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Gyrokinetic linear theory of the entropy mode in a Z pinch
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The linear gyrokinetic theory of the entropy mode is presented in a Z-pinch configuration in the
regime of plasma ��1, focusing primarily on the parameter regime in which the ideal interchange
mode is stable. The entropy mode is a small-scale, nonmagnetohydrodynamic mode that typically
has peak growth rates at k�s�1��s

2= �T0e+T0i� / �mi�ci
2 ��, with magnitudes comparable to those of

ideal modes. The properties of this mode are studied as a function of the density and temperature
gradients, plasma collisionality, and electron to ion temperature ratio. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2205830�
I. INTRODUCTION

This paper considers the kinetic theory of small-scale
linear instabilities in a Z-pinch configuration, in which a cy-
lindrically symmetric plasma is confined by a poloidal mag-
netic field B��r�.1 We focus here on the regime of plasma
��1, in which the dominant instabilities in the Z-pinch sys-
tem, driven by a combination of the pressure gradient and
magnetic curvature, take on an electrostatic character and
have k� =0.2 Past studies of this system,2–7 mainly carried out
under the assumption of long wavelength in comparison to
the ion gyroradius, k�i�1 ��i being the ion gyroradius and
k=k��, have identified the possible presence of two distinct
linear modes. At sufficiently steep gradients, the fastest
growing mode is the well-known ideal magnetohydrody-
namic �MHD� interchange instability with ��cs /�RLp �cs

=��T0e+T0i� /mi being the sound speed, R the curvature ra-
dius, and Lp=−p0 / p0�, with p0�=dp0 /dr, an equilibrium
pressure-gradient scale length that is assumed to be positive,
since we focus our attention on Z pinches where the pressure
decreases with the radius�.8,9 At weaker gradients the ideal
mode can be stabilized, however, leaving behind a shorter
wavelength non-MHD mode known as the entropy mode.
This mode, introduced in the 1960s by the works of several
authors10–13 and also referred to in the literature as the drift-
temperature-gradient mode,5,6 perturbs both the plasma den-
sity and temperature but not the total plasma pressure, and
hence the specific entropy of the plasma is changed. The
entropy mode has been studied more recently in the linear
regime using both fluid3 and �under the assumption of k�i

�1� gyrokinetic models.2,5–7 These gyrokinetic analytical
calculations were performed in the regime with equal elec-
tron and ion temperatures, T0i=T0e in Refs. 2, 5, and 6 and
generic temperature ratio in Ref. 7, and it was found that the
growth rate of the entropy mode increases linearly with k. As
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a result, the most unstable regime of the mode could not be
addressed.

The primary goal of this paper is to explore the linear
theory of the entropy mode in ideally stable parameter re-
gimes for arbitrary k�i, various levels of density and tem-
perature gradients, plasma collisionality, and ion to electron
temperature ratios. The saturation of the linear modes and the
nonlinear dynamics of the Z pinch will be the subject of a
future paper. Here the study of the linear modes is accom-
plished through the numerical solution of the gyrokinetic
equations developed in Refs. 14 and 15. We use the code
GS2 to solve the gyrokinetic system and evaluate the growth
rate of the linear modes16,17 and, as a benchmark for GS2, we
also perform the direct solution of the gyrokinetic dispersion
relation in the simplest cases. Although the gyrokinetic equa-
tions have been studied analytically for k�i�1,2,5–7 the
present study �to our knowledge� is the first to explore the
regime of k�i�1 where the modes are most unstable.

Our analysis presupposes that �i, as well as the �perpen-
dicular� scale lengths of the modes of interest �e.g., 1 /k�, are
both small compared to equilibrium scale lengths such as Lp

and R. Given this, our kinetic calculations show that the
entropy mode is unstable at a gradient about two times lower
than the marginal stability gradient predicted by the fluid
theory. The growth rate spectrum of the entropy mode as a
function of k typically peaks at k�s�1 ��s=cs /�ci, being �ci

the ion cyclotron frequency�, where it reaches a maximum
value that is typically comparable to the growth rate of the
ideal interchange mode. Such large growth rates suggest that
the entropy mode, in its nonlinear phase, may potentially
drive significant particle and heat transport in ideally stable Z
pinches. The instability can extend well into the regime of
k�i�1, making a kinetic treatment valid to all orders in k�i

necessary for an accurate description for T0i�T0e.
This paper is organized as follows. In the next section

we discuss the so-called local approximation on which our
calculations are based, and review the MHD equilibrium
condition in a Z pinch. In Sec. III, we then summarize some
important results for the ideal interchange and the entropy

modes that have been obtained in the literature in the limit of
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k�i�1. For convenience, these results are also derived in
Appendix A from the gyrofluid model. In Sec. IV we then
turn to the numerical study of the gyrokinetic model and the
case of arbitrary k�i. The conclusions are given in Sec. V.

