A DISCONTINUOUS GALERKIN METHOD ON KINETIC FLOCKING MODELS

CHANGHUI TAN

ABSTRACT. We study kinetic representations of flocking models. They arise from agent-based models
for self-organized dynamics, such as Cucker-Smale [5] and Motsch-Tadmor [11] models. We prove the
flocking behavior for the kinetic descriptions of flocking systems, which indicates a concentration in
velocity variable in infinite time. We propose a discontinuous Galerkin method to treat the asymptotic
J-singularity, and construct high order positive preserving schemes to solve kinetic flocking systems.
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1. INTRODUCTION

We are concerned with the following Vlasov-type kinetic equation
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where f = f(t,x,v) represents the density of the subject matter at the phase space, and Q(f, f) is
non-local the binary interaction expressed in the form

(1.1b)

O(f.f) = FLIf),  LIf)(t,x,v) / ‘”X y‘ —V)£(t,y,v")dydv".
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This system arises as a mean-field kinetic description of agent-based self-organized dynamics

1 N
' Y o(xi—xj) (v —vi).

Xi=Vj, Vi=-—

1 1y 4 degl j:1
It describes the behavior of agents that align with their neighbors and self-organize to finite many
clusters, through an interaction law characterized by an influence function ¢. In particular, it reveals
the novel flocking phenomenon where agents, e.g. birds, fishes, organize into an ordered motion and
flock into one cluster.

It is natural to assume that the strength of interaction is determined by the physical distance between
agents: larger distance implies weaker influence. Hence, we assume that ¢ = ¢(r) is a bounded
decreasing function on [0, o). Without loss of generality, we set ¢ (0) = 1 throughout the paper.

The factor deg; is a normalization for the total influence received by agent i. The choice of deg;
varies in different models.

A pioneering work on flocking dynamics under this framework is due to Cucker and Smale (CS) in
[5], where the influence is normalized by the total number of agents, namely

deg; = N.

As the normalization factor is homogeneous for all agents, the interactions between two agents are
symmetric. As a consequence, the total momentum is preserved in time. It has been showed (e.g. [8])
that if ¢ decreases slow enough at infinity, namely

(1:2) | owar==.

CS system enjoys unconditionally flocking property: all agents tend to have the same asymptotic
velocity, regardless of initial configurations.
Another celebrated model is proposed by Motsch and Tadmor (MT) in [11], where they set

N
deg; = ) o(Ixi —x;1).
j=1

With a different normalization by the total influence received by agent i, MT model has a better
performance in the far-from-equilibrium scenario, consult [11] and section 4.4 below. Despite the
fact that the interactions are asymmetric, and the total momentum is not conserved, it is proved in
[11] that MT system has unconditional flocking property, under the same assumption (1.2) on the
influence function.

When number of agents N becomes large, it is more convenient to study the associated kinetic
mean-field representation (1.1), which is formally derived in [9, 11]. For CS and MT models, we
denote & as the normalization factor. It takes the form

=m:= //f(t,y,v)a’ydv for CS model
d(1,x) ’
://¢(|X—y\)f(t,y,v)dydv for MT model

where m is the total mass which is conserved in time.

The goal of this paper is to study these two flocking models in kinetic level. Our first result, stated
in theorem 2.1, shows global existence of classical solution to the main system (1.1), as well as the
long time behavior of the solution: unconditional flocking under assumption (1.2). For CS system,
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the result is well-established in [2, 9]. We give an alternative proof for both CS and MT systems,
employing the idea of [11] in analogy with the agent-based models. Similar argument can be made
for hydrodynamic flocking models as well, consult [14].

Our second main result is concerned with numerical implementation of system (1.1). Despite being
smooth for all finite time, the asymptotic behavior of the solution is the formation of clusters, and in
particular, flocking, under assumption (1.2). This implies concentrations in v as time approaches in-
finity. Such &-singularity is addressed in many systems, from finite-time concentration in aggregation
systems e.g. [1], to formation of §-shocks in Euler equations e.g. [3].

In particular, there are various development on numerical implementation of kinetic systems with
singularities of different types. We refer the reader to a recent review [6] and references therein. Many
techniques use smooth approximations for the singularity. They suffer large errors as the solution be-
comes more and more singular. For instance, spectral method is widely used to solve kinetic systems.
It is very accurate and efficient (especially for our system as it has a convolution structure). However,
when solution becomes singular, the method is unstable, due to Gibbs phenomenon.

