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Abstract

In this note we prove that the finite time blow-up of classical solutions of
the 3-D homogeneous incompressible Euler equations is controlled by the Besov
space, B |, norm of the two components of the vorticity. For the axisymmet-

00,17

ric flows with swirl we deduce that the blow-up of solution is controlled by
the same Besov space norm of the angular component of the vorticity. For the
proof of these results we use the Beale-Kato-Majda criterion, and the special
structure of the vortex stretching term in the vorticity formulation of the Euler

equation.
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1 Introduction

We are concerned on the Euler equations for the homogeneous incompressible fluid

flows in R3 x (0, 00).

2w = -vp, (L1)
div v =0, (1.2)
v(x,0) = v(z), z€R (1.3)

where v = (v!,v%v3), v/ = vi(x,t), j = 1,2,3 is the velocity of the fluid flows,
p = p(x,t) is the scalar pressure, and v, is the given initial velocity satisfying div
vo = 0. Taking curl of (1.1), we obtain the following vorticity formulation for the

vorticity field w =curl v.

%—C:—i—(U-V)w:w-VU, (1.4)



div v =0, curl v=w, (1.5)

w(z,0) =wp(r), xR’ (1.6)
The local in time solution of the Euler equations in the Sobolev space H™(R") for
m > n/2+ 1, n = 2,3 was obtained by Kato in [13], and there are several other
local well-posedness results after that, using various function spaces([14, 15, 8, 2, 3]).
The most outstanding open problem for the Euler equations is whether or not there
exists any smooth initial data, say vy € C5°(R?), which evolves in finite time into a
blowing up solution(breakdown of the initial data regularity). In this direction there
is a celebrated criterion of the blow-up due to Beale, Kato and Majda(called the BKM
criterion)[1], which states for m > 2

T
lim sup [|o(t)]sm = 0o if and only if u/ lw(t)|[poedt = 00, (17)
0

t /T

(See [16, 2, 3, 17] for the refinements of this result by replacing the L* norm of the
vorticity by weaker norms close to the L> norm.) In this note we are concerned on
refining the BKM criterion by reducing the number of components of the vorticity
vector field. For the statement of our main results we introduce a particular Besov
space, Bgo’l. Given f € &, the Schwartz class of rapidly deceasing functions. Its

Fourier transform f is defined by

F() = 16) = gs || i
We consider ¢ € S satisfying the following three conditions:
(i) Suppp C {€ € R[5 < [¢] <2},
(i) p&)>C>0if 2 < ¢ < 2,

(iii) ZjeZ $i(€) =1, where ¢; = p(279¢).
Construction of such sequence of functions {¢;};ez is well-known(See e.g. [21]). Note

that ¢; is supported on the annulus of radius about 2.
Then, BY , is defined by

feBer =l = > lps # fllzs < o0,
JEZ
where * is the standard notation for convolution, (f*g)( fRn )dy Note

that the condition (iii)(partition of unity) above 1mp11es 1mmed1ately that Boo’1 —

L°°. The space 38071 can be embedded into the class of continuous bounded functions,
thus having slightly better regularity than L>°, but containing as a subspace the
Holder space C7, for any v > 0. One distinct feature of BY . compared with L

00,1
is that the singular integral operators of the Calderon-Zygmund type map Bgo,l into
itself boundedly, the property which L*> does not have. We now state our main
theorems.



Theorem 1.1 Let m > 5/2. Suppose v € C([0,Ty); H™(R?)) is the local classical
solution of (1.1)-(1.3) for some Ty > 0, corresponding to the initial data vy € H™(R?),
and w = curl v is its vorticity. We decompose w = @ + wes, where @ = w'e; + wes,

and {ey, eq, 3} is the canonical basis of R3. Then,

T
limsup ||v(t)||gm = oo if and only if / |@(E) |5 dt = oo. (1.8)
t/T 0 oco,1

Remark 1.1. Actually @ could be the projected component of w onto any plane
in R3. For the solution v = (v!,v2 0) of the Euler equations on the x; — x5 plane,
the vorticity is w = w?ez with wy = 9,,v* — 9,,v!, and ©® = 0. Hence, as a trivial
application of the above theorem we obtain the global in time existence of classical
solutions for the 2-D Euler equations.

