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ABSTRACT. We construct uniformly bounded solutions for the equations divU = f and curl U = f in

the critical cases f ∈ Ld
#
(Td ,R) and f ∈ L3

#
(R3,R3). Bourgain & Brezis, [BB03, BB07], have shown that

there exists no linear construction for such solutions. Our constructions are special cases of a general

framework for solving linear equations of the form LU = f , where L is a linear operator densely

defined in Banach space B with a closed range in a (proper subspace) of Lebesgue space L
p
#
(Ω), and with

an injective dual L ∗. The solutions are realized in terms of a multiscale hierarchical representation,

U = ∑
∞

j=1
u j, interesting for its own sake. Here, the u j’s are constructed recursively as minimizers of the

iterative refinement step, u j+1 = arg min
u

{
‖u‖B+λ j+1‖r j−L u‖p

Lp(Ω)

}
, where r j := f −L (∑

j
k=1

uk),

are resolved in terms of an exponentially increasing sequence of scales λ j+1 := λ1ζ j. The resulting

hierarchical decompositions, U = ∑
∞

j=1
u j, are nonlinear.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

We begin with a prototype example for the class of equations alluded to in the title of the paper.

Let Ld
#
(Td) denote the Lebesgue space of periodic functions with zero mean over the d-dimensional

torus T
d . Given f ∈ Ld

#
(Td), we seek a uniformly bounded solution, U ∈ L∞(Td ,Rd), of the problem

(1.1a) divU = f , U ∈ L∞(Td ,Rd).
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A classical solution is given by U = ∇∆−1 f , which in addition to (1.1a), satisfies the irotationality

constraint,

(1.1b) curlU = 0.

Clearly, this solution lies in W 1(Ld
#
). But since W 1(Ld

#
) is not contained in L∞, the solution may

— and in fact does fail to satisfy the uniform bound sought for the solution of (1.1a), [BB03, §3,

Remark 7]. Thus, the question is whether (1.1a) admits a uniformly bounded solution by giving

up on the additional constraint of irotationality (1.1b). The existence of such solutions was proved

by Bourgain and Brezis, [BB03, Proposition 1] using a straightforward but non-constructive duality

argument based on the closed range theorem. We present here another duality-based approach for the

existence of such solutions. Our approach is constructive: the solution U is constructed as the sum,

U = ∑u j, where the {u j}’s are computed recursively as appropriate minimizers,

u j+1 = argmin
u

{
‖u‖L∞ +λ12 j

∥∥ f −div
( j

∑
k=1

uk

)
−divu

∥∥d

Ld

}
, j = 0,1, . . .,

and λ1 is a sufficiently large parameter specified below.

This construction is in fact a special case of our main result which applies to general linear problems

of the form

(1.2) L U = f , f ∈ L
p
#
(Ω), Ω ⊂ R

d , 1 < p < ∞.

Here, L : B 7→ L
p
#
(Ω) is a linear operator densely defined on a Banach space B with a closed range

in L
p
#
(Ω). The subscript {·}# indicates an appropriate subspace of Lp,

L
p
#
(Ω) = Lp(Ω)∩Ker(P),

where P : Lp 7→ Lp is a linear operator whose null is “compatible” with the range of L so that the

dual of L is injective, namely, there exists β > 0 such that

(1.3) ‖g−P
∗g‖

Lp′ ≤ β‖L ∗g‖B∗, ∀g ∈ Lp′(Ω).

The closed range theorem combined with the open mapping principle tell us that equation (1.2) has a

bounded solution, U ∈ B. Our main result is a constructive proof for the existence of such solutions

in this setup.

Theorem 1.1. Assume that the apriori estimate (1.3) holds. Then, for any given f ∈ L
p
#
(Ω),1 < p < ∞,

equation (1.2) admits a solution of the form U = ∑
∞

j=1
u j ∈ B,

(1.4) ‖U‖B
<∼ β‖ f‖Lp ,

where the {u j}’s are constructed recursively as minimizers of

(1.5) u j+1 = argmin
u

{
‖u‖B +λ j+1

∥∥r j −L u
∥∥p

Lp

}
, r j := f −L

( j

∑
k=1

uk

)
, j = 0,1, . . ..

Here, {λ j} j≥1 can be taken as any exponentially increasing sequence, λ j+1 := λ1ζ j, j = 0,1, . . . with

a sufficiency large λ1
>∼

β

‖ f‖p−1

Lp

.
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Remark 1.1. The description of U as the sum U = ∑ u j provides a multiscale hierarchical decom-

position of a solution for (1.2). The role {λ j}’s as the different scales associated with the u j’s, is

realized in terms of the “energy bound”

(1.6)
∞

∑
j=1

1

ζ j
‖u j‖B

<∼ β‖ f‖Lp , f ∈ L
p
#
(Ω), λ j+1 = λ1ζ j.

The particular choice of dyadic scales, ζ = 2p−1, for example, yields the specific B-bound in (1.4),

(1.7) ‖U‖B ≤ β2p

p
‖ f‖Lp , U =

∞

∑
j=1

u j, λ j+1 =
β2(p−1) j

‖ f‖p−1

Lp

, j = 0,1, . . ..

Remark 1.2. We emphasize that the hierarchical construction U = ∑u j does not require apriori

knowledge of the constant β appearing in the duality estimate (1.3). The parameter β enters through

the initial scale, λ1, which is chosen sufficiently large so that,

λ1
>∼

β

‖ f‖p−1

Lp

>
1

‖L ∗(sgn( f )| f |p−1)‖B∗
.

By lemma 5.3, it dictates a non-trivial first hierarchical step, u1 = argmin
u

{
‖u‖B +λ1

∥∥ f −L u
∥∥p

Lp

}
.

If the initial scale λ1 is underestimated, however, then as already noted in [TNV08, Remark 2.1]

(consult lemma 5.2 below), the hierarchical expansion will yield zero hierarchical terms, u j ≡ 0, j =

1,2, . . ., until reaching the critical scale λ12 j0 >∼ β‖ f‖1−p
Lp which will dictate the initial non-zero step of

the hierarchical decomposition, U = ∑ j= j0
u j. In this sense, the construction of hierarchical solution,

U = ∑u j is independent of the apriori estimate (1.3): the latter is only needed to guarantee that there

exists a β so that the hierarchical construction will indeed pick up at some finite scale λ j0 .

The main novelty of theorem 1.1 is a constructive proof of the closed range theorem for operators

with a closed range in L
p
#
, 1 < p < ∞. The proof of the special case p = 2 is given in section 2: here, we

trace precise bounds and clarify their role in the hierarchical construction. The L2-case serves as the

prototype case for the general setup of hierarchical constructions in Orlicz spaces, outlined in section

3. The general Lp-case is then deduced in section 4. Finally, the characterization of minimizers, such

as those encountered in (1.5), is summarized in section 5.

L2-based hierarchical decompositions were introduced by us in the context of image processing,

[TNV04], and we realize that their construction in the more general context of the closed range

theorem could be useful in many applications. We demonstrate the hierarchical constructions in two

important examples recently studied by Bourgain & Brezis, [BB03, BB07].

1.1. Bounded solutions of divU = f ∈ L
p
#
. Let P denote the averaging projection, Pg := g where

g is the average value of g. Given f ∈ L
p
#
(Td) :=

{
g ∈ Lp(Td) | g = 0

}
, then according to theorem

1.1, we can construct hierarchical solutions of

(1.8) divU = f , f ∈ L
p
#
(Td), 1 < p < ∞,

in an appropriate Banach space, U ∈ B, provided the corresponding apriori estimate (1.3) holds,

namely, there exists a constant β > 0 (which may vary of course, depending on p,d and B), such that

(1.9) ‖g−g‖
Lp′ ≤ β‖∇g‖B∗ , ∀g ∈ Lp′(Td).

