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Many relevant applications in gravitational wave physics share a significant common problem:
the seven-dimensional parameter space of gravitational waveforms from precessing binary black
hole inspirals and coalescences is large enough to prohibit covering the space of waveforms with a
sufficient density. Using the reduced basis method together with a parametrization of waveforms
that is adapted to precession, we construct a high accuracy representation of this large space that
uses less than 100 judiciously chosen precessing inspiral waveforms having 200 cycles. We find
that using only the first 10 reduced basis waveforms yields a maximum mismatch of 0.016 over the
whole range of considered parameters (mass ratios from 1 to 10 and spin components ≤ 0.9). We
also show that the parameters selected for precessing inspiral waveforms can be used to build an
accurate reduced basis representation of non-precessing inspiral-merger-ringdown waveforms from an
effective-one-body model. This evidence suggests that perhaps only 50-90 numerical simulations of
binary black hole coalescences may be required to accurately cover the seven-dimensional parameter
space of precession waveforms.

Gravitational radiation produced by stellar-mass com-
pact binaries of neutron stars and/or black holes are ex-
pected to be the main signals detected by the advanced
generation of gravitational wave detectors [1–4]. Detect-
ing these signals and estimating the parameters of their
sources require the ability to sufficiently sample the space
of precessing compact binary waveforms. A compact
binary intrinsically depends on its mass ratio and the
spin angular momentum components of each body, which
forms a 7-dimensional space for gravitational waveforms
[5].

Much progress has been made in sampling the subspace
of non-spinning compact binary waveforms over the last
decade. However, many relevant applications, from data
analysis for gravitational wave searches and parameter
estimation studies to numerical relativity simulations of
binary black hole coalescences, face a common challenge.
In particular, going from the non-spinning subspace to
the full 7d space naively requires prohibitively more sam-
ples for the same coverage simply because the volume
of the space grows exponentially with dimension. As a
result, the general consensus in the gravitational wave
community is that the computational complexity asso-
ciated with building template banks for matched-filter
searches, with making parameter estimation studies, and
with modeling precessing compact binaries by expensive
numerical simulations is intractable (e.g., see [6]). This
phenomenon entails what is called the curse of dimen-
sionality [7].

In this paper, we show how to beat the curse of dimen-
sionality for precessing compact binary inspirals. We find
that only 50 judiciously chosen waveforms are needed to
represent the entire 7d space with an accuracy less than
10−7 for 200 cycles, mass ratios q ∈ [1, 10], dimensionless
spin components ‖~χ1,2‖ ≤ 0.9, and through ` = 8 spher-
ical harmonic modes. Using only the first 10 of these
select waveforms yields a maximum representation error
. 1%. The results of this paper suggest that for any

given parameter range a remarkably small number of nu-
merical relativity simulations of precessing binary black
holes, if judiciously chosen, are sufficient to accurately
represent any other precession waveform in that range.
We expect these results to be useful also for gravitational
wave matched-filter searches and parameter estimation
studies.

Beating the curse of dimensionality.– Previous studies
have shown that non-precession subspaces of the full 7d
waveforms space W can be represented by linear spaces
spanned by a relatively compact set of inspiral [8, 9],
ringdown [10], and inspiral-merger-ringdown (IMR) [11]
waveforms, which form a reduced basis (RB). The re-
duced basis waveforms are found by training a greedy
algorithm [12, 13] to learn from a given discretization
of W which are the most relevant waveforms for repre-
senting elements of W with regard to a given error mea-
sure. See [8] for more details. The number of RB wave-
forms for non-precessing inspirals hardly grows from two
to four parameter dimensions thereby explicitly beating
the curse of dimensionality [9]. Of further interest is that
precession subspaces of W carry significant redundancy
and are amenable to dimensional reduction as found in
[14]. Those results strongly suggest that one may beat
the curse of dimensionality in the full 7d waveform space.

