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Abstract

We study a semi-implicit time-difference scheme for maghgtirodynamics of a viscous
and resistive incompressible fluid in a bounded smooth domih perfectly conducting bound-
ary. In the scheme, velocity and magnetic fields are updateslving simple Helmholtz equa-
tions. Pressure is treated explicitly in time, by solvingsBon equations corresponding to a re-
cently developed formula for the Navier-Stokes pressureliing the commutator of Laplacian
and Leray projection operators. We prove stability of timeetidifference scheme, and deduce
a local-time well-posedness theorem for MHD dynamics edeelrto ignore the divergence-free
constraint on velocity and magnetic fields. These fields amergence-free for all later time if
they are initially so.
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1 Introduction

The equations of magnetohydrodynamics (MHD) for incomgilds, viscous and re-
sistive, electrically conducting fluid flow take the form]Ja

gu+u-Ou+0Op=vAu+a(dxb)xb+f, 1)
ab+0x (b xu)=nAb, 2

O-u=0, )

O0-b=0. 4)

Examples of such fluids include plasmas, liquid metals (omgrdiquid sodium), and
salt water. Herau is the fluid velocity,p is the pressurd, is the external force, and
b is the magnetic field (more properly, flux density or induejio The coefficients
v, n anda are assumed to be fixed positive constants, and represspgcieely,
the kinematic viscosity, the magnetic diffusivity, and= 1/(4mup) wherep is the
magnetic permeability and is the fluid density.

In general, the magnetic field penetrates the boundary é@its with the outside
environment. For simplicity and in order to focus on the nmagues of concern here,
we consider MHD in a perfectly conducting container. Thisfaees the magnetic
field inside and decouples it from the exterior. We assumédltheis contained in a
bounded and connected dom&n- RN (N = 2 or 3) with smooth boundary = 9Q.
We specify the velocity oft, with no sources or sinks of fluid, requiring

u=g, n-g=0 onl. (5)

We refer to this as a no-flow boundary condition. Wigen 0, we refer to it as a no-slip
boundary condition. Requiring the container be perfeatlyducting means requiring

nxe=0, n-b=0 onl, (6)

wherece= b x u+ n0 x b is the electric field ¢ is the speed of light). If we assume
n-b =0 onrl, then the boundary conditianx e = 0 becomes

nx(Dxb):—%(n-g)b onl, (7)

which is similar to the Navier slip boundary condition. Baesa we impose the no flow
boundary conditiom - g = 0, the boundary conditions in (6) for the magnetic field take
the form

nx (Oxb)=0, n-b=0 onl. (8)

Our aim is to study the stability of discretization schenmdtiese MHD equations
in bounded domains, supplemented with initial conditiofihe form

u(-,0) = ujp, b(-,0)=bj, InQ. 9)

Particular attention must be paid to the constraint thatmatig field and velocity be
divergence-free. We will demonstrate, however, that updahe velocity and mag-
netic field can be based on simple Helmholtz equations, angrisssure can be sepa-
rately computed by Poisson equations. The analysis is lasadommutator formula



and estimates for pressure that derive from our work on inressible Navier-Stokes
equations [LLP1, LLP2, LLP3]. These estimates show thatpitessure gradient is
strictly dominated by the viscosity term lP-norm at leading order. One aim of the
present work is to demonstrate the utility of these estimitestudying problems cou-
pling incompressible viscous flow to more complicated ptgsi

From this stability analysis we obtain a local-time wellspdness theorem for
strong solutions of the MHD equations (1), (2) with boundeoypditions (5), (8) but
withoutthe divergence-free constraints (3)-(4); pressure isragted as described in
the next section below. The velocity and magnetic fields balldivergence-free for
all time if they are divergence-free at the initial time. Elhsatisfy diffusion equa-
tions with no-flux boundary conditions.) We will show thaé#fe unconstrained MHD
equations have a locally unique strong solution with theilagty

u, b e L2(0,T;H2(Q,RV)) nH(0, T; L2(Q,RN)), (10)
Op e L%(0,T;L2(Q,RV)), (11)

provided that
Uinabin S Hl(QaRN)a (12)
feL2(0,T;L%(Q,RVY)), (13)
g€ Hg 1= H¥4(0,T;L3(",RN)) NL2(0, T;H¥2(T,RY)), (14)

and provided that the appropriate compatibility condisitvold:
n-up=0, n-bp=0 n-g=0, up=g(-,0 on'. (15)

(The spacég is the space of boundary traces of functions in (10), see [LM]

We anticipate that this unconstrained formulation willveeas a starting point for
the development of more accurate and flexible numericalseldor MHD, much as
the well-posedness theory for the Navier-Stokes equaiiofid P1] served as a basis
for the significantly improved numerical methods descriimg/dlLP2, LLP3].