We specify four cases of such relevant B’s.
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#1. Solutions of (1.8) in Ẇ 1,p. Since

‖g−g‖
Lp′(Td) ≤ ‖∇g‖

Ẇ−1,p′(Td ,Rd), ∀g ∈ Lp′(Td),

we can construct hierarchical solutions of (1.8) in B = Ẇ 1,p(Td ,Rd),1 < p < ∞. This is the same

integrability space of the irrotational solution of (1.8), ∇∆−1 f ∈ Ẇ 1,p(Td ,Rd).

Remark 1.3. The Lp-valued hierarchical constructions in theorem 1.1 is derived from a more general

result of operators valued in Orlicz spaces, LΦ, associated with proper N-function Φ. This is carried

out in our main theorem 3.2 below, under the assumption that (3.13) holds. The end cases p = 1,∞

are excluded from theorem 1.1 since the corresponding Lp-spaces are not associated with proper N-

functions and the closure assumption (3.13) fails. Observe that the end cases p = 1,∞ do not admit

Ẇ 1,p solutions for divU = f ∈ Lp, [BB03, Section 2], [DFT05]. Instead, theorem 3.2 suggests that

the corresponding end cases apply to critical L(logL) and exp(L) spaces, but we shall not pursue this

here.

#2. Solutions of (1.8) in Lp∗. By Sobolev inequality

(1.10) ‖g−g‖
Lp′(Td) ≤ β‖∇g‖

L(p∗)′ (Td,Rd )
,

1

p∗
=

1

p
− 1

d
, d ≤ p < ∞, ∀g ∈ Lp′(Td),

where the case p = d corresponds to the is the Sobolev-Nirenberg inequality, ‖g−g‖
Ld ′(Td) ≤ β‖g‖BV (Td).

We distinguish between two cases.

(i) The case d < p < ∞: the equation divU = f ∈ L
p
#
(Td) has a solution U ∈ Lp∗(Td ,Rd). This is

the same integrability space of the irrotational solution ∇∆−1 f ∈W 1,p(Td ,Rd) ⊂ Lp∗(Td ,Rd).

(ii) The case d = p: the equation divU = f ∈ Ld
#
(Td) has a solution U ∈ L∞(Td ,Rd). This is the

the prototype example discussed in the beginning of the introduction. According to the intriguing

observation of Bourgain & Brezis, [BB03, Proposition 2], there exists no bounded right inverse K :

Ld
#
7→ L∞ for the operator div , and therefore, there exists no linear construction of solutions f 7→ U

(in particular, ∇∆−1 f cannot be uniformly bounded). Theorem 1.1 provides a nonlinear hierarchical

construction of such solutions.

Remark 1.4. We rewrite the hierarchical iteration (1.5) with λ1 = C‖ f‖1−p
Lp in the form

[u j+1, r j+1] = argmin
L u+r=r j

{
‖u‖B +Cζ j

∥∥r
∥∥p

Lp

‖ f‖p−1

Lp

}
, r j :=

{
f , j = 0

f −L
(

∑
j

k=1
uk

)
, j = 1,2 . . ..

Observe that if [u1, r1] is the first minimizer associated with r0 = f , then the corresponding first

minimizer associated with α f is [αu1,αr1], and recursively, the next hierarchical components are

[αu j,αr j]. Thus, as noted in [TNV08, remark 1.1], the hierarchical decomposition is homogeneous of

degree one: if we let u j ≡ u j[ f ] specify the nonlinear f -dependence of the hierarchical componenets

on f , then u j[α f ] = αu j[ f ].

#3. Solutions of (1.8) in L∞ ∩Ẇ 1,d . A central question raised and answered in [BB03] is whether

(1.8) has a solution which captures the joint regularity, U ∈ B = L∞∩Ẇ 1,d(Td ,Rd). To this end, one

needs to verify the duality estimate (1.9), which now reads

(1.11) ‖g−g‖
Ld ′(Td) ≤ β‖∇g‖

L1+Ẇ−1,d ′(Td ,Rd), ∀g ∈ Ld′
(Td).

This key estimate was proved in [BB03]. Thus, theorem 1.1 converts (1.11) into a constructive proof

of:
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Corollary 1.2. The equation divU = f ∈ Ld
#
(Td) admits a solution U ∈ L∞ ∩Ẇ 1,d(Td ,Rd), given by

the hierarchical decomposition U = ∑ j=1 u j, which is constructed by the refinement step,

u j+1 = argmin
u

{
‖u‖L∞∩Ẇ1,d +λ1ζ j

∥∥ f −div
( j

∑
k=1

uk

)
−divu

∥∥d

Ld

}
, j = 0,1,2 . . .,

with ζ > 1 and λ1
>∼ β‖ f‖1−d

Ld .

Remark 1.5. We note the key role of the duality estimate (1.11). In d = 2 it was proved by Bour-

gain & Brezis using a direct method outlined in [BB03, Section 4]. The two-dimensional esti-

mate was revisited by direct proofs of Maz’ya [Ma07] and Mironescu [Mi10]. For d > 2, how-

ever, (1.11) is in fact a byproduct of Bourgain & Brezis construction of L∞ ∩ Ẇ 1,d solutions for

divU = f , [BB03, theorem 1]: their construction, which is based on Littlewood-Paley decomposition,

is rather involved. Corollary 1.2 offers a simpler construction of such solutions which could be im-

plemented in actual computations based on the construction of minimizers for, ∨div (r,λ ;L∞,Ld
#
) :=

infu

{
‖u‖L∞ + λ‖r − divu‖d

Ld

}
, [GLMV07, LV05]. It would be desirable to develop efficient algo-

rithms to compute minimizers of ∨div (r,λ ;L∞∩Ẇ 1,d ,L
p
#
). Spectral approximation of such minimizers

was discussed in [Ma06].

Since the proof of the dual estimate (1.11) in d > 2 dimensions is indirect, a specific value of β
is not known. As noted earlier, however, the hierarchical construction can proceed without a precise

knowledge of β : if one sets λ1 = ‖ f‖1−d

Ld and this initial scale underestimates a correct value of β > 1,

then it will take at most j0 ∼ log(β) steps before picking-up non-trivial terms in the hierarchical

decomposition, U = ∑ j= j0
u j.

#4. Solutions of (1.8) in L∞ ∩ Ẇ
1,d
0

(Ω). The above constructions of bounded solutions for (1.8)

extends to the case of Lipschitz domains, Ω ⊂ R
d , see [BB03, section 7.2]. For future reference we

state the following.

Corollary 1.3. Given f ∈ Ld
#
(Ω) :=

{
f ∈Lp(Ω) | ∫

Ω
f (x)dx = 0

}
, then the equation divU = f admits

a solution U ∈ L∞∩Ẇ
1,d
0

(Ω,Rd), such that

‖U‖L∞∩Ẇ 1,d(Ω) ≤ β‖ f‖Ld (Ω).

It is given by the hierarchical decomposition, U = ∑ j=1 u j, which is constructed by the refinement

step,

u j+1 = argmin
u: u|∂ Ω=0

{
‖u‖L∞∩Ẇ1,d(Ω) +λ1ζ j

∥∥ f −div
( j

∑
k=1

uk

)
−divu

∥∥d

Ld(Ω)

}
, j = 0,1,2 . . .,

with ζ > 1 and λ1
>∼ β‖ f‖1−d

Ld (Ω)
.