In this paper, we outline how to construct a very com-
pact but highly accurate RB of precession waveforms that
beats the curse of dimensionality. We consider the fol-
lowing specifications on the 7d waveform space:

q ∈ [1, 10] , ‖~χ1,2‖ ∈ [0, 0.9] , 200 cycles. (1)

where q = m1/m2 ≥ 1. These were chosen based on sim-
ulations of precessing binary black hole coalescences that
might be achievable in the foreseeable future. However,
the general message of this paper does not depend on our
choice.
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Key ingredients.–Our construction of a very compact (or
sparse) reduced basis representation of precession wave-
forms depends on several key steps [15]: (1) A random-
ized resampling strategy [16] for training the greedy algo-
rithm on the 7d waveform space; (2) A frame that rotates
with the binary’s precession; and (3) A physically moti-
vated parametrization of precession waveforms. We dis-
cuss these items below and show how they lead to beating
the curse of dimensionality for precession waveforms.

The first key ingredient is a modification of the stan-
dard greedy algorithm [8]. In its simplest inception, the
greedy algorithm learns which waveforms can linearly
span the space of interest in a nearly optimal way [12, 13],
starting from a sufficiently dense set of waveforms called
a training set or space. However, the curse of dimension-
ality prevents us from sampling the waveform space with
sufficient coverage to build a reliable training set. To
overcome this, we randomly resample the 7d space from
a uniform distribution using a fixed number K of wave-
forms at each iteration of the greedy algorithm. These
waveforms constitute the training set at the current itera-
tion. Because the 7d space is resampled at each iteration
by different waveforms, the maximum error from pro-
jecting waveforms onto the current basis at the jth step
is actually measuring this error over an effective training
set with j×K randomly distributed waveforms. As more
iterations are made, more of the 7d space is sampled and
the more accurate the RB becomes. This is a simple im-
plementation of more powerful techniques introduced in
Ref. [16].

For our studies, we randomly and uniformly resampled
K ≤ 36,000 waveforms at each iteration of the greedy
algorithm. We began our studies with small K and in-
creased each sample size up to K = 36,000, for which the
total number of RB waveforms was robust and indepen-
dent of K. The largest training set used in our studies
included more than 3×106 randomly selected waveforms.

The second key ingredient is to work in the binary’s
precessing frame instead of the usual inertial one. Specifi-
cally, we generate post-Newtonian (PN) precession wave-
forms in the time-domain using the minimally rotating
frame of Refs. [17, 18]. In this frame, a precession wave-
form appears qualitatively similar to waveforms from
non-spinning binaries in their inertial frame [6, 18–22]. In
the minimally rotating frame, waveforms have a weaker
dependence on parameters than they do in the inertial
frame. The rotation involved in going from the mini-
mally rotating frame to the inertial one and vice versa
can be accounted for by any convenient representation of
the SO(3) group.

The third key ingredient, and perhaps the most crucial,
is that we choose to parametrize precession waveforms
by their phase instead of by time or frequency. To moti-
vate this choice we momentarily consider the frequency-
domain waveform (in the stationary phase approxima-
tion) for a non-spinning binary inspiral at leading order

(“0PN”) in the PN approximation,

h(f ;M) = AM5/6f−7/6eiΦ0(f ;M), (2)

where M = Mν3/5 is the chirp mass, M is the total
mass, ν is the symmetric mass ratio, A is a constant
independent of the binary’s intrinsic parameters, and

Φ0(f ;M) ≡ 3

128

(
πMf

)−5/3
. (3)

Reparametrizing (2) by its phase, now taken as the inde-
pendent variable, gives

H(ϕ;M) ≡ h(F (ϕ);M) = A′M2ϕ7/10eiϕ (4)

with A′ = Aπ7/6(128/3)7/10 and F (ϕ) from solving
Φ0(f=F ) = ϕ. In this phase-domain, all waveforms
are proportional to each other, thus constituting a 1d
space. In fact, performing the greedy algorithm analyti-
cally (versus numerically) returns a single basis waveform
that exactly represents all such waveforms in the contin-
uum. This is the intrinsic dimensionality of the problem
as has long been known because 0PN waveforms only
depend on the chirp mass. Therefore, a single reduced
basis waveform spans the whole 0PN waveform space. To
close the system, we also need to represent the mapping
between the phase and frequency domains,

F (ϕ;M) =
1

πM

(
128ϕ

3

)−3/5

, (5)

using a separate basis. As we see again, the frequencies
for different chirp masses are all proportional to each
other. Therefore, any 0PN waveform, as a function of
frequency, is represented by one reduced basis waveform
through the non-linear transformation in (3).