2 Preliminaries

2.1 The Laplace-Leray commutator

Recall that an arbitrary square-integrable velocity figldas a unique Helmholtz de-
composition
u=v+Ue, (16)

wherev is L?-orthogonal to all square-integrable gradienfs;v-Oq = 0 for all g
smooth enough. Thenis divergence-free and at the boundary has vanishing compo-
nent in the direction of the outward unit nornmal

O-v=0 inQ, n-v=0 onr. )



We write v = £u, defining the Leray-Helmholtz projection operatef, and write
@ = 2u to denote the zero-mean potential field in (16). Thatlig,= (1 — &7)u. Then
sinceAg = 0 u, we findA(l — #2)u = Alp = OA@ = 00 - u, and from this, the fact
£ =0, and the vector identity

OxOxu=-Au+00-u, (18)
one immediately obtains the following identities descdibe[LLP1]:

APu = (A—0O0)u=-0Ox0Oxu, (19)
(A2 —2Du = (I—-2)(b-00)u=—(1—-2)(Ox0Oxu). (20

In (20) we requiras € H?(Q,RN). Then we see that the commutator of the Laplacian
and Leray projection operators is the gradient of a potkfitid ps(u) satisfying

ps(u) = 2(A—00-)u, Ops(u) = (AL — ZA)u. (21)

From (21) it follows thatps(u) is the unique zero-mean solution of the boundary value
problem

Aps(u)=0 inQ, n-Ops(u)=n-(A-00)u onT. (22)

(Since(A— O0-)u has zero divergence, the boundary condition holdsi%/2(I"), due
to a standard trace theorem.) The following estimate frobP[l] will play a key role
in our stability analysis.

Theorem 2.1 SupposeD is a bounded domain with®boundary, ance > 0. Then
there is a constant C such that for alle H2NH(Q,RN),

[ 1opu) P < (:—2L+£)/Q|AU|Z+C/Q|DU|2. (23)

If Q is replaced by a half-space, the estimate (23) holds sithC = 0 and is sharp;
see [LLP1].

2.2 Formula for pressure

Suppose now that is a (sufficiently regular) solution of (1) satisfying (3)dab).
Thenu = Zu. We applyZ to (2), while collecting together the nonlinear and forcing
terms in (1) to write

fo=—-U-Ou+a(0xb)xb+f. (24)

If we use (21) to say?”Au = AZu — Ops(u), sinceZ0p = 0 we find
gu+vOps(u) = vAu + i, (25)
SinceZ =1 — 02, comparing (25) with (2) shows that necessarily (up to camts)

p=vps(u)+ 2f,. (26)



This formula expresses the pressure directly in terms o€tineent velocity, magnetic
and forcing fields. We refer tps(u) as theStokes pressugnce the other terms vanish
when forcing and nonlinear terms are absent.

For numerical computation of this pressure by finite elenneetthods, it is best to
base discretization on the following weak-form charaeggion that involves only first
derivatives: For all test functiong with square-integrable gradient,

/QDp-Dt,U:/rv(Dxu)-(nxDL/J)—i—/Qfm-Dw. 27)

This means that for sufficiently regular dafajs determined by the boundary value
problem

Ap=0-f, inQ, (28)
n-Op=-n-(vOxOxu)+n-f, onf. (29)

2.3 Div-curl norms and calculus inequalities

Below, we Iet<f,g>Q = [, fg denote the.? inner product of functiong andg in Q,
and let|| - || denote the corresponding normliA(Q). We drop the subscript on the
inner product and norm when the domain of integration is ustded in context.

We let

Vi={vel?(QRY):0-vel?Q), Oxvel?Q,RV), n-vr e HY?(")} (30)

denote the space of square-integrable vector fieldQ aith square-integrable diver-
gence and curl, with normal component at the boundary in paees of traces ofi*
functions. OrVvV we use the norm

VI = [VIZ+ 18- IIZ 4+ 10 < V]2 10 - V2 - (31)

From Proposition 6 on p. 235 of [DaL], it follows = H(Q,RN), and the norm above
is equivalent to the usuél® norm.
Next we introduc&/® := {v eV : Av € L?(Q,RN)}, and the norm

VI = VIR + l1av2 (32)

The space of smooth functio®®(Q,RN) is dense ifv2 with this norm. (This is not
difficult to prove by a standard technique, see [Ad, TheorelB]3) We claim that the
map

Vi—e Bv=—nx (Oxv)+n(d-v)

extends to a bounded map frovf to H-3/2(I",RN). To see this, observe that and
whenevewr, w € V2 are smooth, we have the Green’s formula
(Bv, W), — (v,Aw) , = (Bv, W) — (v, Bw) . (33)

By standard extension theorems, there is a boundedgmrapv from H3/2(I" RN) to
H2(Q,RN) such thaw|r = g. Then (33) implies that the mgp extends as claimed,
and (33) holds for aW € V2 andw € H2(Q,RN).