The bound on the hierarchical solution in (1.7) is not sharp: the existence of solution with an

optimal bound, ‖U‖B ≤ β ′‖ f‖Lp , ∀β ′ > β , can be derived using Hahn-Banach theorem, which in

turn can be used to obtain optimal (least) upper-bounds in the Sobolev inequality (1.10). This is

carried out in section 4 below. As an example, we have the following sharp version of the Gagliardo-

Nirenberg inequality.
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Corollary 1.4. Let Ω be a Lipschitz domain in R
d. The least upper-bound in the Gagliardo-Nirenberg

inequality, ‖g−g‖
Ld ′(Ω) ≤ β‖g‖BV (Ω), is given by

β ≥ |Ω|1/d′

|∂ Ω| .

Note that by the isoperimetric inequality, we conclude a uniform least upper-bound, β = 1/(dω
1/d

d ),

where ωd is the volume of the unit ball in R
d , [Zi89, §2.7], [DPD02, CNV04].

1.2. Bounded solution of curlU = f∈L3

#
(R3,R3). Let L3

#
(R3,R3) denote the L3-subspace of divergence-

free 3-vectors with zero mean. We seek solutions of

(1.12) curlU = f, f ∈ L3

#(R
3,R3),

in an appropriate Banach space, U ∈B. We appeal to the framework of hierarchical solutions in theo-

rem 1.1, where P : L3(R3,R3) 7→ L3(R3,R3) is the irrotational portion of Hodge decomposition with

a dual, P∗g := ∇∆−1divg− g. According to theorem 1.1, we can construct hierarchical solutions,

U ∈ B of (1.12), provided (1.3) holds

(1.13) ‖g−P
∗g‖L3/2 ≤ β‖curl g‖B∗ , g ∈ L3/2(R3,R3).

Since ‖g−P∗g‖L3/2
<∼ ‖curl g‖Ẇ−1,3/2, we can construct hierarchical solutions of (1.12) in Ẇ 1,3.

This has the same integrability as the divergence-free solution of (1.12), (−∆)−1curl f. A more in-

tricate question is whether (1.12) admits a uniformly bounded solution, since such a solution cannot

be constructed by a linear procedure. These solutions were constructed by Bourgain and Brezis in

[BB07, Corollary 8’], which in turn imply the key estimate,

(1.14) ‖g−P
∗g‖L3/2(R3,R3) ≤ β‖curl g‖L1+Ẇ−1,3/2(R3,R3), ∀g ∈ L3/2(R3,R3) : divg = g = 0.

Granted (1.14), theorem 1.1 offers a simpler alternative to the construction in [BB07] based on the

following hierarchical decomposition.

Corollary 1.5. The equation curlU = f ∈ L3

#
(R3,R3), admits a solution U ∈ L∞∩Ẇ 1,3(R3,R3),

‖U‖L∞∩Ẇ 1,3(R3,R3) ≤ β‖f‖L3(R3,R3),

which can be constructed by the (nonlinear) hierarchical expansion, U = ∑u j,

u j+1 = argmin
u

{
‖u‖L∞∩Ẇ1,3 +λ1ζ j

∥∥f− curl
( j

∑
k=1

uk

)
− curl u

∥∥3

L3(R3,R3)

}
, j = 0,1, . . .,

with ζ > 1 and λ1
>∼ β/‖f‖2

L3(R3,R3)
.

2. AN EXAMPLE: HIERARCHICAL SOLUTION OF divU = f ∈ L2

#
(T2)

We begin our discussion on hierarchical constrictions with a two-dimensional prototype example

of

(2.1) divU = f , f ∈ L2

#(T
2).

Our starting point for the construction of a uniformly bounded solution of (2.1), U ∈ L∞(T2,R2), is a

decomposition of f ,

(2.2a) f = divu1 + r1, f ∈ L2

#(T
2) :=

{
g ∈ L2(T2)

∣∣
∫

T2

g(x)dx = 0
}
,
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where [u1, r1] is a minimizing pair of the functional,

(2.2b) [u1, r1] = argmin
divu+r= f

{
‖u‖L∞ +λ1‖r‖2

L2

}
.

Here λ1 is a fixed parameter at our disposal: if we choose λ1 large enough, λ1 >
1

2‖ f‖BV
, then

according to lemma 5.3 below, (2.2b) admits a minimizer, [u1, r1], satisfying,

‖r1‖BV =
1

2λ1

.

To proceed we invoke the Gagliardo-Nirenberg isoperimetric inequality, which states that there exists

β > 0 (any β ≥ 1/
√

4π will do, [Zi89, §2.7]), such that for all bounded variation g’s with zero mean,

(2.3) ‖g‖L2 ≤ β‖g‖BV ,
∫

T2

g(x)dx = 0

Since f has a zero mean so does the residual r1 and (2.3) yields

(2.4) ‖r1‖L2 ≤ β‖r1‖BV =
β

2λ1

.

We conclude that the residual r1 ∈ L2

#
(T2), and we can therefore implement the same variational

decomposition of f in (2.2), and use it to decompose r1 with scale λ = λ2 > λ1 =
1

2‖r1‖BV
. This

yields

(2.5) r1 = divu2 + r2, [u2, r2] = argmin
divu+r=r1

{
‖u‖L∞ +λ2‖r‖2

L2

}
.

Combining (2.5) with (2.2a) we obtain f = divU2 + r2, where U2 := u1 + u2 is viewed as an im-

proved approximate solution of (2.1) in the sense that it has a smaller residual r2,

‖r2‖L2 ≤ β‖r2‖BV =
β

2λ2

.

This process can be repeated: if r j ∈ L2

#
(T2) is the residual at step j, then we decompose it

(2.6a) r j = divu j+1 + r j+1,

where [u j+1, r j+1] is a minimizing pair of

(2.6b) [u j+1, r j+1] = argmin
divu+r=r j

{
‖u‖L∞ +λ j+1‖r‖2

L2

}
, j = 0,1, . . ..

For j = 0, the decomposition (2.6) is interpreted as (2.2a) by setting r0 := f . Note that the recursive

decomposition (2.6a) depends on the invariance of r j ∈ L2

#
(T2): if r j has a zero mean then so does

r j+1, and by (2.3) r j+1 ∈ L2

#
(T2). The iterative process depends on a sequence of increasing scales,

λ1 < λ2 < . . .λ j+1, which are yet to be determined.

The telescoping sum of the first k steps in (2.6a) yields an improved approximate solution, Uk :=

∑
k
j=1

u j:

(2.7) f = divUk + rk, ‖rk‖L2 ≤ β‖rk‖BV =
β

2λk

↓ 0, k = 1,2, . . ..



8 EITAN TADMOR

The key question is whether the Uk’s remain uniformly bounded, and it is here that we use the freedom

in choosing the scaling parameters λk: comparing the minimizing pair [u j+1, r j+1] of (2.6b) with the

trivial pair [u ≡ 0, r j] implies, in view of (2.7),

(2.8) ‖u j+1‖L∞ +λ j+1‖r j+1‖2

L2 ≤ λ j+1‖r j‖2

L2 ≤





λ1‖ f‖2

L2 , j = 0,

β 2λ j+1

4λ 2
j

, j = 1,2, . . ..

We conclude that by choosing a sufficiently fast increasing λ j’s such that ∑ j λ j+1λ−2

j < ∞, then the

approximate solutions Uk = ∑
k
1

u j form a Cauchy sequence in L∞ whose limit, U = ∑
∞

1 u j, satisfies

the following.

Theorem 2.1. Fix β such that (2.3) holds. Then, for any given f ∈ L2
#
(T2), there exists a uniformly

bounded solution of (2.1),

(2.9) divU = f , ‖U‖L∞ ≤ 2β‖ f‖L2 .