We design a discontinuous Galerkin (DG) method to solve the flocking systems numerically. Dis-
continuous Galerkin methods are first introduced by Reed and Hill in [12] and has many successful
applications in hyperbolic conservation laws. The idea is to use piecewise polynomials to approx-
imate the solution in the weak sense. The use of weak formulation of the solution overcomes the
inaccuracy of the scheme. Moreover, we prove in theorem 3.3 that our scheme is stable, under an
appropriate limiter [17]. The efficiency of DG method on §-singularity has been studied in [15] and
more applications are discussed in [16].

The rest of the paper is organized as follows. We first prove flocking properties for the main system
(1.1) in section 2. The numerical implementation for the system is developed in section 3. We design
DG schemes of second, third or higher in v, and prove L!-stability of the schemes. Some examples
are provided in section 4 to demonstrate the good performance of our high order DG schemes, for
capturing flocking, as well as clustering phenomena. In particular, we compare CS and MT setups
under a far-from-equilibrium initial configuration. As addressed in [11], MT model has a better
performance, in the sense of converging to the expected flock.

2. KINETIC DESCRIPTION OF FLOCKING MODELS
To illustrate flocking in kinetic level, we first define the total variation in position x and velocity v:

S(r) = sup x—yl, V():= sup lv—v7|.
(x,v),(3,v*) Esuppf (r) (x,v),(v,v*) €suppf (t)
Flocking can be represented using the following definition. There are two key aspects included:
agents tend to have the same velocity as others, they won’t go apart in large time.

Definition 2.1 (Kinetic flocking). We say a solution f(¢,x,v) converges to a flock in the kinetic level,
if S(¢) remains bounded in all time, and V () decays to 0 asymptotically, namely,

S(t)<D,Vt>0; V(t)—0ast— oo.

We prove the flocking property of both Cucker-Smale and Motsch-Tadmor model in the kinetic
level.

Theorem 2.1 (Unconditional flocking). Consider kinetic flocking system (1.1) with CS or MT setup.
Suppose the influence function ¢ satisfies (1.2). Then, for any initial profile fo € C'NW>, there
exists a unique strong solution of the system in all time and the solution converges to a flock.
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First, we claim that all C! solutions converges to a flock. With the assumption of smoothness, we
are able to study the characteristic paths. The following decay estimates play an important rule toward
the proof of flocking.

Proposition 2.2 (Decay estimates of flocks). Suppose f is the strong solution of the system (1.1).

Then,
2.1 95wy <vo)
(2.1b) Y1) < oS0V (0).

dr
Proof. The characteristic curve of the system reads (x(¢),v(¢)) where

Ex(0)=v0), v = LX), v(0).

We consider two characteristics (x(¢),v(¢)) and (y(¢),v*(¢)), both starting inside the support of fy. To
simplify the notations, we omit the time variable throughout the proof, unless necessary.

Step 1: proof of (2.1a). Compute

d

E‘X_y‘z =2(x—y,v—v") <2S8V.
By taking the supreme of the left hand side among all x,y, the inequality yields (2.1a).
Step 2: proof of (2.1b). Similar with step 1, compute

C v P =2y LA ()~ LA v)).
We claim the following key estimate
2.2) LIF1(x,v) =L[1(y,v") < (1 = 9(S))V = (v=v7),
for all (x,v), (y,v") in the support of f. It yields
%|V—V*|2 <2(1—¢(S))|v=v* |V —2|v—v*|.
Take v,v* where |[v—v*| — V, we end up with (2.1b).

Step 3: proof of the key estimate (2.2). Given any pairs (x,v) and (y,v*) inside the support of f,
define

b(t,X,v,y,v*) := ¢(|X_§(¥)E;’y’v*) + (1 —// —¢EI|:EI’_X))’|)f(t,y,v)dydv> So(x —y)do(v—v"),

where §y is the Dirac delta at the origin. Such function b enjoys the following properties
(P1) //b(t,x,v,y,v*)dydv* =1, for all ¢,

(P2) / / b(t,x,v,y,v*) (V" — v)dydv* = LIf](t,x,V),
(P3) There exists a function 7 (¢,v*) such that

- /b(t,x,v,y,v*)dy > n(¢,v*) for all #,x and v,

- /n(t,v*)dv* = ¢(S(¢)) > 0, for all 7.
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It is worth noting that the second term in b is 0 under MT setup. For CS setup, it is a positive delta
measure. The sole purpose of adding this term is to satisfy (P1). Hence, the main ingredient of b is
the first term.