Remark 1.2. For the 3-D Navier-Stokes equations it is possible to control the regu-
larity also by @, but using the same scale invariant norm as for the whole components
of the vorticity field, w as obtained in [4].

Next, we consider the axisymmetric solution of the Euler equations, which means
velocity field v(r, x3,t), solving the Euler equations, and having the representation

U(Ta T3, t) = UT<T7 L3, t)eT + UG(TJ s, t)69 + Ug(r7 s, t>€3
in the cylindrical coordinate system, where

X1 T2

To T
er:(?’7’0)’ 6‘9:(_?277170)7 63:(07071)7 r= \/.T%"—.CC%

In this case also the question of finite time blow-up of solution is widely open(See
[11],[5],[6] for previous studies in such case). The vorticity w = curl v is computed as

w=w"e, +wley + wies,

where )
W= =00 W= 0,07 — 0%, W= =0,(rv?).
r
We denote
~ 7 3 ~ _ T 3
vV =v e, +ves, Ww=w e, +w’es.

Hence, w = @ + &y, where &y = w’¢y. The Euler equations for the axisymmetric
solution are

o o . Op

o’ S v’

4+ (D = — 1.1
(T = - (1.10)
oo dp



div v =0, (1.12)
v(r, x3,0) = vo(r, z3), (1.13)

where V = eT% + 638%3. In the axisymmetry the Euler equations in the vorticity
formulation becomes

awr ~ - T~ YT\,
5+ (0-V)w(@- V) (1.14)
ow? ~ S\, 3~ v)..3
o (0 V) (@ - Vv (1.15)
N = (O-V U_G
b +7- V] (7) =(@-V) (r (1.16)
div 9 =0, curl o ="’ (1.17)

We now state our main theorem for the axisymmetric solutions of the Euler equations.

Theorem 1.2 Let v be the local classical axisymmetric solution of the 3-D Fuler
equations considered in Theorem 1.1, corresponding to an axisymmetric initial data
vo € H™(R?). As in the above we decompose w = @ + &y, where @ = w'e, +w3ez and
&y = wley. Then,

T
limsup |[v(t)||gm = oo if and only if / 1&g ()] o dt = oo. (1.18)
t /T 0 ool

Remark 1.3. We note that for the axisymmetric 3-D Navier-Stokes equations with
swirl it is possible to control the regularity also by Jy without strengthening its norm
as obtained in [4].

Remark 1.4. We compare this result with that of [6], where we proved that the
regularity /singularity is controlled by the integral fOT |56 ()| Lo (1+1og™ || o (t)]| ¢ )dt.
We note that this integral contains C” norm of &y, higher than Bgo’I norm.

2 Proof of the Main Results
Multiplying (1.5) by e3, we obtain

ow?® 3 _
R CRAY T SR T (2.1)

Given a vector field v(x,t), we consider the particle trajectory mapping X (o, t) de-
fined by the system of ordinary differential equation,

9X (a, 1)

P =v(X(a,t),t), X(a,0)=acR>



Integrating (2.1) along X (a,t), we have
¢
WX (a,t),t) = wi(a) + / [(w-V)v-es)(X(a,s), s)ds.
0
Hence, taking supremum over o € R? yields

o (@)l < llwg iz +/0 [(w- Vv - es](s)]| L~ ds. (2.2)

We now estimate the vortex stretching term (w - V)v - eg pointwise. Using the Biot-
Savart law, which follows from (1.5),

1 [ yxw(@+yt)
v(x,t) = E/ P dy,

we can compute(See e.g. [19])

o' 1 < dit Vi 1o
o, (x,t) = yy Z ejlmPV/ { -3 }wm(x+y,t) dy — —Zeijlwl(x,t)

3 5
Ryt || || 3=
= Pij(w)(x, t),

where PV denotes the principal value of the integrals, and €, is the skew symmetric
tensor with the normalization €103 = 1. We note that P;;(-) is a matrix valued singular

integral operator of the Calderon-Zygmund type. Hence, we compute explicitly the
vortex stretching term as