For later use, we introduce the space
W:={veVA:n.v=0nx(Oxv)=0onl}, (34)

with norm given by (32). By the result of Lemma 2.2 below, werdhghatW C
H2(Q,RN) and the norm in (32) is equivalent to usual Hé norm onW. It is then
easy to show that ¥ € W, then

|Av||? = ||0x O x v||?+]|00-v|)%

To establish the solvability of the time-discrete schena e will study, we use
the following lemma.

Lemma 2.2 LetA > 0and assum& c RN is a bounded domain with smooth bound-
ary, N=2or 3. Then for any € L?(Q,RN), there is a unique € V NH?(Q,RN) such
that

Av—Av=f in Q, (35)
n-v=0, nx(Oxv)=0 onl, (36)

Further, there is a constant € 0 independent off such that

IVllHzi@) < Clifllizq)- (37)

Proof: Formally testing (35) byv and integrating by parts, we arrive at the following
weak form of (35)-(36): Letp ={veV :n-v=0o0nl}. Findv €\, such that for all
w eV,

Av,wy+(0-v,0-w)y+ (Ox v,0xw) = (f,w). (38)
Using the norm equivalence referred to above, existendéguaness and boundedness
in H! of the solution to this problem is a simple consequence of theMilgram theo-
rem. Takingw as a smooth test function, we find (35) holds in the sense tiftaitons
andAv € L2. Takingw smooth withn-w = 0 onT, from (38) we infer then that

(fw) = (v, Aw—Aw)+ (v,nx (Oxw))
= (Av—2v,w)+(nx (Oxv),w)_, (39)
by invoking (33), and it followsn x (0 x v) = 0 in H=3/2(F,RN). It then follows

directly from a regularity result of Georgescu [Ge, TheoBth3], that € H2(Q,RN),
and the estimate (37) is a consequence of the inverse magm@agem [

For estimating nonlinear terms, we will make use of Ladyahkaga's inequalities

[La]
/RN g'<2 (/RN 92) (/RN IDQIZ) (N=2), (40)

3/2

. g4§4</RN 92)1/2 (/RN|DQ|2) (N=3), (41)



valid for g € HY(RN) with N = 2 and 3 respectively, in combination with the fact
that the standard bounded extension opetdfd) — HY(RN) is also bounded ih?
norm, to deduce that for aj ¢ H(Q),

gl < Clgll.2llgllye (N=2), (42)
gz < llgli1al <Cliglzllgly: (N=3). (43)

3 Stability analysis for a time-discrete scheme

3.1 Unconstrained MHD system

The traditional way to regard the pressure in (1) is that tbibe determinedo that
the divergence-free condition (3) holds. Our aim, howeigetp show that the MHD
system (1)-(2), with the boundary conditions (5) and (8)stably approximated by
discretization, and indeed becomes well posed, if the predfermula (26) is used
to determine pressureggardlessof whether velocity and magnetic fields are initially
divergence-free or not.

The divergences of the velocity and magnetic fields will tounto satisfy diffusion
equations with no-flux boundary conditions. Let us deschibe this works formally.
For the velocity, letp be an arbitrary smooth test function and note that

(Ops(u), O@) = ((A—DO0O-)u, Og) (44)
by (21) and (20). Then by testing (25) withp, we find that
(8u,0¢) = (vOO-u,09), (45)
and this is the weak form of the equations
&(0-u)=vA(O-u) inQ, n-0(0-u)=0 onr. (46)
For the magnetic field, observe that for any smaptlie have

(OxOxb,0¢) = (nx0Oxb,0¢) =0, 47)

(Ox (bxu),dp) = (nx (bxu),dp) =0, (48)

sincen x (b xu) = (n-u)b—(n-b)u=0onl. Thus, testing (2) witidg and using
(18) we find

and this is the weak form of

a(0-b)=nA(O-b) inQ, n-0(0-b)=0 onr. (50)



3.2 Time discretization

Our main aim is to study the following time-discretizatiaheme, implicit only in the
viscosity and resistivity terms and explicit in the pregsand nonlinear terms.

We assumaliy,bin € V, and for some givelm > 0, f € L?(0,T;L%(Q,RN)) and
g€ Hgwithn-g=0onl. We takeu®, b € W =V nH?(Q,RN) to approximatei,
andbi, in HY(Q,RN), respectively, and set

a1 pDat 1 DAt

_ = n_ -
=5l fodt =2 gt (51)

We consider the following time-discrete scheme: Rifidl!, b™1 € H2(Q,RN) (n>0)
such that

un+1 —_yn
T vau™tl = —0p"+f7  inQ, (52)
bn+1_ b"
- nAb™ = —0Ox (b"xu" inQ, (53)
Ut =g™ nx(@Oxb™H) =0, n-b™r=0 onr, (54)
where
fl = —u". Ou"+a (0 x b") x b"+f", (55)

and where we determirep” from a weak-form pressure Poisson equation correspond-
ing to (27), requiring
(0p", 0y = v{Oxu"nx Og) +{f,0¢) VY eH(Q). (56)

This means that
(57)

The unique solvability of (53) with the boundary conditidng54) is a consequence
of Lemma 2.2.