II. THE LOCAL APPROXIMATION

Since the modes of interest have scale lengths that are
much smaller than those of the equilibrium quantities, the
analysis described in this paper, like most previous studies of
the entropy mode, are carried out within the framework of
the so-called local approximation.18 In this approximation,
one first separates the dependent variables into equilibrium
parts �if present� and perturbations. Given the assumed dis-
parity in the scale-lengths between the two parts, one may
then Taylor expand the equilibrium quantities about some
radius of interest r=R and retain only the dominant, leading-
order terms. As a result, equilibrium quantities appearing in
the final equations for the perturbations, such as the curva-
ture radius R, the magnetic field B=B�e�, the density n0, the
ion and electron temperatures, T0i and T0e, the equilibrium
scale lengths Ln=−n0 /n0�, Lp=−p0 / p0�, LT	

=−T0	 /T0	� , etc.,
are approximated as constants within the narrow domain un-
der consideration. These quantities are assumed to be related
to the condition for MHD equilibrium, which in the Z-pinch
geometry may be written as1

�

Lp
=

2

rB�

d

dr
�rB�� . �1�

In the limit of ��1, the main interest in this paper, it is seen
that to leading order in � the magnetic field strength B�


1/r as in a vacuum, and the quantities R and Lp may be
regarded as essentially independent, constant parameters.
Unless otherwise noted, for simplicity we will assume here
that Lni

=Lne
=Ln and LTi

=LTe
=LT.

III. REVIEW OF PAST RESULTS AT k�i™1

As noted in the Introduction, our study addresses the
linear theory of the entropy mode in parameter regimes in
which the ideal interchange mode is stable. In this section we
therefore review the dispersion relation for the ideal inter-
change mode in the collisional and collisionless limits. We
then turn to a discussion of the entropy mode in the limit
k�i�1 in which some analytical progress can be made. The
full gyrokinetic theory of the entropy mode for arbitrary k�i

is discussed in the following section.
The numerical solution of the electromagnetic gyroki-

netic dispersion relation carried out in three spatial dimen-
sions show that for ��1 the fastest growing modes are elec-
trostatic and have k� =0 and kr=0. Thus, all the analytical
calculations and the numerical studies presented in the
present paper are performed in the electrostatic approxima-
tion and neglect the dependence of the modes on the azi-

muthal and radial coordinates.
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A. Interchange mode

In the limit of k�i�1, ��1, and strong collisionality,
the dispersion relation for the standard ideal MHD inter-
change mode can be written as �see, e.g., Ref. 5�

�k�se�2�2 − 2�de�10

3
��de − �di� − �1 + ����*e − �*i�	

= 0 �2�

where �=Ln /LT, �se the ion Larmor radius based on the elec-
tron temperature, and the general expression for �*	 and �d	

take on a simple form in a Z pinch:

�*	 = −
cT0	

q	Bn0
� n0 · b 
 k = k�	

vth,	

Ln
, �3�

�d	 =
vth,	

2

�c	B2B 
 �B · k = k�	

vth,	

R
, �4�

b being the unit vector of the magnetic field B, and q	, vth,	,
�c	=q	B� / �m	c�, m	, and �	=vth,	 /�c	 being the charge,
thermal velocity, cyclotron frequency, mass, and gyroradius
for the species 	, respectively �with the above definitions
�e�0�. It is seen that the term in Eq. �2� proportional to
�de��*e−�*i� drives the growth of the mode while the term
proportional to �de��de−�di�, arising from the contribution
of the plasma compressibility, is always stabilizing. In the
limit that the former dominates, one obtains �
���de��*e−�*i��1+�� / �k�se��cs /�RLp, as noted in the
Introduction. The stability region associated with Eq. �2� as a
function of �� ,Ln /R� is shown in Fig. 1. In the case of �
=0 and �=1��=T0i /T0e�, the collisional interchange mode is
unstable for 0�Ln /R�3/10. For convenience, Eq. �2� is
derived in Appendix A from the gyrofluid model.18–20

The dispersion relation for the interchange mode in a
collisionless plasma can be derived from the Chew, Gold-
berger, and Low �CGL� model,21 assuming zero heat flow
perpendicular to the magnetic field. Aside from numerical
factors, the resulting dispersion relation is similar to that of
the collisional case and can be written as:22

�k�se�2�2 − �de�7��de − �di� − 2�� + 1���*e − �*i�� = 0.

�5�

The stability region of the collisionless interchange mode in
the �� ,Ln /R� plane is shown in Fig. 1. For �=0 and �=1, the
collisionless interchange mode is unstable for 0�Ln /R
�2/7�
0.29�. Equation �5� is also derived in Appendix A
from the gyrofluid model.