The solution U is given by U = ∑
∞

j=1 u j, where the {u j}’s are constructed recursively as minimizers

of

(2.10) [u j+1, r j+1] = argmin
divu+r=r j

{
‖u‖L∞ +λ12 j‖r‖2

L2

}
, r0 := f , λ1 =

β

‖ f‖L2

.

Proof. Set λ j = λ12 j−1, j = 1,2, . . ., then, ‖Uk −U`‖L∞
<∼ 2−k, k > ` � 1. Let U be the limit of the

Cauchy sequence {Uk} then ‖U j−U‖L∞ +‖divU j− f‖L2
<∼ 2− j → 0, and since div has a closed graph

on its domain D := {u ∈ L∞ : divu ∈ L2(Ω)}, it follows that divU = f . By (2.8) we have

‖U‖L∞ ≤
∞

∑
j=1

‖u j‖L∞ ≤ λ1‖ f‖2

L2 +
β 2

4λ1

∞

∑
j=2

1

2 j−3
= λ1‖ f‖2

L2 +
β 2

λ1

.

Here λ1 >
1

2‖ f‖BV
is a free parameter at our disposal: we choose λ1 := β/‖ f‖L2 which by (2.3) is

admissible, λ1 =
β

‖ f‖L2

>
1

2‖ f‖BV
, and (2.9) follows.

Remark 2.1. [Energy decomposition] A telescoping summation of the left inequality of (2.8) yields
∞

∑
j=1

1

λ j
‖u j‖L∞ ≤ ‖ f‖2

L2 ;

setting λ j = β2 j−1/‖ f‖L2, we conclude the “energy bound”

(2.11)
∞

∑
j=1

1

2 j−1
‖u j‖L∞ ≤ β‖ f‖L2 .

In fact, a precise energy equality can be formulated in this case, using the characterization of the

minimizing pair (consult theorem 5.1 below), 2(r j+1,divu j+1) = ‖u j+1‖L∞/λ j+1: by squaring the

refinement step r j = r j+1 +L u j+1 we find

‖r j‖2

L2 −‖r j+1‖2

L2 = 2(r j+1,divu j+1)+‖divu j+1‖2

L2 =
1

λ j+1

‖u j+1‖L∞ +‖divu j+1‖2

L2.

A telescoping sum of the last equality yields
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Corollary 2.2. Let U = ∑
∞

j=1
u j ∈ L∞ be a hierarchical solution of divU = f , f ∈ L2

#
(L 2). Then

(2.12)
1

λ1

∞

∑
j=1

1

2 j−1
‖u j‖L∞ +

∞

∑
j=1

‖divu j‖2

L2
#
(T2)

= ‖ f‖2

L2
#
(T2)

2.1. Oscillations and image processing. Bourgain and Brezis [BB03, Proposition 2] have shown

that there exists no linear construction of solutions of (2.1) for general f ∈ L2. Yet, for the ‘slightly

smaller’ Lorenz space, L2,1, we have

∇∆−1 f ∈ L∞, f ∈ L
2,1
#

(T2).

(we note in passing that L2,1 is a limiting case for the linearity of f 7→ U to survive the L2,∞-based

nonlinearity result argued in the proof of [BB03, propositoin 2]). Thus, the nonlinear aspect of con-

structing hierarchical solutions for (2.1) becomes essential for highly oscillatory functions such that

f ∈ L2\L2,1 (and in particular, f /∈BV (T2)). Such f ’s are encountered in image processing in the form

of noise, texture, and blurry images, [Me02, BCM05]. Hierarchical decompositions in this context of

images were introduced by us in [TNV04] and were found to be effective tools in image denoising,

image deblurring and image registration, [BCM05, LPSX06, PL07, TNV08]. Here, we are given a

noisy and possibly blurry observed image, f = L U + r ∈ L2(R2), and the purpose is to recover a

faithful description of the underlying ‘clean’ image, U ∼ “L −1” f , by de-noising r and de-blurring

L . The inverse “L −1” f should be properly interpreted, say, in the smaller space BV (R2) ⊂ L2(R2)
which is known to be well-adapted to represent edges. The resulting inverse problem can solved by

corresponding variational problem of [ROF92, CL95, CL97]

(2.13) [u, r] = argmin
L u+r= f

{
‖u‖BV +λ‖r‖2

L2(R2)

}
,

which is a special case of Tikhonov-regularization, [TA77, Mo84, Mo93]. The (BV,L2)-hierarchical

decomposition corresponding to (2.13) reads, [TNV04, TNV08],

(2.14) f ∼= L Um, Um =
m

∑
j=1

u j, [u j+1, r j+1] = argmin
L u+r=r j

{
‖u‖BV +λ12 j‖r‖2

L2

}
.

The oscillatory nature of noise and texture in images was addressed by Y. Meyer who advocated,

[Me02], to replace L2 with the larger space of “images” G := { f |divu = f ,u ∈ L∞}. The equation

divu = f arises here with one-signed measure f ’s, and its L∞ solutions were characterized in [Me02,

§1.14],[PT08]: the space G+ coincides with Morrey space M2
+(Ω):

M2(Ω) =
{

µ ∈ M
∣∣
∫

Br

dµ <∼ r, ∀Br ⊂ Ω
}
.

For one-signed measure, M2
+(Ω) coincides with Besov space Ḃ−1,∞

∞
. The corresponding Meyer’s

energy functional then reads, [u, r] = argmin
L u+r= f

{
‖u‖BV(Ω)+λ‖r‖

Ḃ
−1,∞
∞ (Ω)

}
; numerical simulations with

this model are found in [VO04].

2.2. L1(T2)-bounds and Ḣ−1(T2)-compactness. Here is a simple application of theorem 3.2. Let

f ∈ Ḣ−1(T2) be given. For arbitrary g ∈ Ḣ1(T2) we have ξ jĝ(ξ ) ∈ L2

#
(T2), and by theorem 3.2, there

exist bounded Ui j ∈ L∞(T2), such that

ξ1ĝ(ξ ) = ξ1Û11(ξ )+ξ2Û12(ξ ),

ξ2ĝ(ξ ) = ξ1Û21(ξ )+ξ2Û22(ξ ).
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Thus, expressed in terms of the Riesz transforms, R̂ jψ(ξ ) := ψ̂(ξ )ξ j/|ξ |, we have

g =
1

2
(U11 +U22)+

1

2

(
R2

1 −R2

2

)
(U11−U22)+R1R2 (U12 +U21) ;

Since R2

1
−R2

2
and R1R2 agree up to rotation, we conclude that: every g ∈ Ḣ1(T2) can be written as

the sum

g ∈ Ḣ1(T2) : g = U1 +R1R2U2, U1,U2 ∈ L∞(T2).

The last representation shows that although an L1(T2)-bound of f does not imply f ∈ Ḣ−1(T2), then

f does belong to Ḣ−1 if f and its repeated Riesz transform, R1R2 f , are L1-bounded.

Corollary 2.3. The following bound holds

(2.15) ‖ f‖Ḣ−1(T2)
<∼ ‖ f‖L1(T2) +‖R1R2 f‖L1(T2).

As an example, consider a family of divergence-free 2-vector fields, uε(t, ·) ∈ L2(T2,R2), which

are approximate solutions of two-dimensional incompressible Euler’s equations. One is interested in

their convergence to a proper weak solution, with no concentration effects, [DM87]. It was shown in

[LNT00] that {uε} converges to such a weak solution if the vorticity, ωε(t·) := ∂1uε
2
(t, ·)−∂2uε

1
(t, ·),

is compactly embedded in H−1(T2). By corollary 2.3, H−1-compactness holds if {R1R2ωε(t, ·)} ↪→
L1(T2); consult [Ve92].