—0p"+f2 = —vOps(u") + 2f7)

tot — tot*

3.3 Stability analysis for no-slip boundary conditions

For simplicity, at first we consider no-slip boundary coratis, takingg = 0. Our goal
in this section is to prove the following stability estim#te the time-discrete scheme
in (52)-(56).

Theorem 3.1 LetQ be a bounded domain iRN (N = 2 or 3) with smooth boundary,

and letv, n, Mo > 0. Then there exist.,TCz > 0 such that, ifu® € H} "H?(Q,RN),
b e W,g =0, andf € L?(0,T;L?(Q,RN)) for some Te (0, T.), with

;
16 + 10U + nat | Ab°) 2 + VAtHAUOHZJr/O IF(t)]?dt < Mo,



then wheneveRnAt < 1 and0 < (n+ 1)At < T, the solution to the time-discrete
scheme (52)-(56) satisfies

n
sup ([[0%][Z: + 1 0u¥)?) + Z)(I\Abkl\er |Au|?)At <Cs,  (58)
0<k<n k=
n—1
S (||D>< (0% Uk |2+ | (0 x b¥) xbk)|\2+||uk~Duk|\2) A<Cs (59
k=0
n-1 k+1 _ pk|? k+1 _ 4k|[2
bt —b uktt —u
< .
kz()(’ = = )At_Cg (60)

Proof: 1. Testingo""* — Ab™*1 against the various terms in (53) and using the bound-
ary conditions, we find

bn+l —_pn 1
bn+l_Abn+1 -
< TNt 21t

<bn+1—Abn+1,—nAbn+l> _ nHAbn+1”2+ r7||D . bn+1||2+ r7||D % bn+lea (62)
<bn+1_Abn+l7 0 x (bn % un)> < %(HAbn+1H2+ ”D % bn+1||2)

(I3 ~ 1" + o™ ~b" ), (62)

i n ny (12 i n ni2
+2’7HDX(b xuM|| +2’7”b x un|| <. (63)

Combining these estimates with (53) one has

1™ — [[b"G + ™ * — b™§

v 0 (867 -+ Db 0 x b 2)

< %IID % (b x u“>||2+%||b“ < U2,

This gives

D™ G — [Ib"[I§ + [1b™** — b|§

v (6™~ 1671) + nl1b"I

1 1
Sk (b < uM)||?+ ﬁl\b” <ul[[Zn[b™H2 (64)

We assume 2At < 1, thus

bn+1_bn 2
IR < 20 o - 672+ 272 < 22 g 2
and hence
7213 — 10"}

A + (0™ — 10°1) +n b

1 1
< o (b" < uM)[|?+ ﬁllb” x u"[[2+2n(b"|%. (65)



One estimates the momentum equation the same as for therMfimles equations,
as in [LLP1]. Fix anyp € (%,1) and letCg beC as given by Theorem 2.1 wit =
% + €, so that we have the estimate

1Bps(u")||? < BlIAU"|? +Cp | DU 2. (66)

After testing (52) againstAu™! and using (57) and that#|| < 1, we estimate the
right-hand side by

(AN —vpg(u) + 2f0)|
< [lAu™ | ([[vps(u)]] + 1] + [u™ Ou”|| + [lor (O x b") x b"]}).
vV & nt12 , Y NI
< |=4+ = -
< (5+5) 18U 2+ 2 lps(u)
3
+2—£1(Ilf”||2+I\u“-DU”|\2+|Ia(DXb“)xb“llz) (67)

for anyg; > 0. Then using (66), one finds easily that
1
(10U 2 = D) + (v — &) (Jau™ 2 = [807) + (v — 1= vB) "
3
<4 (IIF)17 4+ @ (0 < b") x b2+ [ju”- Ou™||) + vCg|| Du"||2. (68)

2. Now we turn to estimate nonlinear terms in (68) and (65naithe calculus
inequalities in section 2.3 and the fact thit(Q) embeds intd.* andL®:

Ib]1Z]IObliZ, < Clib]l[|Ob[|[|Dblly: - (N =2),

(69)
IblIZ610bIIZs < CllOb]13]|Ob]l 1 (N=3).