For the sake of comparison, we implemented a stan-
dard greedy algorithm following [8] using 0PN waveforms
parametrized by frequency (not phase) for binaries with
a fixed total mass and with mass ratios and number of
cycles as listed in (1). We found that 152 RB wave-
forms are required to reach numerical round-off errors
in representing any waveform in this 1d space. Even to
reach an error of about 1% requires 138 RB waveforms.
Therefore, using the phase parametrization results in a
single RB waveform for exact representation whereas a
frequency parametrization can yield a much larger RB
for approximate representation.

Part of the reason why using waveforms in the phase
domain (or ϕ-domain) is advantageous is because the os-
cillations in two waveforms always cancel in the scalar
product used to measure the projection error onto the
RB in the greedy algorithm,

〈
HM1 , HM2

〉
ϕ
≡
∫ ϕmax

ϕmin

dϕH(ϕ;M1)H∗(ϕ;M2). (6)

For 0PN waveforms this results in a very smooth depen-



3

dence on the chirp masses since (6) is ∝ M2
1M2

2. Simi-
larly, the waveform frequency as a function of phase (5)
has a very smooth dependence on them as well.

Higher PN orders include more physics, such as the
nonlinearity of general relativity and spin-orbit, spin1-
spin2, and self-spin interactions, that depend on all 7 in-
trinsic parameters. These contributions add more struc-
ture to the waveforms but only weakly depend on the
parameters. This is especially true in the ϕ-domain and,
as discussed below, we also find this holds through the
merger and ringdown phases where the PN expansion
parameter is no longer small. Consequently, the inverse
function F (ϕ) (or T (ϕ) if in the time domain) retains
the weak dependence on intrinsic parameters. As there
is thus only ever a weak parameter dependence, one may
hope to find only a relatively small number N of RB
waveforms, possibly as few as N = O(d).

Method outline.–In this paper, we use 3.5PN precess-
ing inspiral waveforms. We solve the PN equations (see
Ref. [23] and references therein) using the approach of
Refs. [17, 18] where the waveforms themselves are solved
in a frame that minimizes the binary’s precession, along
with a rotation operator represented by unit quater-
nions to track this frame relative to the fiducial inertial
frame. All waveforms in this minimally rotating frame
are normalized to unity, and the initial orbital phases
are aligned. It is convenient to decompose the waveform
into spin-weighted spherical harmonic modes [24] charac-
terized by (`,m). We use the phase associated with the
(`,m) = (2, 2) mode to parametrize the waveform but
other choices are possible. A precession waveform h(t)
in the inertial frame is thus decomposed in the following
way,

h(t)→
(
{H`m(ϕ)}, T (ϕ), Q(ϕ)

)
(7)

where H`m is a spin-weighted spherical harmonic mode
in the minimally rotating frame, T (ϕ) is the function
relating the (2, 2) phase to the time coordinate, and Q is
the unit quaternion describing the rotation back to the
inertial frame. We take into account all modes up to ` =
8 and cut all waveforms off at a dimensionless frequency
of 0.2 in the (2, 2) modes. Finally, all waveforms contain
200 wave cycles.