B. Entropy mode

In the limit of k�i�1 and �=1, the dispersion relation
for the entropy mode in collisional plasmas has been ob-
tained in Refs. 5–7; for convenience, it is also derived in
Appendix A from the gyrofluid model for arbitrary tempera-

ture ratio:
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�9�1 + ����*e − �*i� + 30��di − �de���2 − 30�2��di
2

− �de
2 � − ��di�*i − �de�*e��� + 20�de��di − �de�


�10�di + �*i�3� − 7�� = 0 �6�

which leads to the scaling

� ���de��di − �de��10�di + �*i�3� − 7��
9�1 + ����*e − �*i� + 30��di − �de�

�
k�sevth,i

R

�7�

for ��1, thus showing the linear dependence of the growth
rate on k noted in the Introduction. In the limit of �=0 and
�=1, for example, instability is obtained for 3 /10�Ln /R
�7/10. In the collisionless limit �and �=1 for simplicity�, on
the other hand, the gyrofluid model yields

�d�7�d − 2�� + 1��*��4 − �221�d
4 − 2�19� + 44��d

3�*��2

+ 2�578�d
6 + 34�5� − 12��d

5�*� = 0, �8�

where �*=�*i=−�*e and �d=�di=−�de. For �=0, the col-
lisionless entropy mode becomes unstable in the presence of
lower gradients than the ideal interchange mode, namely
2/7�Ln /R�204/289�
0.71� for �=1. The stability region
of both the collisional and the collisionless entropy mode,
Eqs. �6� and �8�, are shown in Fig. 1 for �=1.

In Fig. 2, the growth rates computed with the dispersion
relations of the ideal interchange mode �Eqs. �2� and �5�� and
of the entropy mode �Eqs. �6� and �8�� are compared with the

FIG. 1. �Color online� Stability region for the interchange mode in the collis
in the collisional, Eq. �6� �c�, and collisionless regime, Eq. �8� �d�, in the �Ln /
growth rates obtained from the dispersion relation of the gy-
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rofluid model, Eq. �A15�, that couples the ideal interchange
and the entropy modes, and from the gyrokinetic model, de-
scribed later. For clarity, the dispersion relations correspond-
ing to the different models are summarized in Table I. In Fig.
2, we consider small values of k�s, �k�s�2=0.002, and
�k�s�2=0.2, and the growth rates are plotted as a function of
Ln /R ��=0 and �=1�. In the case of �k�s�2=0.002, the
growth rates both from the gyrokinetic and the gyrofluid
models agree well with the analytical estimate from the ideal
dispersion relation at high density gradient, in the ideal in-
terchange regime. We note that, at the weakest gradients
�e.g., in the range of Ln /R from about 0.7 to � /2�, the gyro-
kinetic model exhibits instability while the gyrofluid model
does not. For �=0, the value of the gyrokinetic stability
threshold, Ln /R=� /2, can be analytically evaluated and the
details of the derivation are presented in Appendix B.

IV. GYROKINETIC LINEAR THEORY

A. Gyrokinetic model

The gyrokinetic equations14,15 described in detail below
are based on the ordering �i�L �where L is a generic equi-
librium scale�, kL�1, and ���ci. Given that the dominant
modes in our system typically have k�1/�i for ��1, the
condition kL�1 is well satisfied provided that �i�L. Like-
wise, since the maximum frequencies in our system are typi-

, Eq. �2� �a�, and collisionless regime, Eq. �5� �b�, and for the entropy mode
plane. The white regions represent the region where the modes are unstable.
ional
R ,��
cally on the order of the ion or electron diamagnetic frequen-
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cies ����*�, the condition �ci�� for ��1 reduces to
L /�i�k�i and is thus also satisfied provided that L /�i is
sufficiently large.

Assuming all the perturbed quantities are proportional to
exp�−i�t+ ikz�, the gyrokinetic equations for both ions and
electrons can be written in the following form:

�� − �d	�h	 = − �� − �*	�q	�
�F0	

��
J0� kv�

�c	
�

+
i

2�



−�

�

exp�− iL�C�f	�d� , �9�

where L= �v
b ·k� /�c	, � is the gyroangle, � is the elec-
trostatic potential, and the distribution function h	=h	�� ,��,
with �=m	v2 /2 and �=m	v�

2 /2B�, is related to the total
perturbed distribution function f	= f	�v� through

FIG. 2. �Color online� Growth rate of the interchange and the entropy mode
as a function of Ln /R for two different values of k�s ��=0, �=1, and �=0�.
The gyrokinetic growth rate �red “
” marks� is compared to the growth rate
from the gyrofluid model �black dashed-dotted line�, Eq. �A15�, from the
dispersion relation of the ideal collisional �green dashed line� and collision-
less interchange mode �green solid line�, Eqs. �2� and �5�, and of the colli-
sional �blue dashed line� and collisionless entropy mode �blue solid line�,
and Eqs. �6� and �8�. In GS2 calculation it is assumed that mi /me=1836.

