following iteration for computing
WL agsW™t = lim wX,
Wil — )k

w: .
—L M T TN +
ot i

k

k k k
(CEO‘)H—LJ + CWwi—l,j + Cswl’j+1 + CNwI,J—l)

1
2/1(n+1)h2

1
- thTl(CE + Cw + Cs + CN),

wherecg, cw, Cs, Cy are defined as before.
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