The first two properties (P1) and (P2) are easy to check. Details are left to readers. For (P3), a valid

choice of 1) 1s
o(S .
_ 9 / f(y,v¥)dy
With this 7, we check the first condition

/b(X,V,y,V*)dy: /%;)y”f(yﬂi*)dyz %/f(yavﬁi)dy: T[(V*),

thanks to the decreasing property of ¢ and the universal assumption of ¢(0) = 1, which indicates
®(x) < m under both setups. The second condition is straightforward.

We are ready to prove estimate (2.2). Take (x1,v}), (X2, V2) two characteristics inside the support
of f. Compute

L[f](x1,v1) — L[f](x2,V2)

P2 * * *
// (X1, V1Y, V) (V" = V1) — b(X2, V2, ¥,V ) (V" — v2)] dydv

D] Gxiviv.) = vy, V) Vidydy' = (vi = v2)

- [ / ( / b(xl,vl,y,v*wy—n(v*)) v~ [ ([ooemyviay=ne) Jav |- v
— [/b X1, V1,V )Vidv* —/b X2,V2,V )dv] (Vi —v2).

Jb(x,v,y,v)dy —n(v")
1-0(S)

positive, supported inside the support of f in v, and / b(x,v,v*)dv* =1 for all (x,v). Therefore,

Here, b is defined as b(x V,V*) = . From (P1) and (P3), we know b is

/ b(x,v,v*)v*dv* lies inside the convex envelope of the support of f in v. Hence,

‘/B(XI,VI,V*)V*CIV*—/IA?(XQ,Vz,V*)dV* <V,

and (2.2) holds. UJ

With the decay estimates, we are able to show that the solution of system (1.1) converges to a flock
under suitable assumptions on the influence function.

Theorem 2.3 (Flock with fast alignment). Let f be the solution of system (1.1), with initial data fy
compactly supported, i.e

So <+ and Vy < Hoo.
If the influence function ¢ decays sufficiently slow

(2.3) : o (r)dr > Vp,
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then, f converges to a flock with fast alignment, namely, there exists a finite number D, defined as

t
(2.4) D=y (Vo w(S0)). where w(0) = [ y(s)ds,

such that

supS(1) <D, V() < Voe P,
>0

Remark 2.1. 1. The idea of the proof is followed from [8]. Consult [14, Proof of theorem 2.1] for
more details. Note that V() decays to zero exponentially fast. We call this fast alignment.

2. Condition (2.3) is automatically satisfied if we assume ¢ decays slow at infinity. In fact, with
our assumption (1.2) on ¢, (2.3) stays true for all initial configurations with finite Sy and V. Hence,
we prove unconditional flocking.

Next, we show f € C! in all time. For Vlasov-type equations, the proof is quite standard, see e.g.
[9] for CS system.

Proposition 2.4. Consider (1.1) with initial fo € C' "W, Then, there exists a unique solution
fec(o,T],C' W), for any time T.

Remark 2.2. Formally, by integrating the velocity variable, we can get corresponding hydrodynamic
systems of flocking, for both CS and MT systems. The existence of global strong solution is not
as straightforward as the kinetic system, due to the nonlinear conviction term. We refer to [14] for
existence and flocking properties of the hydrodynamic flocking systems, where a critical threshold is
introduced to guarantee global strong solutions.

Proof of proposition 2.4. Take characteristic path (x(7),v(¢)) starting at (X, Vo).
X(t,%0,v0) = v(t,X0, Vo),
V(,X0,v0) = L(f)(t,X(t,X0,V0),v(t,X0, Vo))

Define the Jacobian

J(t,X0,v0) =
(2,%0, Vo) {ax()
It is easy to check that

j(t7X07V0) :A(I7X7V)J(I7X01VO)7 J<X0>V070) = H2n><2n7

j_l(tvx()?VO) = _J_l(t7X07V0)A(t7X7V)7 J_I(X07V070) = H2n><2n7

t
det J(t,Xg, Vo) = exp (/ trA(s,x(s,Xo,Vo),v(s,xo,vo))ds> .
0

Along the characteristics, we have

f(t,x(¢,%0,V0),v(t,X0,V0)) = fo(Xo,Vo)(det J(t,xo,vo))*l.