TABLE I. Summary of the different models used in the study of the linear

Interchange Entropy �k�i�1�

Collisional MHD, Eq. �2� Gyrofluid, Eq. �6�
Collisionless CGL, Eq. �5� Gyrofluid, Eq. �8�
Downloaded 17 Jan 2008 to 128.8.80.201. Redistribution subject to A
f	 = q	�
�F0	

��
+ exp�iL�h	. �10�

The frequencies �d	 and �*	 are related to the frequen-
cies �d	 and �*	 by

�*	 =
b 
 k · �F0	

m	�c	�F0	/��
= �*	�LnF0	n0�/n0

T0	�F0	/��

+
Lnn0�F0	/n0��

T0	�F0	/��
� , �11�

�d	 = k · b 

m	v�

2b · �b + � � B

m	�c	

= �d	�v�
2 + v�

2 /2

vth,	
2 � .

�12�

The collision operator used in the present paper, C�f	�,
takes into account electron-electron, electron-ion, and ion-
ion collisions and is expressed as16

C�f	� = �̂�v�
�

��
�1 − �2�

�f	

��
, �13�

where �=v� /v and �̂�v� is defined in Ref. 16. We assume for
simplicity that both the ion and electron equilibrium distri-
bution functions are isotropic Maxwellians,

F0	 = n0� m	

2�T0	
�3/2

exp�−
�

T0	
� . �14�

The ion and electron gyrokinetic distribution functions are
coupled by the quasineutrality equation

�
	

q	
 f	dv = 0. �15�

We use GS2 �see Refs. 16 and 17� to solve the gyroki-
netic system, Eqs. �9� and �15�, and evaluate the growth rate
of the linear modes. The code evolves the five-dimensional
perturbed distribution functions f	�r ,� ,�� on a fixed grid.
The linear modes are evaluated with an initial value ap-
proach: small initial noise is evolved until the eigenfunction
with the fastest growth rate is formed. As a benchmark for
GS2, we also solve the linear gyrokinetic dispersion relation
with an interior-reflective Newton iterative method,23 evalu-
ating the integrals present in the gyrokinetic dispersion rela-
tion with an adaptive Simpson quadrature method.

B. Numerical results

We have explored the growth rate of the entropy mode
as a function of k for different values of Ln /R, �, collision
frequency � ��=�n0e4 ln � / �mi

1/2T0i
3/2�, where ln � is the

Coulomb logarithm�, and � ��=T0i /T0e�. In Fig. 3, we show

y of the Z pinch.

hange/Entropy �k�i�1� Entropy

yrofluid, Eq. �A9� Gyrokinetic, Eqs. �9� and �15�
yrofluid, Eq. �A15� Gyrokinetic, Eqs. �9� and �15�, C�h	�=0
theor

Interc

G

G
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the growth rate of the entropy mode as a function of k, for
different values of Ln /R ��=1, �=0�. The growth rates are
proportional to k for k�s�1, as predicted by the analytical
dispersion relation of the entropy mode, Eq. �8�. The peak
growth rate is found to be at k�s�1 and increases consider-
ably with Ln /R �it passes from �
0.013vth,i /Ln in the case
of Ln /R=1.25 to �
0.3vth,i /Ln at Ln /R=0.5�. The cutoff at
high k increases considerably with the gradient. For Ln /R
=0.8, the cutoff is over k�s�30, while for Ln /R=0.5 the
growth rate does not seem to present a cutoff at all up to the
value of k�i�70 that we have examined. As an aside, we
note that the numerical solution of the gyrokinetic equations
at k�i
70, where k�e
1.6 �for mi /me=1836�, shows that
electron finite Larmor radius �FLR� effects reduce the growth
rate of the entropy mode, although they are not able to sta-
bilize it completely.

As a benchmark for GS2, we describe some convergence
studies with respect to the GS2 energy grid. In Fig. 4 we plot
the growth rate of the entropy mode for Ln /R=0.95 ��=0,
�=0, and �=1� for different numbers of grid points in the
velocity space, and we compare with the direct numerical

FIG. 3. �Color online� Growth rate of the entropy mode as a function of k�s

for different values of Ln /R: Ln /R=1.25 �blue solid line�, Ln /R=1 �red
dotted line�, Ln /R=0.8 �black dashed-dotted line�, Ln /R=0.67 �green dashed
line�, and Ln /R=0.5 �magenta solid line�. It is assumed �=0, �=1, and
me=0.