3. THE GENERAL CASE: CONSTRUCTION OF HIERARCHICAL SOLUTIONS FOR L U = f ∈ LΦ

#

We turn our attention to the construction of hierarchical solutions for equations of the general form

(3.1) L U = f , f ∈ LΦ

# (Ω).

A solution U is sought in a Banach space B := {U : ‖U‖B < ∞}. The general framework, involving

two linear operators, L and P, is outlined below.

The linear operator L is densely defined on B with a closed range in LΦ

#
:= LΦ ∩Ker(P) with

appropriate P : LΦ 7→ LΦ. Here, LΦ = LΦ(Ω) is an Orlicz function space associated with a C1 N-

function, Φ : R+ → R+, satisfying the ∆2-condition, Φ(2ξ ) < 2Φ(ξ ), [AF03, §8],[BS88, §4.8],

(3.2) L : B 7→ LΦ

# := LΦ∩Ker(P), LΦ =
{

f : [ f ]Φ :=
∫

Ω

Φ(| f |)dx < ∞
}
.

The Orlicz space LΨ, the dual of LΦ, is associated with the complementary N-function Ψ(s) =
supt(st −Φ(t)). Finally, we let L ∗ : LΨ 7→ B

∗ denote the formal dual of L , acting on LΨ with

the natural pairing (effectively, L ∗ is acting on LΨ

#
:= LΨ ∩Ker(P), since R(P∗) is in the null of

L ∗)

〈L ∗g,u〉= (g,L u), g ∈ LΨ, u ∈ B,

and let ‖ · ‖B∗ denote the dual norm

‖L ∗g‖B∗ := sup
u 6=0

〈L ∗g,u〉
‖u‖B

, g ∈ LΨ.
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3.1. Approximate solutions. We begin by constructing an approximate solution of (3.1), Uλ : L Uλ ≈
f , such that the residual rλ := f −LUλ is driven to be small by a proper choice of a scaling param-

eter λ at our disposal. The approximate solution is obtained in terms of minimizers of the variational

problem,

(3.3) ∨L ( f ,λ ;B,Φ) := inf
L u+r= f

{
‖u‖B +λ [r]Φ : u ∈ B, r ∈ LΦ

#

}
.

In theorem 5.1 below we show if λ is chosen sufficiently large,

(3.4) λ >
1

‖L ∗ϕ( f )‖B∗
, ϕ( f ) := sgn( f )Φ′(| f |),

then the ∨L ( f ,λ)-functional in (3.3) admits a minimizer, u = uλ , such that the size of the residual,

rλ := f −L uλ , is dictated by the dual statement

(3.5) ‖L ∗ϕ(rλ )‖B∗ =
1

λ
.

Fix the scale λ = λ1 > 1/‖L ∗ϕ( f )‖B∗ . We construct an approximate solution, L U1 ≈ f , U1 := u1,

where u1 is a minimizer of ∨L ( f ,λ1),

(3.6) f = L u1 + r1, [u1, r1] = argmin
L u+r= f

∨L ( f ,λ1;B,Φ)

Borrowing the terminology from image processing we note that the corresponding residual r1 contains

‘small’ features which were left out of u1. Of course, whatever is interpreted as ‘small’ features at a

given λ1-scale, may contain significant features when viewed under a refined scale, say λ2 > λ1. To

this end we assume that the residual r1 ∈ LΦ

#
so that we can repeat the ∨L -decomposition of r1, this

time at the refined scale λ2:

(3.7) r1 = L u2 + r2, [u2, r2] = argmin
L u+r=r1

∨L (r1,λ2;B,Φ).

Combining (3.6) with (3.7) we arrive at a better two-scale representation of U given by U2 := u1 +
u2, as an improved approximate solution of L U2 ≈ f . Features below scale λ2 remain unresolved in

U2, but the process can be continued by successive application of the refinement step,

(3.8) r j = L u j+1 + r j+1, [u j+1, r j+1] := argmin
L u+r=r j

∨L (r j,λ j+1;B,Φ), j = 1,2, ....

To enable this process we require that the residuals r j remain in LΦ

#
; thus, in view of the dual bound

(3.5) we make the following closure assumption.

Assumption 3.1. The following apriori bound holds:

‖L ∗ϕ(g)‖B∗ < ∞ −→ [g]Φ =
∫

Ω

Φ(|g(x)|)dx < ∞, ϕ(g) = sgn(g)Φ′(|g|).

Given a residual term r j ∈ LΦ

#
, we consider the generic hierarchical step where [u j+1, r j+1] is con-

structed as a minimizing pair of ∨L (r j,λ j+1). Since ‖L ∗ϕ(r j+1)‖B∗ = 1/λ j+1 then by assumption

3.1, [r j+1]Φ is finite; moreover, since r j and R(L ) are in Ker(P) then,

r j+1 = r j −L u j+1 ∈ Ker(P),

and we conclude that r j+1 ∈ LΦ

#
. In this manner, the iteration step

[u j, r j] 7→ [u j+1, r j+1],
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is well-defined on B×LΦ

#
. After k such steps we have,

f = L u1 + r1 =(3.9)

= L u1 +L u2 + r2 =

= . . . . . . =

= L u1 +L u2 + · · ·+L uk + rk.

We end up with a multiscale, hierarchical representation of an approximate solution of (3.1) Uk :=

∑
k
j=1

u j ∈ B such that L Uk
∼
= f . Here, the approximate equality ∼

= is interpreted as the convergence

of the residuals,

‖L ∗ϕ(rk)‖B∗ =
1

λk

→ 0, rk := f −LUk,

dictated by the sequence of scales, λ1 < λ2 < . . . < λk, which is at our disposal. We summarize in the

following theorem.

Theorem 3.1. [Approximate solutions] Consider L : B 7→ LΦ

#
(Ω) and assume that the closure as-

sumption (3.1) holds. Then the equation L U = f , f ∈ LΦ

#
(Ω) admits an approximate solution,

Uk ∈ B : L Uk
∼= f , such that the residual, rk := f −L Uk, satisfy

(3.10) ‖L ∗ϕ(rk)‖B∗ =
1

λk

, rk := f −L Uk.

The approximate solution admits the hierarchical expansion, Uk = ∑
k
j=1

u j, where the u j’s are con-

structed as minimizers,

[u j+1, r j+1] = argmin
L u+r=r j

{
‖u‖B +λ j+1[r]Φ

}
, r0 = f

and satisfy

(3.11)
k

∑
j=1

1

λ j
‖u j‖B < [ f ]Φ.

Proof. Compare the minimizer [u j+1, r j+1] of ∨L (r j,λ j+1) with the trivial pair [u ≡ 0, r j] which

yields the key refinment estiamte

[r j]Φ ≥ 1

λ j+1

‖u j+1‖B +[r j+1]Φ, j = 0,1, . . ..(3.12)

Observe that the last inequality holds for j = 0 with r0 = f . A telescoping summation of (3.12) yields

(3.11):
k

∑
j=1

1

λ j
‖u j‖B +[rk]Φ ≤ [r0]Φ = [ f ]Φ.

3.2. From approximate to exact solutions. According to (3.12), ‖Uk‖B ≤ λk[ f ]Φ. Do the approx-

imate solutions Uk remain uniformly bounded in B? to this end, we need to quantify the closure

assumption 3.1.