It is sufficient to prove that f(z,-,-) € LYy in any finite time as long as [|A[| . is finite.
To this end, we check for CS,

1
L(f)| = \; J] 38Ux =y =) 7w,y vy | < [9lyV(2) < 6 r-Vo,

ALl = ff ot st ayav| <1
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For MT,

AL(f |—‘ I/ a( ) sty sy

SO /awx v avay + P [ oy sty asar

\3x<1>( )I < 2m|[9ly~Vo
ox) — o)

_// %ﬂyv"*)dydv* - 1.

For classical solutions, we need to bound V(va) f. It fact, we have

<2V

(V) (t,x(t),v(t)) =T (t)V fo(x0, Vo) exp (— /Ot trA(s,x(s),v(s))ds>
+ fo(Xo, Vo) exp (— /Ot trA(s,x(s),v(s))ds) /OIJ<S) (VtrA) (s, x(s),v(s))ds.

As ||A]| 1~ is bounded, it is clear that J and J~! are bounded pointwise by ¢“’. To obtain bounded-
ness of V f, we are left to estimate VtrA = VJdyL(f). Notice that L(f) is linear in v for both setups.
Hence, d2L(f) = 0.

Compute dxdyL(f) for CS:

Ok L(f)] = < ¢ lyp1-

_%/ oxo(Ix—y|)f(y,v)dyav*

For MT, as dyL(f) = —1, it directly implies dxdyL(f) = 0.
We end up with global existence of classical solutions with

£, Mlwre < Ml follwr=€“

Thus, we complete the proof of theorem 2.1.

3. A DISCONTINUOUS GALERKIN METHOD

In this section, we focus on the numerical implementation of kinetic flocking system (1.1). The
main goal is to design high accuracy schemes that are stable as the solution becomes singular.

3.1. System without free transport. As the concentration in velocity variable is due to the non-local
alignment operator, we shall concentrate on the system without free transport

atf—l-VVQ(fuf) -
We can rewrite the system in the following form
3.1 o, f(t,x,v) = =Vy-(fL[f]), L[f](t,x,v) = /(V* —v)G(t,x,V")dv",
where G is defined by

Gltxv) = g [ 0(x=yDse.y.v)dy.
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It is easy to check that
(3.2) /G(t,x,v)dv <1,

for all x and ¢. In particular, the equality holds under MT setup.
As (3.1) is homogeneous in X, we omit the x dependency for simplicity from now on.

3.2. The DG framework. The idea of the discontinuous Galerkin method is to use piecewise poly-
nomial to approximate the solution. We take 1D as an easy illustration.
We partition the computational domain Q = [a,b] on v into N cells {I j}lezl

. b—a
Ij:<vj71/27vj+1/2)7 Vj:61+(]—1/2)AV, Ay = N

with uniform mesh size i := Av for simplicity. The space we are working with is
Vi:={f : Forall j=1,--- N, f|1, € P},

where & denotes polynomial of degree at most k. The weak formulation of (3.1) reads

d Vit1/2 /
(33) i, /POy =—p L[+ [ L Yo =p() €

The DG scheme is to find f € V}, which satisfies (3.3).
If we apply test function p(v) = 1 on (3.3), we get

Vit1/2
Vi-1/2

d - 1
Efj - _sz[f]

where f; is the cell average of /;. With a forward Euler scheme in time, this becomes the classical
finite volume method, namely

At

File+0) = 750+ S [£0F ) LU 12) = 105 0) LU 2)]

The heart of the matter is to approximate the flux at the cell interfaces. To ensure the conservation
law, we modify the scheme using a numerical flux

(3.4a) Jilt+Ar) = f(r) +% Fi12) - LIAIvjo12) = F s /2) - LI (Vi1 2)]

so that the outflux and influx at the same interface add up to zero. Note that L is a global operator on
f, and L[f] is continuous at the interface, we need to compute L[f] using information from all cells.
Then, with fixed L[f](v41/2), the flux is linear in f. We use upwind fluxes where

i) HELIfIvji12) 20
f(V]tl/z) L[] (vjg1/2) <O
Remark 3.1. We use monotone numerical flux for DG scheme. In our simple case when the flux

is linear, some widely used flux such as Godunov flux, Lax-Friedrich flux coincide with the upwind
flux.