FIG. 4. �Color online� The growth rate of the entropy mode for the case of
Ln /R=0.95 and �=0 is plotted as computed from GS2 with different num-
bers of grid points in velocity space: 60 points �green dashed line�, 360
points �magenta line with � marks�, 420 points �blue dashed-dotted line�,
and 16384 points �red line with “�” marks�. The black solid lines shows the
direct numerical solution. The convergence test is performed for me=0, �

=1, �=0, and �=0.
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solution of the gyrokinetic dispersion relation. The agree-
ment between the growth rate is good at low k for all the
velocity grids, but the comparison reveals that only refined
velocity grids are able to represent correctly the growth rate
at k�s�4. Convergence tests also show that the number of
grid points in the velocity space necessary to evaluate the
correct growth rate of the entropy mode is bigger for density
gradients close to the stability threshold of Ln /R=� /2 �for
�=0�. This is due to the fact that the dependence of the
distribution functions on v� and v� requires a refined energy
grid to be well represented at high k and at weak gradient.
This is shown in Fig. 5, where the ion and electron distribu-
tion functions are plotted for k�s=38 �Ln /R=0.5�, revealing
a high frequency oscillation of the ion distribution function
in both the v� and v� directions. As an aside, we note that a
new algorithm to evaluate the energy grid points for Gauss-
ian integration has been implemented in GS2 �Ref. 24� in
order to perform calculations with a refined velocity grid.25

The importance of the temperature gradient for the en-
tropy mode is analyzed in Fig. 6 where we plot the growth
rate of the mode as a function of k for different values of
Ln /R and � ��=0 and �=1�. As it is possible to argue also
from the stability region of the entropy mode �Fig. 1�, posi-
tive values of � are stabilizing for the entropy mode, while
negative values of � are destabilizing. For low values of
Ln /R �high density gradient� both the peak value and the
growth rate at high k are affected by �; at high values of
Ln /R �weak density gradient� only the growth rate at high k
is affected.

We also perform a study of the growth rate of the en-
tropy mode as a function of the plasma collisionality, using
the collision operator of Eq. �13� that includes electron-
electron, electron-ion, and ion-ion collisions. In Fig. 7, we
plot the growth rate of the entropy mode as a function of k
for different plasma collisionality � and Ln /R, in the case of
�=0, �=1. Collisions decrease the growth rate of the entropy
mode at high values of k, since collisions tend to suppress
the formation of anisotropies in the distribution function, as
the one shown in Fig. 4, that are typical of the entropy mode
at high k. Moreover, in the case of low gradient, where ki-
netic effects lead the instability �see Fig. 2�, collisions are
also able to decrease the peak value of the growth rate.

The effect of the temperature ratio, �, on the growth rate
of the entropy mode is shown in Fig. 8 ��=0, �=0�. The
numerical results show two different dependences of the
growth rate on the temperature ratio, depending on the den-
sity gradient. At high gradient, close to the ideal interchange
stability, the growth rate for k�s�1 scales with k�se, consis-
tent with Eq. �7�. The peak growth rate is localized at k�s

�1 �this finding has been verified with � that ranges from
�=0.1 to �=20�. Also, the peak growth rate decreases with �.
At lower gradients, closer to the entropy mode marginal sta-
bility boundary, for ��1, the peak growth rate is shifted to
shorter wavelength and the peak tends to broaden, so that the
entropy mode becomes unstable up to very high values of
k�i. The growth rate is smaller than the �=1 case, for both
��1 and ��1. We remark that also the growth rate near

marginal stability, evaluated with the assumption k�i�1 and

IP license or copyright; see http://pop.aip.org/pop/copyright.jsp



062102-6 Ricci et al. Phys. Plasmas 13, 062102 �2006�
shown in Eq. �B11�, predicts that the growth rate has a maxi-
mum at �=1, since the growth rate scales with the tempera-
ture ratio � as �3/2�1+��2 / �1+�3�2.

V. CONCLUSIONS

In the present paper, the gyrokinetic model developed in
Refs. 14 and 15 is applied to the study of the entropy mode
in a Z pinch. The gyrokinetic equations are solved using the
GS2 code and benchmarked with an independent numerical
solution in the simplest case. The study considers Z pinches
in the low � regime, in the collisionless and collisional cases.

It is shown that the entropy mode is unstable for density
gradients lower than the marginal stability for the ideal mode
and has a threshold at Ln /R=� /2 �in the collisionless case
and �=0�. The instability extends over a large span of k�s

and the peak growth rate, present at k�s�1, increases
strongly with Ln /R. At high k and low density gradient, high
resolution in the velocity grid is required for the correct
evaluation of the growth rate. The dependence of the growth
rate on the temperature gradient � and on collision frequency
� is studied. Positive temperature gradients lead to a stabili-
zation of the entropy mode, decreasing the peak growth rate
and reducing the span of k�i where the mode is unstable. The
collision frequency � reduces the growth rate at high k and
the peak growth rate at low gradients. The effect of the tem-
perature ratio is also studied: for ��1 the peak growth rate
of the entropy mode is reduced; for ��1, the peak growth
rate is reduced at low density gradients and it is enhanced at

FIG. 5. �Color online� Real �a, b� and imaginary �c, d� part of the ion �a, c�
�=0, as a function of v� /vth and v� /vth.
and electron �b, d� distribution functions for the case of k�s=38, Ln /R=0.5, and
high density gradients.
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FIG. 6. �Color online� Growth rate of the entropy mode as a function of k�s

for different values of Ln /R=1 �a�, Ln /R=0.67 �b�, and Ln /R=0.4 �c�, and
�=−0.1 �green dashed-dotted line�, �=0 �black solid line�, �=0.1 �blue
dashed line�, and �=0.2 �red dotted line�. It is assumed that mi /me=1836,