We build a RB for each component in the decomposi-
tion (7). It is natural to use the scalar product in (6) for
the T and Q functions but to integrate the minimally ro-
tating waveform over the 2-sphere so that, upon using the
orthogonality of the spin-weighted spherical harmonics,

〈
Hλ1

, Hλ2

〉
ϕ
≡
∑
`,m

∫ ϕmax

ϕmin

dϕH`m(ϕ;λ1)H∗`m(ϕ;λ2) , (8)

where λi is a tuple of parameter values. Executing a
greedy algorithm on each component in (7) would result
in a selection of parameter values that are different for
each element. In order to choose the same parameters
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FIG. 1. Left: Maximum ϕ-domain (ϕD) projection error
(red) from (9) for 7d post-Newtonian precession waveforms
versus basis size. The contributions from the time function
(dotted), waveform in the minimally rotating frame (dashed),
and quaternion (solid) are also shown. Right: Maximum
time-domain, inertial frame mismatches from (10) for 107 ran-
domly selected waveforms (+) using the first 10, 20, and 50
reduced basis waveforms. Also plotted are ϕ-domain projec-
tion errors for non-precessing PN waveforms (dashed) and
the time-domain (TD) projection errors from using the latter
parameter values selected by the greedy algorithm to repre-
sent EOB waveforms (solid black), which additionally include
merger and ringdown phases.

for all three reduced bases, we define a total projection
error εϕ through,

εϕ(λ) ≡ 8× 10−6‖δTλ‖2ϕ + 0.5‖δHλ‖2ϕ + 0.0031‖δQλ‖2ϕ
(9)

so as to receive approximately equal contributions from
each component. Here, λ = (q, ~χ1, ~χ2) is a tuple of 7d
parameter values, δXλ = Xλ−PX [Xλ] with X one of the
elements in (7), and PX is the projection operator onto
the basis for X. The numerical coefficients are fixed to
give approximately equal contributions to the mismatch
in the time domain and inertial frame in the case of small
random perturbations. Binaries with periods near 200M
lead to a small coefficient for the time function.

Results for precessing binary inspirals.–We implemented
a greedy algorithm using the three key ingredients dis-
cussed above to find RB representations for the space of
precession waveforms for the ranges given in (1). The
left panel of Fig. 1 shows the maximum of the total pro-
jection error (9) found at each iteration of the greedy
algorithm. We observe a power-law decay with exponent
≈ −8. The total error is not monotonically decreasing
because of the constant resampling at each iteration. We
observe that the maximum normalized projection error
over the training set is 10−2 using 10 basis waveforms
and ≈ 4× 10−8 for 50. Also shown are the contributions
to the total error from the projections onto the basis of
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each component in (7).
To measure the error in the time-domain inertial frame

between a waveform h and its RB approximation happ we
use the standard mismatch

Mismatch = 1− Re 〈h, happ〉t , (10)

where for two functions A,B the time-domain complex

scalar product is 〈A,B〉t ≡
∫ tmax

tmin
dtA(t)B∗(t). In order

to measure the quality of the RB approximation itself,
we do not extremize the mismatch with respect to the
relative phase and time shift between h and happ.

It is not obvious that the basis generated using (9)
from the minimally rotating frame and ϕ-domain will be
accurate for inertial frame waveforms expressed in the
time-domain. Nevertheless, we find that the ϕ-domain,
precessing basis is highly accurate for representing time-
domain, inertial-frame waveforms. The right panel in
Fig. 1 shows the mismatch (+) from using the first 10,
20, and 50 basis functions to represent more than 107

randomly chosen waveforms for the same specifications
in (1). Figure 2 shows the distribution count of wave-
forms with a given error using the first 10, 20, and 50 RB
functions. The latter distribution has median 3.5×10−9,
mean value 4.2 × 10−9, and a maximum representation
error of 4.1 × 10−8. Using the first 10 RB functions,
the maximum mismatch is 0.016 over more than 107 ran-
domly selected waveforms.
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FIG. 2. Distribution of mismatches from (10) for more than
107 randomly selected waveforms in the time-domain and in-
ertial frame using the first 10 (dashed), 20 (dotted), and 50
(solid) reduced basis waveforms. Distributions are normalized
by their total samples.

Table I shows that we beat the curse of dimensionality
since, for a given error, the number of RB waveforms
needed to accurately represent the subspace of W with
the indicated dimension d grows approximately linearly
with d, not exponentially.