(3.4b) fj+1/2 = f(Vj+1/2) = {
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3.3. A first order scheme. Let us consider the simple case when k = 0. A piecewise constant ap-
proximation yields first order accuracy. To obtain f;(f + At), we apply scheme (3.4) with

fv +1/2) fj+17 f(V;Jrl/z):fj;

as v is a constant in each cell. We are left with computing L[f]. As f is piecewise constant in v for all
x, clearly G is also a piecewise constant in v. Hence,
N

N
A2 = [0 =0 )G = B G [ 07 = vy o)y’ =0 11— =1/2)Gi

where G is the value of G in I;. We can use any first order numerical integration on x to compute G;
from f;.

We prove the positivity preserving property of the first order scheme, which ensures L' stability of
the numerical solution.

Proposition 3.1. Suppose f;(t) > 0 for all j. Applying the first order scheme, we have f;(t +At) >0
under CFL condition

At 1

(3.5) zmjax\L[]f](vj.+1/2)| < =

Proof. Rewrite (3.4a) as following

F-+0) = 3 |10+ 2 F0s2) L1112 | 45 [ 50 = F 0000 L1001

We will show that both terms are positive under CFL condition.
For the first term, if L[f](v;_1/») > 0, clearly

- 2At 4 — 2At
Fi(e)+ = P2 LA 12) = B0+ 5 T (1) - LAy 12) > 0.
if L[f](v;j—1/2) <0, then under CFL condition, we have

_ 2At A 2 _
fj(t)+th(vj—l/Z)'L[f](Vj—lﬂ): 1—ﬁ‘L ,—1/2)| fit) >0

Similarly, the second term is positive under the same CFL condition. Therefore, f b (t+At) >0, for
all j. 0

Remark 3.2. The CFL condition (3.5) depends on time 7. We can derive a sufficient CFL condition
where the choice of At is independent of 7.
As G is piecewise linear, we deduce from (3.2) that

N
Z@:/G@mgL
=1 Q

Hence,

(—j=1/2)G

=

N
ILIf1(v10)| = B <A(N-1/2) Z N-1/2h<b—a,

!
for any j =0,--- ,N — 1. This implies a sufficient CFL condition
At 1
7S 2b—a)
We complete an algorithm solving (3.1) with first order accuracy.

1
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3.4. Higher order DG schemes. In order to obtain high order accuracy, we apply (3.3) with test
functions with high orders. Choose Legendre polynomials on I;

1
Pt 0 P00

— W
1277
Denote f =T / fv) dv Clearly, all f € &7 can be determined by f ) for j=1,--- N,

1=0,---,k. As a matter of fact, we can write f(v) = leoalfj pj (v) forvel;, withayg = 1,a1 =
12/h,a; = 180/h?, etc. (Consulting [4].)
From (3.3), we obtain the evolution of f J(l)

1, 4 "
Eff@ = E(fj—l/zLj—l/Z — fix12Lj+1/2),

d 1 1 ~ ~ 1
(3.6) Eff( = _2_h(fj71/2Lj71/2 +fj+1/2Lj+1/2)+ﬁ/ijL[f]dV
Eff@ = a(fj—l/zLj—l/Z —fiw12Lljs1p2) + ﬁ/l JL{f](v—vj)dv,
J

etc. Here, we denote Lj /5 = L[f](vj41/») for simplicity.
Next, we compute L; |/ and the two integrals in the dynamics above, given f € Vj,.

For k=0, L;, 1/ 1s given in section 3.3. f}o) coincide with f;.
For k > 1, we use L?-orthogonality property of Legendre polynomial to compute

L) = [0"=»60

y 12
_ Z/ =07+ 000 [Ggo)pgo)(\/*)—I—IGEl)pfl)(V*)+---}dv*
=1

N
(vi — V)GZ(O) +h Z Gfl)
=1

Mz

=h

~

A._.

All other terms of G(v*) is L2-orthogonal to v* — v and have no contribution to L[f](v). This implies

0) 2% A1) 2\ ©0) | (1)
Lisyp = hZ(vl—ij/z)Gl +r*Y G, =h Z[(l—j—l/z)G, +G, }
=1 =1 =1

Moreover, L[f](v) is linear in terms of v. Again, by orthogonality, we get

N N
}%/ijL[f]dv :%/I‘f(v)[<h2(vl—vj)G +hZZG ) ( ; ) p; ]dv

N N
:{ 'Y (- )G+ 6V - f;l)ZGgo)}.