�=1, and �=0.
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The results of our calculations show that the peak
growth rate of the entropy mode reaches a value comparable
to that of the ideal mode, thus suggesting that the entropy
mode may lead to significant particle and heat transport in an
ideally stable Z pinch. In the regime ��1, a full kinetic
study of the entropy mode, as presented here, is needed,
since the peak growth rate is reached at k�s�1 and the mode
is unstable over a large span of k�s. Moreover, fluid estimates
are not able to predict the correct stability threshold of the
entropy mode: the kinetic calculations show that the entropy
mode is unstable at a gradient two times lower than the mar-
ginal stability gradient predicted by the fluid theory.
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APPENDIX A: GYROFLUID MODEL

Here we obtain the dispersion relation of the interchange
and entropy modes from the gyrofluid model.18–20 The gyro-

FIG. 7. �Color online� Growth rate of the entropy mode as a function of k�s

for different values of Ln /R=1 �a�, Ln /R=0.67 �b�, and Ln /R=0.4 �c�, and
�=0 �black solid line�, �=0.01�th,i /R �blue dashed-dotted line�, �
=0.1�th,i /R �red dotted line�. It is assumed that mi /me=1836, �=1, and �
=0.
fluid model is derived by evaluating the moments of the
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gyrokinetic equations, with the assumptions that the equilib-
rium distribution functions are Maxwellian and that terms
involved in the curvature and �B drifts related to deviations
from the Maxwellian distribution functions can be neglected.
This approximation is valid for collisional plasmas, where
the Maxwellian distribution function is reached through col-
lisions, and for ���* and ���d in the collisionless case.
We remark that the most general form of the gyrofluid model
takes into account deviations of the perturbed distribution
functions from Maxwellian distributions.18–20 For ions and
electrons, the evolution equations for the perturbations of the
density, n	, and of the parallel and perpendicular pressure,
p�	 and p�	, are

dni

dt
−

n0e

T0i
�1 +

�

2
�̂�

2 �i�*i� +
n0e

T0i
�2 +

1

2
�̂�

2 �i�di�

+ i
�di

T0i
�p�i + p�i� = 0, �A1�

dp�i

dt
− n0e�1 + � +

�

2
�̂�

2 �i�*i� + n0e�4 +
1

2
�̂�

2 �i�di�

+ i�di�7p�i + p�i − 4T0ini� = −
2

��p�i − p�i� , �A2�

FIG. 8. �Color online� Growth rate of the entropy mode as a function of k�s

for different values of Ln /R=1 �a�, Ln /R=0.67 �b�, and Ln /R=0.4 �c�, and
T0i /T0e=1 �black solid line�, T0i /T0e=0.2 �red dashed-dotted line�, T0i /T0e

=5 �green dashed line�. It is assumed that mi /me=1836, �=0, and �=0.
3
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dp�i

dt
− n0e�1 +

1

2
�̂�

2 + ��1 +
1

2
�̂�

2 + �̂
ˆ

�
2 �	i�*i�

+ n0e�3 +
3

2
�̂�

2 + �̂
ˆ

�
2 �i�di� + i�di�5p�i + p�i

− 3T0ini� =
1

3
��p�i − p�i� , �A3�

dne

dt
+

n0e

T0e
�i�*e − 2i�de�� + i

�de

T0e
�p�e + p�e� = 0, �A4�

dp�e

dt
+ n0e��1 + ��i�*e − 4i�de�� + i�de�7p�e + p�e

− 4T0ene� = −
2

3
��p�e − p�e� , �A5�

dp�e

dt
+ n0e��1 + ��i�*e − 3i�de�� + i�de�5p�e + p�e

− 3T0ene� =
1

3
��p�e − p�e� , �A6�

where we neglect the electron finite Larmor radius effect and
where

�̂�
2 = 2b

��0
1/2

�b
, �̂

ˆ
�
2 = b

�2

�b2 �b�0
1/2�, � = �0

1/2� �A7�

with �0�b�=exp�−b�I0�b�, I0 is a modified Bessel function,
b=k2�i

2, and �d	 and �*	 are defined in Eqs. �11� and �12�.
The system includes the Poisson equation �quasineutrality
constraint� that can be written as

ne =
1

1 + b/2
ni − n0

2b

�2 + b�2

T�i

T0i
− n0�1 − �0�

e�

T0i
. �A8�

The gyrofluid model is rigorously first order accurate in
�k�i�2, since the evaluation of the integrals in velocity space
that lead to the �0 function in Eqs. �A1�–�A6� and �A8� and
the Padé approximation in Eq. �A8� are accurate to first order
in �k�i�2. No assumptions are made regarding k�se.