I(0x b) x b||* < {

By the elliptic regularity estimategb||;» < C||blly and||0b||y1 < ||bly2 < C||b|lw,
we conclude that for ang, > 0,

ClblllIblI§IIbllw < &[bl +4Ce; *[bl?[bI (N =2)

||<Dxb>xb|2s{ . ,
ClloJ Ibllw < e2]|bl}g +4Ce; *[b]§ (N=3)

" (70)

Next, we find

ul[2,]|Ob] 2, + ]2 DUl (N=2),
luliZliOb )12+ [b]Z/DullZ  (N=20r3),
<{C(|U||DU||||b||v|b|w+||b||||b||v||Du||Au||) (N=2),
— LC(l|Bul?|[blv[blw + [[bIG | Bull fAull) (N=3),

0% (bXU)IIZS{

4C
< &(||b|d + [|Aul?) + ra (

1Bull*BIIE + 1bIG 1| Oul*)

4C
< &2(||blI + lau?) + £—2<Hb|\8 +110ul®),

10



this last line due to Young’s inequalig?b? + a%b* < a®+4 b®. We also have

16>l < [lullZallbl s < [lull|[Cullbl|Ob]
< C(|0ull*+[IbI%) < C(lIBull+ | Dul|®+ [IbIG + IbIY).  (71)

Finally, the velocity advection term is estimated simiads in [LLP1], by
Ju™- Ou"||? < gof|AUM||> +4Cs, H|Ou|® (N=2o0r3). (72)

3. We plug these estimates into (68) and (65) and &ake, > 0 to satisfy

R 3, & R & 350
Vi=v—g—-vB—-—=-2=>0, —n_—>2_
1— VB & 7 n=n-4 o
We get
1 « "
A (™G + 110U — ||b"|IG — | Ou”(|?) + A1|b"[G + V[l Au”|?

+n (6™ G — IP"[[E) + (v — &1) (AU 2 — [ au”|?)
3 C C

< 2" 2+(vc +—> Ou” 2+(2 +—> b"||2

—51” | Ch (| O n+ o %1%

4C 12 C 4C 12C C
i <—+—+—> U+ <—+a2—+—) bIS.  (73)
ne&e &aé& n né && n

A simple discrete Gronwall-type argument concludes thefpreut

z0 = [[0"[G +1|Bu"|[? + nat oI, + (v — en)atau"| 2, (74)
o = A7 + VAU, b= "%, (75)

and note that from (51) we have that as longpas< T,
n-1 T
S AT (76)
& 0

by the Cauchy-Schwarz inequality. Then by (73),
Zni 1+ WnMt < 7+ CAt(bn + 20+ 23), (77)
for a constan€ now depending om andv. Summing from 0 taa— 1 and using (76)

yields
n—-1 n-1

Z+ Y WAt <CMo+CAt S (zc+Z) = ¥n. (78)
K=o K=0
The quantitiey, so defined increase withand satisfy

Y1 —Yn = CAt(zy+Z3) < CAL(Yn +Y3). (79)

11



Now setF (y) = In(y/+/1+y?) so thatF'(y) = (y+y3)~1. Then on(0,«), F is nega-
tive, increasing and concave, and we have

F(Yn+1) —F(yn) < F/(yn) (Ynt1—Yn) = i1 = Y < CAt, (80)
Yn+Y3
whence

F(yn) < F(yo) + CnAt = F(CMp) + CnAt. (81)

Choosing anyl, > 0 so thaC, := F(CMp) +CT, < 0, we infer that as long ag\t < T,
we havey, < F~1(C,), and this together with (78) yields the stability estimaig)(
Now, using (72) and elliptic regularity, we get from (58) tha

n n
> 110 x (Bx u)|2at < C 5 (|[b¥[G 1 Au||?+ | Du'| b1, At
&o =

n

<C Z)(||Au"|\2+ Ib¥|iG)At < C.
K=

Similarly, one finds

n
Z)(H(D x b) x b¥)[|? + [|u¥- Du¥|®)at < C,
K=

giving (59). Then the difference equations (52)-(53) yield

5

This yields (60) and finishes the proof of the Theorém.

bk+1 _ bk 2

At

UKL K
At

2
) At <C. (82)

3.4 Approximation of initial data
According to our hypotheses, we take the initial data ing@gtisfyui,, bin € H1(Q,RN)
with

n-upn =0, n-bip,=0 onl. (83)

Given At > 0, it is convenient to determine” in H} NH?(Q,RN) by solving (I —
AtA)UC = ujr. An energy estimate yields

1Bu°)1? + At Au)|? = (Duin, Du®) < || Buin||] 00| < || Duin®

Then||AtAWC||2 = O(At) asAt — 0, sou® — uj, strongly inL? and weakly inH?.
In a similar way, using Lemma 2.2 we determbfein H?(Q,RN) by solving

(I =AtAD° = b, n-b%r =0, nx (Oxb%|r=0. (84)
Thenb® € W. An energy estimate yields

10-bO)|? 4|0 x b°||? 4 At[|Ab°||? = —(AbC, bip ) = (O-b°, O-bjn ) + (O x b, Ox bin ).