=1 =1
Finally, for k > 2,

A (1.0, 0
/fL[f v—v;)dv=2h Z -l-G | — (Efj -l-fj )

=1
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Remark 3.3. As shown above, to compute the right hand side of (3.6), we need to calculate the
following sums:

SPRORR (Y S 0)
Y67, YG' and ) (I-)G;".
=1 =1 =1

The first two sums are independent of j. The third sum has a convolution structure. Fast convolution
solvers could be used to compute the sum.

3.5. Positivity preserving. One major difficulty of high order schemes is that the reconstructed so-
lution is not necessarily positive. A negative computational solution will quickly become unstable.
Suitable limiters are needed to preserve positivity of the numerical solution. We proceed with the
limiter introduced in [17].

First, we extend proposition 3.1 to high order schemes and prove positivity for f;. To proceed,
we use Gauss-Lobatto quadrature points on /;, denoting {vl]}?:1 In particular, v}- =vj_12 and v;? =
Vji1/2- For f; a polynomial of degree up to 2n — 3,

— 1 1 & :
fi= —/ fiv)dv ==Y aifi(v}),
hJi; h =
where o; are Gauss-Lobatto weights. For example, when n =2, oy = op = 1/2; whenn =3, a; =
oz = 1/6 and o = 2/3. Note that ¢;’s are all positive, summing up to 1, and symmetric @; = 0,41

Proposition 3.2. Suppose fj(t,v;) > 0 for all Gauss-Lobatto quadrature points v’] Then, for any

scheme with forward Euler in time and DG in space with order k < 2n — 3, we have f_j (t+Atr) >0,
under CFL condition

At
(3.7 5 max Livi2] < au.
In particular, fork=0,1, oy = 1/2. Fork=2, a; = 1/6.
Proof. The dynamic of f; = f;o) reads
— — JAV PN A
fi(t+At) =f;(t) + " S vic12) - Licija—f(is12) - Lisi )
1] ; At
=7 Zﬁ aifi(vi) +an | fi(vizi) + mf(vj—l/z) Li_1p
1=
At .
+ 0 | fi(Vjg1/2) — ﬂf("j—i—l/Z) Livip)-
n
We check positivity for the last two terms. For the second term, if L; |, > 0, clearly

At 4 At
mf(vj—l/z) Lip=1fivjisi2) + @fjfl(vj—l/z) L 12>0.

IfL j—1/2 < 0, then under CFL condition, we have

Jivicip) +

At . At
fivicip)+——fvj—12) Li—1p= {1 - mlel/zl} fiviiy2) > 0.

aih

Similarly, the third term is positive under the same CFL condition, as &, = 0. Therefore, f;(r +
At) > 0, for all j. O
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Similar to remark 3.2, there is a sufficient CFL condition independent of ¢ for the high order DG
scheme. We estimate the additional part of L;, 1, as below.
/ G(x,v)dv <

I\)IE‘

FOv)(v—vi)dvdy| <

20 (1)
h IZ]GZ =

Together with the estimate for the first part (shown in remark 3.2), we get

1 h

With the correction term, we have the same bound on L, 5. It yields the following sufficient CFL
condition

At< o
h b—a

(3.8)

To make sure f; is positive at Gauss-Lobatto quadrature points, we modify f(¢) using an interpo-
lation between the current f and the positive constant f = f ©), namely, in /; at time ¢ + At,

Jiv) = 0;f;(v) +(1-6))f;,

where 6; € [0, 1] to be chosen. When 6; = 1, there is no modification and high accuracy is preserved.
When, 6; = 0, the modified solution coincides with the first order scheme. Hence, for higher accuracy,
0; should be as large as possible. On the other hand, we need positivity of f J( ) 1.e.

(fi = £(v))8; < f,

for all i. Therefore, we shall choose 6; as follows

., where m; —mlnfj( ) e =min{10" ", f;}.
1 ifijS

The modified solution f] preserves the total mass as well. It implies L' stability of the scheme.
We can write the modification in terms of f j(l) where
70) _ £(0) ) _ (0)
(3.9 =57 f=0if1=1

Indeed, the modification weakens the high order correction at several cells to enforce positivity. But
it has been discussed in [17] that the order of accuracy is not strongly affected by this limiter.
We conclude this part with a summary of the stability result for our high order DG schemes.

Theorem 3.3 (Positivity preserving). Consider (3.1) with initial density fy > 0. Then, the solution
generated by the DG scheme (3.6) with limiter (3.9) is positive in all time, under CFL condition (3.8).