Assumption 3.2. There exists an increasing function η : R+ 7→ R+ satisfying

(3.13a)

∫
1

s=0

η(s)

s2
ds < ∞,
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such that the following apriori bound holds:

(3.13b) [g]Φ ≤ η (‖L ∗ϕ(g)‖B∗) , ∀g ∈ LΦ

# , ϕ(g) = sgn(g)Φ′(|g|) ∈ LΨ.

Using (3.12) we find

(3.14) ‖u j+1‖B ≤ λ j+1[r j]Φ ≤





λ1[ f ]Φ, j = 0,

λ j+1η

(
1

λ j

)
, j = 1,2, . . .,

where {λ j} is an increasing sequence of scales at our disposal. Setting λ j = λ1ζ j−1, we conclude

that the approximate solutions, Uk = ∑
k
1

u j is a Cauchy sequence whose limit, U = ∑
∞

1 u j, satisfies the

following.

Theorem 3.2. Assume that (3.13) holds. Then, given f ∈ LΦ

#
(Ω), there exists a solution of (3.1),

L U = f . The solution U is given by the hierarchical decomposition,

(3.15a) U =
∞

∑
j=1

u j,

where the {u j}’s are constructed recursively as minimizers of

(3.15b) [u j+1, r j+1] = argmin
L u+r=r j

{
‖u‖B +λ1ζ j[r]Φ : u ∈ B, r ∈ LΦ

#

}
, r0 := f , ζ > 1,

and the following B-bound holds

(3.16) ‖U‖B
<∼ λ1[ f ]Φ +

∫
1/ζλ1

0

η(s)

s2
ds < ∞, λ1 ∼

1

η−1 ([ f ]Φ)
.

Proof. For simplicity, we consider the dyadic case, ζ = 2. The upper-bound (3.14) implies that

{Uk = ∑
k
j=1

u j} is a Cauchy sequence:

‖Uk −U`‖B ≤
k

∑
j=`+1

λ12 jη

(
1

λ12 j−1

)
≤ 4λ1

2k−1

∑
j=2`

η

(
1

λ1 j

)

<∼ 4

∫ λ12k−1

t=λ12`
η

(
1

t

)
dt = 4

∫
1/λ`+1

1/λk

η(s)

s2
ds,

which is sufficiently small for k > ` � 1 large enough. Hence U j has a limit, U = ∑
∞

j=1
u j, such that

[L U j − f ]Φ → 0, and since L has a closed range, L U = f . Moreover, the limit U satisfies

‖U‖B ≤
∞

∑
j=1

‖u j‖B ≤ λ1[ f ]Φ +
∞

∑
j=2

λ12 jη

(
1

λ12 j−1

)
≤ λ1[ f ]Φ +4

∫
1/2λ1

0

η(s)

s2
ds.

Here λ1 is a free parameter at our disposal subject to (3.4): we choose λ1 := C/η−1 ([ f ]Φ) with a

sufficiently large constant C so that (3.4) holds,

λ1 :=
C

η−1 ([ f ]Φ)
>

1

‖L ∗ϕ( f )‖B∗
,

and the bound (3.16) follows.
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3.3. Energy decomposition. We consider Orlicz spaces, LΦ with a strictly convex N- function

(3.17) Φ′′ ≥ κ > 0.

Starting with the basic refinement step r j = r j+1 +L u j+1 we then find

[r j]Φ =

∫

Ω

Φ
(
|r j+1 +L u j+1|

)
dx ≥

∫

Ω

(
Φ(|r j+1|)+(ϕ(r j+1),L u j+1)+

κ

2
‖L u j+1‖2

)
dx.

By corollary 5.3, since [u j+1, r j+1] is a minimizer of ∨L (r j,λ j+1) it is an extremal pair, namely,

(3.18) (ϕ(r j+1),L u j+1) = 〈L ∗ϕ(r j+1),u j+1〉 =
1

λ j+1

‖u j+1‖B,

and we end up with the following improved version of the key estimate (3.12),

(3.19) [r j]Φ − [r j+1]Φ ≥ 1

λ j+1

‖u j+1‖B +
κ

2
‖L u j+1‖2

L2(Ω).

A telescoping sum of this improvement yields the following.

Corollary 3.3. Let U = ∑
∞

j=1
u j ∈ B be a hierarchical solution of L U = f , f ∈ LΦ

#
outlined in

theorem 3.2, subject to a strictly convex Φ, (3.17). Then

(3.20)
1

λ1

∞

∑
j=1

1

2 j−1
‖u j‖B +

κ

2

∞

∑
j=1

‖L u j‖2

L2(Ω) ≤
∫

Ω

Φ(| f |)dx.

The last energy bound turns into a precise energy equality in quadratic case, when LΦ

#
= L2

#
: arguing

along the lines of corollary 2.2 we have

(3.21)
1

λ1

∞

∑
j=1

1

2 j−1
‖u j‖B +

∞

∑
j=1

‖L u j‖2

L2

#
(Ω)

= ‖ f‖2

L2

#
(Ω)

4. HIERARCHICAL SOLUTIONS FOR L U = f ∈ L
p
#
(Ω)

We focus our attention on the case where LΦ is the Lebesgue space L
p
#
(Ω), seeking solutions of

(4.1) L U = f , f ∈ L
p
#
(Ω), 1 < p < ∞,

in an appropriate Banach space U ∈ B. According to theorem 3.2, equation (4.1) admits a solution

U ∈ B, provided assumption 3.2 holds, namely, there exists an appropriate η : R+ 7→ R+ such that,

(4.2) ‖g‖p
Lp

<∼ η
(
‖L ∗ϕ(g)‖B∗

)
, ∀g ∈ L

p
#
, ϕ(g) := p · sgn(g)|g|p−1,

∫
1

0

η(s)

s2
ds < ∞.

The following lemma provides a useful simplification of the closure assumption (4.2) for the Lp-case.

Lemma 4.1. Let P : LΦ 7→ LΦ with dual P∗. Assume that there exists β > 0 such that the following

apriori estimate holds,

(4.3) ‖g−P
∗g‖

Lp′ ≤ β‖L ∗g‖B∗, ∀g ∈ Lp′(Ω), 1 < p < ∞.

Then assumption 3.2 is fulfilled with L
p
#

= Lp∩Ker(P) and ηp(s) ∼ sp′, 1 < p < ∞.



ON THE CONSTRUCTION OF HIERARCHICAL SOLUTIONS FOR LINEAR EQUATIONS 15

Proof. Fix g ∈ L
p
#
(Ω). Then ϕ(g) = p · sgn(g)|g|p−1 ∈ Lp′(Ω) and since g ∈ Ker(P) we find

∫

Ω

|g|pdx =
1

p

∫

Ω

gϕ(g)dx =
1

p

∫

Ω

g
(
ϕ(g)−P

∗ϕ(g)
)
dx ≤ 1

p
‖g‖Lp‖ϕ(g)−P

∗ϕ(g)‖
Lp′ .

The apriori estimate assumed in (4.3) yields

(4.4) ‖g‖p−1

Lp <
β

p
‖L ∗ϕ(g)‖B∗ , ∀g ∈ L

p
#
(Ω),

and the closure estimate (4.2) follows with ηp(s) ∼ sp′, 1 < p < ∞.

Remark 4.1. Observe that the proof of lemma 4.1 — and as a consequence, the proof of the main

theorem 1.1 derived below, are limited to 1 < p < ∞. The end cases p = 1,∞ are excluded since

(3.13a) fails to hold for η(s) ∼ sp′ . This, in turn, is related to the fact that the scaling functions Φ of

Lp are not proper N-functions for p = 1,∞.

Remark 4.2. As an example with L = div and P denoting the zero averaging projection Pg =
g−g, lemma 4.1 implies a generalized Sobolev-Nirenberg inequality

‖g‖d−1

Ld(Td)
<∼ ‖sgn(g)|g|d−1‖BV(Td), ∀g ∈ Ld

#(T
d).