12



Hence
10+ b1+ |0 x %)% + 24t [| A1 < || O bin |+ |0 x bin|?.

Then||AtAR®||2 = O(At) asAt — 0, sob® — by, strongly inL? and weakly inH?.
For later use, we remark that multiplying the first equatio(gi4) by—00-b® and
integration by parts gives an estimate on the divergenb&:of

10012+ At 00 b2 = (0-b°, 0+ bin) < [|0-b||[|D- bin|| < |0+ binl|%. (85)

3.5 Homogenizing the boundary conditions

We proceed next to consider the case of general boundargdeang the regularity
indicated in (14), and initial data for velocity with regtitg ui, € Hi, := H1(Q,RN).
We also assume the compatibility conditions (15) hold. Tiece in which we seek
strong solutions is

V(0,T) :=L2(0,T;H2(Q))nHY0,T;L2(Q)). (86)

From the theory of Lions and Magenes [LM] (see Theorems 2d34a8 in vol. II),
taking the trace on the parabolic boundarytok (0, T), defined for smooth enough
functions byu — (u(-,0),u|r), extends to yield a bounded map

V(0,T) — HY(Q) x (H¥4(0,T; L)) NL2(0, T;H%/2(I"))) (87)

N{(u,g) Ju=gonr fort =0},
and this map admits a bounded right inverse. By consequgives,(ui,,g) satisfying
our assumptions above, there existsuch that
GevOmY, G0 =un Gr=g (88)

and the norm ofi in (0, T)N is bounded in terms of the norm @i, g) in Hin x Hg.
One can regard as given data, instead of the péair,, 9).

We definev = u— 0. Thenv(-,0) =0in Q andv = 0 onl". We can rewrite (25) as
an equation fow:

av

5p HvOPs(v) = vAv+ Phor— P (v-Oi+10-0v) -1, (89)

where
for=—Vv-Ov+a(dx b) x b+f, (90)
f= i+ vOps(fi) — vAl + 22(i- O). (91)

3.6 Stability analysis for non-homogeneous boundary contions

We assume the data satisfy (12)—(14) for some given 0, together with (15). To
prove the stability and convergence of the discretizatatveme, we usé which satis-
fies (88) and is bounded in terms (@, g). We define

n 1 r(n+1)At .

= — tdt :n_Nn 92
0= [ aw u"— (92)

3
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and we assume thaf = 0°. Thenv® =0in Q, andv" =0 onT for n> 0. We can
rewrite (52) as an equation fef:

Vn+1 —yn ~
T v = v () 4 2f - 2 (0T T V) - (93)
where
ﬂ]ot = —Vn 'Dvn + G(D X bn) X bn + fn7 (94)
N 0n+1 _qgn
= S+ vOpy(E) - vAS™ (- O (95)

Equation (53) and the boundary conditionsf8rin (54) remain unchanged.
We claim there existM, > 0 depending only on the norm of the déts,,g) such
that

n-1 _
S IF)Pat <M., (96)
k=0

provided(n+1)At < T. Because of the embeddifige V (0, T)N < C([0, T],H(Q,RN))
(see [Ta, p. 42] or [Ev, p. 288]) and

un+1 0 th1 Ot ds dt
(th+ TAYA(T)d 97
= [ a9 5 - [ adte+ion@ar @)
whereA(1) = 1— |1 — 1|, due to the Cauchy-Schwarz inequality we have
—1| g+l _pn |2

sup ||Uk||H1+ z ||Uk||H2At+ z At <CHU||V 0T) < C(J|uin| 1+Hg|\ﬁg),

(98)
Using this with (72) bounds the nonlinear term in (91). Thsoltain the bound (96).
Following the approach of subsection 3.3, we obtain an sibverof Theorem 3.1.

Theorem 3.2 LetQ be a bounded domain iRN (N = 2 or 3) with smooth boundary,
and letv, n, My > 0. Then there exist positive constantsahd G, such that if (12)—
(15) hold for some T> 0, with

At

T
Junls+ bl -+ [ IFO]dt+ g, < Mo,

then whenevenAt < 1 and (n+ 1)At < T < T,, the solution to the time-discrete
scheme (52)—(56), with® = {i° from (92) and (88), an&® given by (84), satisfies

n
sup (b4 21+ [Ju¥][Z) + ZJ(kuHﬁz +[|u¥|[22)At < Cs, (99)
0<k<n k=
n—1
S (||D ¢ (% ¢ U [|2 -+ [|(0 ¢ bX) x bRY[|2 + [|u¥- DukHZ) A <Cs  (100)
k=0
n-1 k+1_ pk|(? k+1_ k|2
b*t+—b Ut —u
- = - - < Ca.
k;) (’ = = )At <Cq (101)

Inequalities (99)-(101) are also true with replaced by as given by (92).
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Proof: We first write (52) as (93). Using (96) and comparing with thegb of The-
orem 3.1, we see that the only essential difference is th@3hwe have some extra
linear terms of the form