Remark 3.4. The whole procedure can be extended to multi-dimensional systems. See e.g. [18] for
examples on this positivity preserving limiter in multi dimension.
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3.6. High order time discretization. In this subsection, we discuss time discretization for the ODE
systems with respect to fj(l). We already show positivity preserving and L' stability for forward Euler

time discretization, under CFL condition (3.7). To get high order accuracy in time, we use strong
stability preserving (SSP) Runge-Kutta method [7]. For instance, a second order SSP scheme reads

fu) = FE(f(2), A1)

1 1
Fe+40) = Sf()+ SFE(f, A1),
and a third order SSP scheme reads

fup = FE(f(1), A1)
3

1
Jo = Zf(f) + ZFE(f[l]aAt)

1 2
f(t+Ar) = gf(f)+§FE(f[2]»Af)-

Here, FE(f,Ar) represents a forward Euler step with size At.
As an SSP time discretization is a convex combination of forward Euler, positivity preserving
property is granted automatically.

3.7. Adding free transport. We go back to the full kinetic Cucker-Smale system (1.1). Using clas-
sical splitting method (consult e.g. [10]), we can separate the system into two components: the free
transport part
o, f(t,x,v) = —v-Vxf(t,x,V),
and the flocking part
a[f(t,X,V) =—Vy- Q(f?f)

The free transport part can be treated using standard methods, for instance, WENO scheme [13].
Note that the choice of method does not directly affect the accuracy in v. Hence, we omit the details
on this part.

4. NUMERICAL EXPERIMENTS

In this section, we present some numerical examples to demonstrate the good performance of the
DG scheme applied to kinetic flocking models.

4.1. Test on rate of convergence. In this example, we test the rate of convergence of our DG method
on system (3.1). We set a global influence function ¢ (r) = (1+r)~'/2, and the following smooth
initial density
0 otherwise.
As there is no free transport, we set the computational domain [—1, 1] x [—1,1]. Fix the number of
partitions on x to be 10. For v, we test on 2°72 partitions, with s = 1,---,7. To satisfy the CFL
condition (3.8), we pick Ar = .1 x 27° for second order scheme, and Ar = .04 x 27 for third order
scheme. Denote the corresponding numerical solution be f Is],
To concentrate on v variable, we integrate x and compare the marginals

1
FM(t,v):/ (e, x,v)dx.
-1
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As the equation has no explicit solutions, we use F 7 as a reference solution. The L! error is
computed as

es(t) = HFM(z,-) —FT, s=1,---,6.

Li([-11))’
Table 1 shows the computational convergence rates
rs = —log,(es+1/es), s=1,---,5
fort =0,.5,---,3. The numerical results validate the desired order of convergence of the correspond-
ing schemes. We stop our test at time ¢ = 3 as the solution is already very singular in v. For larger ¢,
F() can not be considered as the reference solution.

Second order scheme

t 0 S 1 1.5 2 2.5 3

ry | 1.6837 2.0844 1.9368 1.8460 1.2570 0.6842 0.3966
ry | 22040 2.1321 2.2030 1.9350 1.9559 1.6517 0.9761
r3 | 2.0349 24708 23373 2.1779 19197 1.8891 1.9319
r4 | 1.9877 22188 2.4572 2.4522 2.2309 1.9501 1.7383
rs | 2.0554 2.0846 2.2307 2.4309 2.5247 2.3423 2.2672

Third order scheme

t 0 S 1 1.5 2 2.5 3

ry | 4.0841 3.6550 1.9194 1.8906 2.9130 1.4425 0.6367
ry | 2.4202 3.6907 3.9546 3.3594 2.0785 2.1196 2.5912
r3 | 29890 2.7490 2.9330 3.4399 3.1831 2.9012 1.7719
r4 [ 29954 3.0400 3.0960 3.0208 3.1179 3.5468 2.6046
rs [ 3.0052 3.1071 3.1116 3.0173 2.9973 3.0637 4.2268

TABLE 1. Computational convergence rates for second and third order DG schemes
at different times.

4.2. Capture flocking. We consider 1D full kinetic CS model (1.1) with initial density

f0<x7 V) - X|x|<IX|v|<.5>
where ¥ is the indicator function. The influence function is set to be the same as the previous example:
¢(r) = (14r)"'/2. As ¢ satisfies (1.2), the solution should converge to a flock.