3 .
o’
(@ D)o 1) = 3wl 1) o, 1)(es)
i,j=1 J
1 w(z,t) X w(z+y,t) y X w(x+y,t)
— —pV 5 —3 ces (y - wz, t
A /R3 { lyl? “ lyl° ey (e )
= ( Decomposing the vorticity into w = @ + wes,)
1 o(x,t L t L t
Lpy [ (HelxE xS
dr s | ]
X w(lx+uy,t -
3 |<y|5 0.1 ~e3(y- W(l’,t))} dy

ZJ) (2, t)Pij(@0)(x,t)(es); —i—Zw (x,t)(e3)iPij(@)(x, t)(es);.

i,0=1

We thus have the pointwise estimate

[(w - V)v-es](@, t)] < Clo(z, H]|P@)(x, )] + Clw’ (2, )| P(@) (x, 1),



and from the embedding, Bgo’l — L*°, we obtain

IDw-ealllze < Cllllm IP@) e + Clo e [P(@)] 2
< Ol P@) g0, + Clale I P@) 50
< Ol e llge,, +ClIIE, (2.3)

where we used the fact that the Calderon-Zygmund singular integral operator maps
BY, , into itself boundedly. Substituting (2.3) into (2.2), we have the estimate

t
Ol < lolim +C [ I Ollm 16,0
t
+o/0 5()IB_ds.
The Gronwall lemma yields
t
Pllm < Nl e (€ [ 1at6Mlig i)
t t
+0 [ a6y, e (¢ [ 1ol dr) ds
0 oo, s 0,1

t t
(Il + [ 1061 ds)exo (€ [ 1ol as).

Hence, denoting (fOT 10() %0 dt) * = Az, we deduce that
oo,1

IN

=

T T T
| le®lmie < [ ja@lmdr+ [t @
< VTAr + [||lf]l~ + CAZ] Texp (C\/QFAT) .
Combining this with (1.7) implies the necessity part of (1.8). The sufficiency part
easily follows by trivial application of the imbedding, H™(R?) — BY ,(R?) for m > 2.
This completes the proof of Theorem 1.1.[]

Remark after Proof: The special structure of the vortex stretching term used in the
above proof was emphasized and used previously in [9, 10].

Proof of Theorem 1.2: We will use the notations,

ov”  ov”

= or 81’3 - ( 3173 ) 3

Vo = , Vo=[=— .
o’ 0 0Tk ) ji=1
or  Oxs



One can check easily(or, may see [6] for detailed computations.)

\Vi(z)| < |Vi(z)]  Vz e RE (2.4)
As in the proof of Theorem 1.1 the elliptic system, (1.17) implies

Vio(z) = P(d)(x) + Codg(),

where P(-) is a matrix valued singular integral operator of the Calderon-Zygmund
type, and Cj is a constant matrix. Given @(z,t), we consider the particle trajectory
mapping X («, t) defined by the system of ordinary differential equation,

X (a,t) S - B
— = (X (o, t),t), X(a,0)=a.

Then, integrating (1.14)-(1.15) along X (a,t) , we find that

W'(X(a,t),t) = wh(a) + /0 (@- V)" (X(a,s),s)ds,

W (X(a,t),t) = wi(a) + /0 (@ - V)vi(X(a,s),s)ds.

Thus, taking supremum over « € R?, we infer
¢
BOll < ool + [ 18l [F5()] s
0

t
< ||CdoHL>o+/0 [@() [ IV O(s) | oe s,

where we used (2.4). By Gronwall’s lemma we obtain
t
o= < Naulim exp ( [ 19006) i)
0
t
< lanlm e (€ [ 198055 05)
0 |
t
< Naulexp (€ [ (o)l 5).
0 |

where we used the fact that the Calderon-Zygmund singular integral operator maps
BY, , into itself boundedly. Combining this estimate with the embeddig, By ; < L*,
we find

T T T
| lolmde < [ 100t [ o)
0 0 0
T
< Tlanle=exp (€ [ 10l )
: ,
T
+C [ 13050, .
: |

7



Thus, the BKM criterion, (1.7) implies the necessity part of Theorem 1.2. Similarly
to the proof of Theorem 1.1 the sufficiency part easily follows from the imbedding,
H™R?) — BY, | (R?) for m > 2. This completes the proof of Theorem 1.2. [J
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