Proof of theorem 1.1. Granted (4.3), then by lemma 4.1, theorem 3.2 applies with η(s) = ηp(s) =

sp′ , and (3.16) implies

‖U‖B
<∼ λ1‖ f‖p

Lp +

∫
1/ζλ1

0

sp′−2ds <∼ λ1‖ f‖p
Lp +

1

(λ1ζ )1/(p−1)
.

Choose λ1 := C‖ f‖−(p−1)
Lp : according to (4.4), such a choice of λ1 with a sufficiently large C satisfies

the admissibility requirement (3.4),

λ1 =
C

‖ f‖p−1

Lp

>
1

‖L ∗ϕ( f )‖B∗
,

and the uniform bound (1.4) follows, ‖U‖B
<∼ ‖ f‖Lp .

Since the above proof was deduced from the general main theorem 3.2, we did not keep track of

the precise dependence on the constant β and it remains to verify the more precise bound asserted in

(1.7), namely, by specifying λ j+1 = λ1ζ j with ζ = 2p−1 we have

(4.5) ‖U‖B ≤ β2p

p
‖ f‖Lp , λ j+1 = λ12(p−1) j, λ1 =

β

‖ f‖p
Lp

.

Proof of remark 1.1. We argue along the lines of theorem 2.1 which proves (4.5) in the case p =
2. The extension for p > 2 is based on (4.4) and (3.10), which yield the basic iterative estimate

corresponding to (2.8),

‖u j+1‖B +λ j+1‖r j+1‖p
Lp ≤ λ j+1‖r j‖p

Lp , ‖r j‖p−1

Lp ≤ β

p
‖L ∗ϕ(r j)‖B∗ =

β

pλ j

, j = 1,2, . . ..

Setting λ j+1 = λ12(p−1) j implies,

‖u j+1‖B ≤ λ j+1

(
β

λ j p

) p
p−1

≤ λ1
− 1

p−1

2p( j−1)

(
β

p

) p
p−1

, j = 1,2, . . .,
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and we conclude

‖U‖B ≤ ‖u1‖B +
∞

∑
j=2

‖u j‖B

≤ λ1‖ f‖p
Lp +λ1

− 1

p−1

(
β

p

) p
p−1 ∞

∑
j=2

1

2 j−p−1
= λ1

1

p−1‖ f‖p
Lp +λ1

− 1

p−1 2p

(
β

p

) p
p−1

.

Finally, the choice of λ1 = β/‖ f‖p−1

Lp yields (4.5).

The bound in (4.5) is not sharp: if L U = f ∈ Lp admits a solution such that ‖U‖B ≤ β‖ f‖Lp , then

the apriori estimate (4.3) follows by a straightforward duality argument. A sharp form of the inverse

implication, (4.3) 7→ ‖U‖B ≤ β‖ f‖Lp , follows from an argument based on Hahn-Banach theorem

(outlined below). It would be desirable to obtain such a solution by hierarchical constructions. As a

consequence, one can derive sharp version for the Sobolev inequalities, which we demonstrate in the

context of the Gagliardo-Nirenberg inequality (2.3)

(4.6) ‖ f‖
Ld ′(Ω) ≤ β‖ f‖BV (Ω), f ∈ L

p
#
(Ω).

What is the best (least) possible β for (4.6) to hold? we turn to the

Proof of corollary 1.4. Let U denote the solution with the corresponding sharp bound

divU = f , ‖U‖L∞ ≤ β‖ f‖Ld (Ω).

It follows that ∫

Ω

f dx =
∫

∂Ω

U ·ndS ≤ ‖U‖L∞ · |∂ Ω| ≤ β‖ f‖Ld(Ω)|∂ Ω|.

We now fix the extremal f = 1Ω(x) such that
∫

Ω
f dx = ‖ f‖Ld(Ω)|∂ Ω|1/d′

; the last inequality then

yields

β ≥ |Ω|1/d′

|∂ Ω| .

By the isoperimetric inequality we conclude

(4.7) sup
f∈Ld

#

‖ f‖
Ld ′(Ω)

‖ f‖BV (Ω)
= sup

U

‖U‖L∞(Ω)

‖divU‖Ld(Ω)

≤ |Ω|1/d′

|∂ Ω| ≤ 1

dω
1/d

d

,

where ωd denotes the volume of the unit ball in R
d .

Remark 4.3. That the upper bound on the right of (4.7) is sharp can be verified by the extremal

f = 1B(x) over balls, [DPD02, CNV04],

sup
f∈Ld ′

#

‖ f‖
Ld ′

‖ f‖BV
=

1

dω
1/d

d

.

The proof of corollary 1.4 suggests that f = 1Ω(x) is the extremal equalizer to obtain an Ω-dependent

bound, such that inequality on the left of (4.7) becomes sharp,

sup
f∈Ld ′

#

‖ f‖
Ld ′(Ω)

‖ f‖BV (Ω)
=

|Ω|1/d′

|∂ Ω| .
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Proof of the sharp bound (4.8). This is essentially due to Bourgain & Brezis. We reproduce here (a

slight generalization of) their non-constructive proof in [BB03, proposition 1]: if (4.3) is holds then

L U = f admits a solution with the following sharp bound

(4.8) ‖U‖B ≤ β ′‖ f‖Lp , β ′ > β .

Normalize ‖ f‖Lp = 1 and consider the two non-empty convex sets: the ball

Bβε
:= {u ∈ B : ‖u‖B < βε}, βε := (1+ ε)β > β

and C := {U ∈ B : L U = f}. The claim is that Bβε
∩C 6= /0 and the desired estimate (4.8) then

follows with sufficiently small ε � 1. If not, Bβε
∩C = /0, and by Hahn-Banach there exists a non-

trivial g∗ ∈ Lp′ such that for some α ∈ R+

(4.9a) 〈g∗,u〉 ≤ α, ∀u ∈ Bβε

and

(4.9b) 〈g∗,U〉 ≥ α, ∀U ∈C.

If V ∈ Ker(L ) then application of (4.9b) with U 7→U ±δV ∈C yields ±δ 〈g∗,V〉 ≥ 0, or 〈g∗,V〉= 0;

that is, g∗ ∈ Ker(L )⊥ = R(L ∗) is of the form g∗ = L ∗g for some g ∈ D(L ∗) ⊂ Lp′. Now, by (4.9a)

‖g∗‖B∗ = sup
‖u‖B=βε/2

〈g∗,u〉
βε/2

≤ α

βε/2

,

and the apriori estimate assumed in (4.3) implies

‖g‖
Lp′ ≤ β‖L ∗g‖B∗ = β‖g∗‖B∗ ≤ α

1+ ε/2
.

But this leads to a contradiction: pick U ∈C (which we recall is not empty) then (4.9b) implies,

α ≤ 〈g∗,U〉= 〈L ∗g,U〉= 〈g, f 〉 ≤ ‖g‖
Lp′‖ f‖Lp ≤ α

1+ ε/2
.

5. AN APPENDIX ON ∨L -MINIMIZERS

To study the hierarchical expansions (3.9), we characterize the minimizers of the ∨L -functionals

(3.3)

(5.1) [u, r] := argmin
L u+r= f

∨L ( f ,λ ;B,Φ), ∨L ( f ,λ ;B,Φ) := inf
L u+r= f

{
‖u‖B +λ [r]Φ : u ∈ B

}
.

Here L : B 7→ LΦ

#
(Ω) is densely defined into a subspace of Orlicz space over a Lipschitz domain Ω ⊂

R
d . We shall often abbreviate ∨L ( f ,λ) for ∨L ( f ,λ ;B,Φ). The characterization summarized below

extends related results which can be found in [Me02, Theorem 4], [ACM04, Chapter1], [TNV08,

Theorem 2.3].