We set the computational domain as follows. In x direction, we compute D from (2.4) and get
D = 3.98. By symmetry, the support of the solution in x direction lies in (—2,2). We set the com-
putational domain on x to be [—2.5,2.5] for safety. In v direction, the variation becomes smaller as
time increases. Therefore, [—.5,.5] is an appropriate domain for v. We start the test with mesh size
40 x 40.

For the time step, the CFL condition (3.8) suggests Ar < a;/40. So, for first and second order
schemes, we take Ar = 0.01. For third order scheme, we take At = 0.004.

Figure 4.1 shows the dynamics of density f under DG schemes using piecewise polynomials of
degree k =0, 1,2. We observe that all three schemes converge to a flock. On the other hand, high order
schemes concentrate faster than the low order scheme, which is an indicator of better performance.
For a better view, we plot in figure 4.2 the marginal F (z,v) := [ f(t,x,v)dx against v at different times.



A DG METHOD ON KINETIC FLOCKING MODELS 15

0 0 0 % 0
05 -2 05 -2 05 -2

Figure 4.1: Density f at time t =0, 1,2, 3,4 for DG schemes with k =0,1,2.

We observe that the first order scheme (k = 0) exhibits a large numerical diffusion, while higher order
schemes are not. There is also evidence showing third order scheme (k = 2) is slightly better than the
second order (k = 1). For instance, at t = 4, the solution for the third order scheme is higher around
zero, indicating faster concentration.

-0.5 0.5 -0.5
20 30
251
151
20
101 15}
101
5 -
5 L
0 0
-0.2 0.2 -0.2

Figure 4.2: F(t,v) at time r = 1,2, 3,4 for DG schemes.
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4.3. Clusters vesus flocking. It is known that flocking is not guaranteed if the influence function is
compactly supported, especially when (2.3) does not hold. Multiple clusters might form as time goes.
This example is designed to compare the two asymptotic behaviors. In fact, our DG scheme captures
both flocking and clusters very well. Let

Jo(x,v) = X sexc—a Xd<ve 5+ Xd<xa 5 X— 5<v<—.4-

It represents two groups, where the left group is travelling to the right and the right group is travelling
to the left. We consider two different influence functions:

O01(r) = Xr<8, $2(r) = Xr<a-

Both functions are compactly supported. Yet ¢ is much stronger than ¢,. In particular, ¢;(r) > ¢2(r).

Figure 4.3 shows the evolution of the CS model under two influence functions. We observe that
with strong influence ¢y, the system converges to a flock. In contrast, with relatively weak influence
¢, the interaction is not strong enough and multiple clusters are forming in large time.

05. 05. 05. 05. 05.

-0.5 05 -05 05 -05 05 -05 05 -05

05. 05. 05. 05. 05.

-0.5 05 -05 05 -05 05 -05 05 -05

Flocking

Clusters

Figure 4.3: Flocking vesus cluster formation.

4.4. Cucker-Smale vesus Motsch-Tadmor. We end this paper with a nice example to compare CS
and MT setups numerically.

Motsch and Tadmor in [11] discuss a drawback for CS model which motivates their model. In
the particle CS model, “the motion of an agent is modified by the total number of agents even if its
dynamics is only influenced by essentially a few nearby agents.” For initial configuration far from
equilibrium, CS model has poor performance in modeling the dynamics. The MT setup overcomes
the drawback by normalizing the influence not by the total number of agents (or total mass), but by
the total influence of each agent.

The following example is design to compare the results of the two setups with an initial configura-
tion far from equilibrium. Our DG schemes have good performances on both setups. It captures the
difference of the two models in kinetic level, which agrees with the discussion in [11].

Consider the initial configuration as a combination of a small group (with mass .02) and a large
flock (with mass .98) far away

f()(xa V) = %\x|<.1%|v|<.05 + 985()6— 5)5(1/‘ - 1)’

with compactly supported influence function ¢ (r) = (1 —r)?y,~1. It is easy to see that the large flock
never interact with the small group.
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Figure 4.4 shows numerical results of the evolutions of the small group in both CS and MT setups.
We observe that under CS setup, the faraway large flock eliminates the interactions inside the small
group. The evolution is almost like a pure transform. In contrast, MT setup yields the reasonable
flocking behavior for the small group.
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Figure 4.4: Evolution of the small group under 2 models.
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