2a"-ovh+v".oa"), (102)

and the ternf". Similar to (72), we get
- C .
|22(-0v)||? < el|av]|®+ EHUHﬁuHDVHZ- (103)

We estimate the other term in (102) by using Gagliardo-Miezg inequalities [Fr,
Thm. 10.1] and the Sobolev embeddingsdfinto L andL®:

1/2 . .11/2
Cllav] A5V < Cllav|¥2|ovF2 (N =2),
Vil < /2|y (|12 1/2 1/2 (104)
Cllav(|+=[v]| 5~ < CllAv||*<[|Tv|| (N=3).
Then forN = 2 and 3 we have
- ~ C .
|22(v-00)|1% < ||v||- || 06> < ef|av]® + EHUHﬁlIIDVHZ- (105)

With these estimates, the rest of the proof of the stability"ds essentially the same
as that of Theorem 3.1 and therefore we omit the details. Ti#lisy of v" leads to
that ofu", using (98).

4 Existence, unigueness, convergence

For the constrained MHD equations that include the divergenee conditions (3)-(4),
in which pressure is determined accordingly, local existeaind uniqueness of strong
solutions with no-slip boundary condition is classicak feul]. Here we will extend
the local existence and uniqueness theory to treat the streamed formulation of the
MHD equations (1), (2) with pressure given by (26), intiahddions (9) and bound-
ary conditions (5) and (8). The stability estimates in Tleeo3.2 lead to a standard
compactness proof for existence of a strong solution. Tkiemates in the stability
argument, based on Theorem 2.1 in particular, also perniitples uniqueness proof.
Full convergence of the time-discrete scheme (52)-(5&)id as a consequence.

Theorem 4.1 Let Q be a bounded domain iR® with smooth boundary, and letv,
n, M1 > 0. Then, there exists, T 0 such that if the data satisfy (12)—(15) for some
T € (0, T,), with

[[Uinll42 + [1Binl 42 + Ifll 20,720 rN)) + 19lHg < Ma,
then a unique strong solution of (1), (2) and (26) exists[@], that satisfies the

conditions (5), (8) and (9) and has the regularity indicate10)-(11), and thusi,b €
C([0,T],HY(Q,RY)).
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Moreover, for t> 0, O-u and O0-b are C” classical solutions of the diffusion
equations with no-flux boundary conditions (46) and (503pectively. The mapst
|0-u||? and t— ||0-b||? are smooth for t- 0 and we have the dissipation identities

dl1l

3 I0-ulP+vIO@-u) =0, (106)
3l 0-bl2+n 0O B)2 =0, (107)

We will not give the full existence proof, since the compastmmethod is classical
[Ta, Tel, LM] and the details are similar to the treatmentrofiaconstrained formula-
tion of the Navier-Stokes equations in [LLP1]. The main stape: (i) piecewise linear
interpolation of the time-discrete scheme, (ii) using thebaity estimates of Theo-
rem 3.2 to extract weakly convergent subsequences, (ifigustrong convergence in
L2([0, T] x Q) to establish convergence of nonlinear terms in the sensistoibditions.
Passing to the limit, one shows the velocity is a strong goiudf

gu=vO0O -u+ Z(VAu+f), (108)

which is equivalent to (25) by (21) and (19). Here we will nialiss the details, and
refer to [LLP1]. We proceed to address the uniqueness anprtperties of1-u and
0-b.

4.1 Uniqueness for unconstrained MHD equations

Proof of uniqueness: Recall the definition o¥/ (0,T) from (86). Suppose&, by €
V(0,T)N andus, b, € V(0,T)N are both solutions of (1), (2) and (27), satisfying the
boundary conditions (5), (8) and the initial conditions.(9)

Putu = u3 — up, b =b; — by andp = ps(u). Thenu(0) = b(0) =0 and

Gu+ Z(u1-Ou+u-0Ouy) =vAu—vOp+aZ((0x by) xb+ (Oxb) x by), (109)
ab+0x (b1 x u+bxuz) =nAb, (110)

with boundary conditions
u=0, n-b=0, nx(Oxb)=0. (1112)

Dot (109) with —Au and dot (110) withb — Ab. Due to the boundary conditions
(111), we infer that the quantitiggku, —Au) and (é&b,b — Ab) are inL*(0,T) and
t — ||0Oul|? + ||b]|Z is absolutely continuous with

(Gu,—Au) + (atb,b — Ab) = S ([|Dul|*+ [Ib]}Y) (112)

This can be justified using approximation by smooth fundjoBvans [Ev, p. 287]
provides a detailed proof of a similar result.
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We estimate remaining terms as follows. Using Theorem 2.gete
(vu—vDp, ~Au) < — 2 |au[2+ - | Op|? < —%Auuhcnuuu? (113)

with B = 2 —& > 0. Next, use the Cauchy-Schwarz inequality for the nonliterans,
estimating them as follows in a manner similar to step 2 inpitoef of Theorem 3.1,
using thatuy, uy, by, b, are a priori bounded iRl norm:

Jus - Oull|Au| < CJ|Duy || 0ul™2)au®2 < ] au® +Cl|Dul%, (114)
Ju-DuzlllAul| < | Dul| Duzllys Au] < eflAu]?+Clluz22IDul?,  (115)

1/2
1(0 % b) x ba||[|Aul| < C]lballya | Tbl|*?b]| 42| Au]
< (/|Au]|?+[Ib[F2) +ClIblF2. (116)
10 x ba) x bl [|Au]| < Cl|b]lyal|Bby 2 [Au]| < e]jAu]|?+Clibz| e llb]F,  (117)

18 x (by x u)|| [[b—Abl| < e(fjaul® + [[bl|f2) +ClIBul*(1+ [Ibe]|F2),  (118)
18 % (b x uz)|| [[b— Abl| < &][bl[fz +C(1+ [|Auz) || Ob] % (119)

This gives

d
Ge(IOull+ 1Bl + vilaul*+n by
< C(L1+ [|ballfz + [Ib2ll2 + [1Au2]?) (| Oul[* + || bI[G)- (120)
Becauseé|bs |2, [|b2]|2,, and||Au,||? are inLY(0,T), by Gronwall’'s inequality we get

H2’ H2’
[|Oul|? + ||b]|& = 0. This finishes the proof of uniqueness.

4.2 Divergence of the velocity and magnetic fields

It remains to discuss the properties stated in Theorem gdrdeng the regularity and
behavior ofd-u and-b fort > 0. The first step is to observe that singceand

b are strong solutions of0, T), for any ¢ € H(Q) the computations leading to the
weak-form equations (45) and (49) are validih(0,T). Then just as in the proof for
the Navier-Stokes equations in [LLP1], the smoothneds af and[ - b follow from
semigroup theory, using Ball's characterization of wedltsons of abstract evolution
equations [Ba]. The dissipation identities (106), (107lpfe by dotting (46) and (50)
with O-u and- b respectively.

5 Time-discrete divergence estimate
In this section we estimate the divergence of the time-discvelocity and magnetic

field for the scheme (52)-(56). The main results are the bsumd122) and (129)
below.
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Consider the magnetic field first. Take a test funcgoa H(Q) with mean zero,
and dot (53) withdg. As in section 3.1, we find

bn+l —_pn

o ,0¢) = n(0(0-b"),0¢). (121)

Taking @ = O0- b1, integrating the time difference term by parts, and summmg
infers

n
102+ v Y |00 bYj2At < |10 b°)Z < |0 -bin| %, (122)
k=1

using (85) for the last step. This controls the right-hamig f (122) by initial data,
and indeed we see thatlif- bj, = 0 then the discrete divergente b" vanishes on
each time step.

Now consider the velocity. Writing? = ps(u"), dotting (52) withUg we have

n+1_ n
<%’ Og) +v(OpZ, Op) = v(O(0-u™h),0¢) — v(O x (O x u™™), O).

(123)

Using the fact that
—v(0x (O xu™4),0¢) = v(Opl*, Og), (124)

one has
O.ul_.yn

<%’9"> +v(0(0-u™t 4+ pltt—pl),0p) =0.  (125)

As in [LLP1], we letq" = 2u" be the mean-zero solution of

—Ag"=0-u", n-Ogq"=0onrl. (126)
Note that||0q"|| is equivalent to|0 - u"||y1 gy (HereH'(Q)' is the dual oH*(Q).)
Takingp = " in (125), we find

0 n+l_|:| n
< q = q ,Dq”+1>+v<D-u”+l+pQ+1—pQ,D-u”+1>_O,

whence - )
10g™“ — 110"

At

+v[O-um P < vpd - pl|1?,

and
n-1 n-1
102 +v Y |0 ukH2at < [|0gP|f? + v > Pt —pkat. (127
k=0 k=0

Using Lemma 8.1 of [LLP1], we have the bound

3/2
Ip+E — pl2 < CJju™t — un ||/ juntE - un %2, (128)
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By Holder’s inequality and the stability estimate in Thewr3.2,

1
4 [n

1 i
[; ||uk+1 _ Uk|a2At]
K=

To control this by data, note thaig® = (I — 2)u®, hence aat — 0,

n-1 n-1
gnpzﬂ—pinzmsc guuk“—ukuzm
k= k=

<CVAt. O

1861 < [1(1 = 27)in]| + [|u® — Uin[| = [|(1 = 2”)uin]| +0(2).

Hence we find

n—-1
10>+ v S (10U At < [|(1 = 22)uin]| + [|u® — in|| + CVAL. (129)
k=0
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