Recall that ‖ · ‖B∗ denotes the dual norm, ‖L ∗g‖B∗ = 〈L ∗g,u〉/‖u‖B, so that the usual duality

bound holds

(5.2) 〈L ∗g,u〉 ≤ ‖u‖B‖L ∗g‖B∗ , g ∈ LΨ, u ∈ B.

We say that u and L ∗g is an extremal pair if equality holds above. The theorem below characterizes

[u, r] as a minimizer of the ∨L -functional if and only if u and L ∗ϕ(r) form an extremal pair.
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Theorem 5.1. Let L : B → LΦ

#
(Ω) be a linear operator with dual L ∗ and let ∨L ( f ,λ ;B,Φ) denote

the associated functional (3.3).

(i) The variational problem (5.1) admits a minimizer u. Moreover, if ‖ · ‖B is uniformly convex,

then a minimizer u with ‖u‖B 6= 0 is unique.

(ii) u is a minimizer of (5.1) if and only if the residual r := f −L u satisfies

(5.3) 〈L ∗ϕ(r),u〉 = ‖u‖B · ‖L ∗ϕ(r)‖B∗ =
‖u‖B

λ
, u ∈ LΦ

# , ϕ(r) := sgn(r)Φ′(|r|) ∈ LΨ.

Proof. (i) The existence of a minimizer for the ∨L -functional follows from standard arguments which

we omit, consult [AV94, Me02]. We address the issue of uniqueness. Assume u1 and u2 are minimiz-

ers with the corresponding residuals r1 = f −L u1 an r2 = f −L u2

‖ui‖B +λ [ri]Φ = vmin, i = 1,2

We then end up with the one-parameter family of minimizers, uθ := u1 +θ (u2−u1), θ ∈ [0,1],

vmin ≤ ‖uθ‖B +λ [rθ ]Φ ≤ θ‖u2‖B +(1−θ )‖u1‖B +θλ [r2]Φ +(1−θ )λ [r1]Φ = vmin.

Consequently, [rθ ]Φ = θ [r2]Φ +(1− θ )[r1]Φ and hence r1 = r2. In particular, [r1]Φ = [r2]Φ implies

that the two minimizers satisfy ‖u1‖B = ‖u2‖B and we conclude that the ball ‖u‖B = ‖u1‖B 6= 0

contains the segment {uθ , θ ∈ [0,1]}, which by uniform convexity, must be the trivial segment, i.e.,

u2 = u1.

(ii) If u is a minimizer of (5.1) then for any v ∈ B we have

∨L (u,λ) = ‖u‖B +λ [ f −L u]Φ(5.4)

≤ ∨L (u + εv,λ) = ‖u + εv‖B +λ [ f −L (u + εv)]Φ

≤ ‖u‖B + |ε| · ‖v‖B +λ [ f −L u]Φ−λε
(

sgn( f −L u)Φ′(| f −L u|),L v
)

+O(ε2).

It follows that for all v ∈ B,
∣∣∣
〈
L

∗ϕ(r),v
〉∣∣∣ ≤ 1

λ
‖v‖B +O(|ε|), ϕ(r) = sgn(r)Φ′(|r|), r := f −L u,

and by letting ε → 0

(5.5) ‖L ∗ϕ(r)‖B∗ ≤ 1

λ
.

To verify the reverse inequality, we set v = ±u and 0 < ε < 1 in (5.4), yielding

‖u‖B +λ [ f −L u]Φ ≤ (1± ε)‖u‖B +λ [ f −L u∓ εL u]Φ,

and hence ±ε‖u‖B∓λε
(
ϕ( f −L u),L u

)
+O(ε2)≥ 0. Dividing by ε and letting ε ↓ 0+, we obtain

‖u‖B = λ〈L ∗ϕ(r),u〉 and (5.3) follows:

1

λ
‖u‖B = 〈L ∗ϕ(r),u〉 ≤ ‖L ∗ϕ(r)‖B∗‖u‖B ≤ 1

λ
‖u‖B.

Conversely, we show that if (5.3) holds then u is a minimizer. The convexity of Φ yields

[ f −L (u +v)]Φ = [r−L v]Φ =

≥
∫

Ω

Φ(|r|)dx−
(
sgn(r)Φ′(|r|),L (u +v)

)
+

(
sgn(r)Φ′(|r|),L u

)

= [ f −L u]Φ−
#1︷ ︸︸ ︷〈

L
∗ϕ(r), (u +v)

〉
+

#2︷ ︸︸ ︷〈
L

∗ϕ(r),u
〉
.
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By (5.3) ‖L ∗ϕ(r)‖B∗ = 1/λ , which implies

−λ(#1) ≥−‖u +v‖B and λ(#2) = ‖u‖B.

We conclude that for any v ∈ B,

∨L (u +v,λ) = ‖u +v‖B +λ [ f −L (u +v)]Φ ≥ ‖u +v‖B +λ [ f −L u]Φ−λ(#1)+λ(#2)

≥ ‖u‖B +λ [ f −L u]Φ = ∨L (u,λ).

Thus, u is a minimizer of (5.1).

Remark 5.1. A lack of uniqueness is demonstrated in an example of [Me02, pp. 40], using the `∞-

unit ball, which in turn lacks strict convexity. Thus, strict convexity is necessary and sufficient for

uniqueness.

The next two assertions are a refinement of Theorem 5.1, depending on the size of ‖L ∗ϕ( f )‖B∗ .

Lemma 5.2. [The case ‖L ∗ϕ( f )‖B∗ ≤ 1/λ]. Let L : B → LΦ

#
(Ω) with adjoint L ∗ and let ∨L

denote the associated functional (3.3). Then λ‖L ∗ϕ( f )‖B∗ ≤ 1 if and only if u ≡ 0 is a minimizer of

(5.1).

Proof. Assume ‖L ∗ϕ( f )‖B∗ ≤ 1/λ . Then by the convexity of Φ we have

‖u‖B +λ [ f −L u]Φ ≥ ‖u‖B +λ

∫

Ω

Φ(| f |)dx−λ

∫

Ω

(
ϕ( f ),L u

)
dx

≥ ‖u‖B +λ

∫

Ω

Φ(| f |)dx−λ‖L ∗ϕ( f )‖B∗‖u‖B ≥ λ [ f ]Φ

which tells us that u ≡ 0 is a minimizer of (3.3). Conversely, if u ≡ 0 is a minimizer of (5.1), then

ε‖u‖B +λ [ f − εL u]Φ ≥ [ f ]Φ for all u ∈ B. It follows that

ε‖u‖B− ελ
∫

Ω

(ϕ( f ),L u)dx+O(ε2) ≥ 0.

Letting ε ↓ 0 we conclude λ〈L ∗ϕ( f ),u〉 ≤ ‖u‖B, hence ‖L ∗ϕ( f )‖B∗ ≤ 1/λ .

Lemma 5.3. [The case ‖L ∗ϕ( f )‖B∗ > 1/λ]. Let L : B → LΦ

#
(Ω) with adjoint L ∗ and let ∨L

denote the associated functional (3.3). If 1 < λ‖L ∗ϕ( f )‖B∗ < ∞, then u is a minimizer of (5.1) if

and only if L u and ϕ(r) is an extremal pair and

(5.6) ‖L ∗ϕ(r)‖B∗ =
1

λ
, 〈u,L ∗ϕ(r)〉 =

‖u‖B

λ
.

Proof. Since ‖L ∗ϕ( f )‖B∗ > 1/λ then ‖u‖B 6= 0 and we can now divide the equality on the right of

(5.3) by ‖u‖B 6= 0 and (5.6) follows.
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