26

The dispersion relation for highly collisional plasmas
can be obtained from the set of Eqs. �A1�–�A6� and �A8�, in
the limit of �→� in Eqs. �A2�, �A3�, �A5�, and �A6�. For
�→�, it follows p�	= p�	. Retaining only terms up to the
first order in �k�i�2, the dispersion relation obtained is a
fourth order polynomial,

a4�4 + a3�3 + a2�2 + a1� + a0 = 0, �A9�

where

a4 = 9�k�se�2, �A10�

a3 = �−
63

�di − 60�de − 9�1 + ���*i	�k�se�2, �A11�

2
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a2 = �de�18�1 + ����*e − �*i� + 60��di − �de�� + �3�di
2

+ 210�di�de + 60�de
2 + �*i�30�di + 60�1 + ���de��


�k�se�2, �A12�

a1 = − 60�de�2��di
2 − �de

2 � − ��di�*i − �de�*e��

+ 10�de�di�2�di − 17�de − �*i�21 + �� − 7�*e


�1 + ����k�se�2, �A13�

a0 = 40�de
2 ��di − �de��10�di + �*i�3� − 7��

+ 20�de
2 �di��di + 10�*i��k�se�2. �A14�

Assuming that ��vth,i /L, so that ���*��d for k�i

�1, the collisional �MHD� dispersion relation is derived for
the interchange mode, Eq. �2�, that is also deduced, e.g., in
Ref. 5. If one scales the mode frequency as ���d��*, so
that ��vth,i /L, the dispersion relation for the collisional en-
tropy mode is obtained, Eq. �6�, which is deduced also, e.g.,
in Ref. 5.

For collisionless plasmas, �=0, the dispersion relation
obtained is a sixth order polynomial equation in �,

a6�6 + a5�5 + a4�4 + a3�3 + a2�2 + a1� + a0 = 0, �A15�

where

a6 = − �k�se�2, �A16�

a5 = �9�di + 12�de + �� + 1��*i��k�se�2, �A17�

a4 = �de�7��de − �di� + 2�� + 1���*i − �*e��

− �18�di
2 + 108�di�de + 41�de

2 + 12�1 + ���de�*i

+ 3�di�*i�3 + 2����k�se�2, �A18�

a3 = �de�48��di
2 − �de

2 � − �17 + 10����di�*i − �*e�de��

+ �216�di
2 �de + 369�di�de

2 + 34�de
3 + �*i��di

2 �18

+
3

2
�� + �di�de�108 + 72�� + 41�de

2 �1 + ��	�

�k�se�2, �A19�

a2 = 68�de��de
3 − �di

3 � − 289�de
2 �di��di − �de�

+ �de�*i�34�di
2 + 122�de�di − 122�de

2 + 38��de��di

− �de�� − 34�de
3 �*e − �di�de�306�de

2 + 738�di�de

+ �*i��216 + 18���di + �369 + 246���de� + 34�1

+ ���de�*e��k�se�2, �A20�

a1 = �de
2 �578�di��di

2 − �de
2 � + �68� − 340��*i��di

2 − �de
2 ��

+ �de
2 �di��di�*i�738 +

123

2
�� + 612�di�de

+ � � �306 + 204�� �k� �2, �A21�
de *i 	 se
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a0 = �1156�di
2 + 340��di�*i − 816�di�*i��de

3 ��de − �di�

− 51�� + 12��de
3 �di

2 �*i�k�se�2. �A22�

Again, two analytical limits can be derived from this disper-
sion relation. If one assumes that ��vth,i /L so that ���*

��d for k�i�1, the dispersion relation for the interchange
mode is derived. The result can be written as in Eq. �5� and
corresponds to that obtained from the CGL model21 for �
=1.22 If one assumes that the mode frequency scales as �
��d��*, so that ��vth,i /L, the dispersion relation for the
so-called entropy mode is obtained, Eq. �8�. This result is
rigorously valid only in the regime �*��d, because terms
raising from deviations from the Maxwellian distribution
function are neglected in the curvature and �B drifts.18

APPENDIX B: EVALUATION OF THE DENSITY
GRADIENT AT MARGINAL STABILITY

In the present Appendix we derive the stability threshold
value of the density gradient for the entropy mode from the
gyrokinetic model. Since we consider a collisionless plasma,
it is C�h	�=0. The dispersion relation of the gyrokinetic
model can be deduced from Eqs. �9�, �10�, and �15�, and can
be written as


 �F0e

��
dv +
 �F0i

��
dv −
 J0

2� kv�

�ce
�� − �*e

� − �de

�F0e

��
dv

−
 J0
2� kv�

�ci
�� − �*i

� − �di

�F0i

��
dv = 0. �B1�

In order to proceed analytically in the evaluation of the
stability threshold, the dispersion relation �B1� is simplified
by neglecting electron FLR, so that J0

2�kv� /�ce��1, by as-
suming k�i�1, so that J0

2�kv� /�ci��1−k2v�
2 / �2�ci

2 �, by as-
suming no temperature gradient, �=0, and by imposing that
F0	 are isotropic Maxwellian distribution functions. With
these assumptions, the dispersion relation �B1� becomes

1

T0e
+

1

T0i
− Ie − Ii = 0, �B2�

where

Ie =
1

T0e
� me

2�T0e
�3/2
 � − �*e

� − �de
exp�−

mev
2

2T0e
�dv , �B3�

Ii =
1

T0i
� mi

2�T0i
�3/2
 �1 −

k2v�
2

2�ci
2 �� − �*i

� − �di


exp�−
miv

2

2T0i
�dv . �B4�

We consider first Ie. Since �=0, it follows �*e /�*e=1.