Figure 3 shows the first 90 parameters selected by our
greedy algorithm and presented according to which com-
ponent – time, minimally rotating waveform, quaternion
– is the dominant contribution to the total representation
error in the left panel of Fig. 1. The spins’ components
are taken at the initial time where the inertial and min-
imally rotating frames are equal. The mass ratios are
heavily weighted towards the endpoints of the consid-
ered interval in (1). Both spins’ magnitudes tend to be

Error Basis size

1d 2d 3d 7d

. 10−2 4 6 7 13

. 10−4 4 7 8 20

. 3× 10−8 6 15 23 50

TABLE I. The number of basis waveforms required for a de-
sired maximum mismatch scales approximately linearly with
the dimension thus beating the curse of dimensionality. The
first three dimensions considered are from mass ratio q and
z-components of the spin vectors ~χ1,2 with 1d → (q), 2d →
(q, χ1z), and 3d→ (q, χ1z, χ2z).
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FIG. 3. Distribution of mass ratios (top), x-y components of
both spins (second row), projection of spins onto initial orbital
angular momentum unit vector (bottom left), and both spin
magnitudes (bottom right) as selected by our greedy algo-
rithm. The spins’ components are given in the inertial frame
at the initial time.

in [0.8, 0.9]. The projections of the spins onto the initial
orbital angular momentum seem to be anti-correlated, at
least when the waveform contribution to (9) is dominant.
We also see that the x-y components of the spins tend to
lie on a circle for the smaller mass m2 while there is less
clear structure for the larger mass m1.

From inspiral to coalescence.–How well does the RB for
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precessing inspiral waveforms do at representing more
complicated waveforms that include merger and ring-
down phases of binary black hole coalescences? The an-
swer to this question has immediate relevance for build-
ing a RB for expensive numerical relativity simulations
of precessing binary black hole mergers that, in turn,
has important ramifications for data analysis applications
with gravitational wave detectors and for modeling ex-
pensive merger simulations with reduced-order/surrogate
models [11].

Currently, we can answer the above question for spin-
ning but non-precessing binary black hole coalescences,
which involves only the three parameters q, |~χ1|, and |~χ2|,
for which an effective-one-body (EOB) semi-analytical
model of IMR is available [25, 26]. We first used our
greedy algorithm to find the parameters for building a RB
for the non-precessing inspiral PN waveforms using the
ϕ-domain error in (9). We then generated a basis using
the EOB non-precessing coalescence waveforms evaluated
at those selected parameters. Lastly, we randomly gen-
erated more than 10d=3 EOB waveforms and computed
the time-domain inertial frame mismatch from (10). The
results of this study are shown as the solid black curve
in the right panel of Fig. 1. For the first 20 inspiral RB
waveforms, the maximum mismatch of the EOB wave-
forms is about 3× 10−5 while for the first 50 it is about
2× 10−7.

Outlook.–Based on traditional methods to sample the
waveform space, which scale exponentially with dimen-
sion [27–30], it has been perceived that an intractable
number of numerical relativity simulations would be
needed to represent the space of binary black holes for
any given number of orbits. However, we have found
evidence that a remarkably small number of numerical
relativity binary black hole simulations may actually be
needed, if judiciously chosen, to build a high accuracy

reduced basis to represent the whole space of interest.
Based on the non-precessing EOB results presented

above, performing numerical simulations of binary black
hole mergers for the first 50-90 parameters selected by
our greedy algorithm may be sufficient to represent the
precession waveforms of any other coalescences in the pa-
rameter ranges of (1). This constitutes less than one
tenth of the number of randomly chosen simulations per-
formed over the last few years by the numerical relativity
community [21, 31–33]. In addition, this work suggests
that an unexpectedly small number of low-mass inspiral
waveforms may represent the frequency and parameter
ranges of interest to gravitational wave detectors, which
may also enable very compact reduced-order quadratures
[34, 35] of overlap integrals for fast parameter estimation
studies. Finally, this work opens the door for building
surrogate models [11] of precessing inspiral waveforms
that can be useful for multiple query applications in place
of solving a large number of parametrized ordinary dif-
ferential equations.
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