Dividing and multiplying Ie by �*e, one obtains
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Ie =
2�R��/�*e − 1�

meLn
� me

2�T0e
�3/2


0

�

dv�v�


exp�−
mev�

2

2T0e
�


−�

�

dv�

exp�− mev�
2/2T0e�

�vth,e
2 /�de − v�

2 /2 − v�
2 ,

�B5�

where cylindrical velocity coordinates and the definition of
�de in Eq. �12� are used. The analytical integration in v�

yields



−�

�

dv�

exp�− mev�
2/2T0e�

�vth,e
2 /�de − v�

2 /2 − v�
2

= exp�me
v�

2 /2 − �vth,e
2 /�de

2T0e
�



�

��vth,e
2 /�de − v�

2 /2
i�sgn�Im�− �/�*e��

− erf�i�me

�vth,e
2 /�de − v�

2 /2

2T0e
�� �B6�

defining sgn�x�=1 if x�0, and sgn�x�=−1 if x�0. The re-
sult of the v� integration, Eq. �B6�, is introduced in Eq. �B5�,
obtaining

Ie =
2���/�*e − 1�R

meLn
� me

2�T0e
�3/2


exp�−
�

2�de
�


0

�

dv�v� exp�−
mev�

2

4T0e
�



i�

��vth,e
2 /�de − v�

2 /2
�sgn�Im�− �/�*e��

− erf�i�me

�vth,e
2 /�de − v�

2 /2

2T0e
��

=
�

2

R

Ln

�1 − �/�*e�
T0e

exp�−
�

�de
��erfc��−

�

2�de
�	2

.

�B7�

For the ions, the integral to be evaluated can be written
as

Ii =
2���/�*e + ��R

�miLn
� mi

2�T0i
�3/2


0

�

dv�v��1 −
k2v�

2

2�ci
2 �


exp�−
miv�

2

2T0i
�


−�

�

dv�

exp�− miv�
2/2T0i�

�vth,i
2 /��de�� + v�

2 /2 + v�
2 .

�B8�
The integral in v� leads to
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−�

�

dv�

exp�− miv�
2/2T0i�

�vth,i
2 /��de�� + v�

2 /2 + v�
2

= exp�mi

�vth,i
2 /��de�� + v�

2 /2

2T0i
� �

��vth,i
2 /��de�� + v�

2 /2


�erfc��mi

�vth,i
2 /��de�� + v�

2 /2

2T0i
�	 �B9�

and, using Eq. �B9� to evaluate the v� integral in Eq. �B8�,
the following expression for Ii is obtained:

Ii =
1

�2�T0i

� �

�*e�
+ 1� R

Ln


�exp� �

��de
���3

2
�erfc�� �

2��de
�	2

−
k2�i

2

2
�− 2�2� + 4� exp� �

2��de
�


� �

��de
erfc�� �

2��de
� − �2�3


exp� �

��de
�� �

��de
− 1��erfc�� �

2��de
��2	� . �B10�

Introducing Eqs. �B7� and �B10� into the dispersion re-
lation, Eq. �B2�, and solving for �, it is possible to evaluate
the growth rate and real frequency of the entropy mode.
Since we are interested in evaluating the marginal stability of
the mode, it is possible to assume ���*e. Taylor expanding
the dispersion relation in powers of �, we obtain

� = k�i
vth,i

Ln

�1 + ����R/�2Ln� − 1� − k2�i
2R��/2 − 1�/Ln

2���3 + 1�2�R/Ln�3

· ���1 + ��� �R

2Ln
− 1� − k2�i

2 R

Ln
��/2 − 1�	��2 − 1�

+ 2�3/2��1 + ��� �R

2Ln
− 1� − k2�i

2 R

Ln
��/2 − 1��i� �B11�

and thus a critical gradient of
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Ln

R
=

��1 + �� − k2�i
2�� − 2�

2�1 + ��
. �B12�

From Eq. �B12�, it can be argued that the entropy mode
is stable for Ln /R�� /2 in collisionless plasmas, and that ion
FLR effects are stabilizing. The stability threshold is inde-
pendent of the temperature ratio, but the growth rates depend
on �, as pointed out in Eq. �B11�. Moreover, for �=1, the
mode is purely growing.
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