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Abstract

We consider the Bogomol’'nyi equations of the Abelian Chern-
Simons-Higgs model with SU(NN)giobal @ U(1)10cal symmetry. This is a
generalization of the well-known Abelian Chern-Simons-Higgs model
with U(1)j0cal symmetry. We prove existence of both topological and
nontopological multivortex solutions of the system on the plane.

1 Introduction

The Abelian Chern-Simons-Higgs model with SU(N)gobal @ U(1)10cal Sym-
metry is defined by the Lagrangian,

K 1
L= 5B, Ay + (D) (DMD) — [0 (B — 1),

where A, (1 = 0,1,2) is the gauge field on R?, F,, = 32 A, — 5% A, is the
corresponding gauge curvature tensor, D, = % —1iA,, is the gauge covariant
derivative, ® = (@1, Py, ,®y) is a CV valued function on R3, called the
Higgs multiplet, €,,, is the totally skewsymmetric tensor with €2 = 1, and
finally x > 0 is the Chern-Simons coupling constant. Our metric on R? is
(gw) = diag(1, —1, —1). This model was suggested by Khare[6], generalizing

the original Abelian Chern-Simons-Higgs model, due to Hong-Kim-Pac[4]



and Jackiw-Weinberg[5]. We also mention that there are also studies of the
corresponding Abelian Higgs model with SU(N)giobal ® U(1)1ocal Symmetry
in [14], [3]. Similarly to the case of Abelian Chern-Simons-Higgs model, in
the static case, the following Bogomol'nyi system in R? is obtained|[6],

(D, +iDy)®, =0, Vk=1,---N (1.1)
F12:i%|(1)|2(|¢)|2_1>' '

This system is equipped with one of the following boundary conditions; either
P(2)? =1 as|z| — oo, (1.2)

or
P(2)]> =0 as|z| — oo, (1.3)

Following the standard Jaffe-Taubes reduction procedure[13], we introduce
new variable (uq,--- ,uy) by

My,
1
Or(2) = exp 5 Uk +1 ZArg(z — zk])] , z=x1+ iz, € Ct =R?,
j=1
where Z; = {zk]}j\i’“l is the set of zeros of ®;(z). Then, the system (1.1)
becomes the following semilinear elliptic system for (uy,--- ,uy) in R2
N N My,
Auy, = (Z er) (Z eli — 1) —|—47TZ(5(Z - Zk,j)a k=1,---,N, (1‘4)
j=1 j=1 j=1
where we set k = 2 for simplicity. In terms of (uy,--- ,uy), the boundary

condition (1.2) reads

et — o as |z| — oo (L5)
with oy, > 0 for all k=1,--- N, and Y, 03, = 1, ‘
while (1.3) reads
e -0 as|z] o0 forallk=1--- N. (1.6)

The boundary condition (1.5) is called topological, while the boundary
condition (1.6) is called nontopological. We observe that when N = 1, the
system (1.4) reduces to the well-known (scalar) Chern-Simons equation, for
which there are many studies for topological vortices([11, 15]), nontopological
vortices([10, 1, 2]), periodic vortex condensates([12, 9, 8, 16]) respectively.
We first consider the nontopological case. In the system (1.4) equipped with
(1.3), without loss of generality, we assume M; > M for all k = 1,---N.
Let us define

My,

A = 0+ D[ =20 B = [ e )

j=1



Given € > 0,a = a; + iay € C, let us introduce the functions pgkg(z) by

p)(z) = e —. (1.8)
(1+ 2042 Fy(2) + | )

We note that for any € > 0 and a € C', In pglg(z) is a solution of the Liouville

equation.

My
Aln pglg(z) = —pglg(z) +4r Z 0z — 215). (1.9)
j=1

We state the existence theorem for the nontopological vortices.

Theorem 1.1 (Existence of nontopological vortices) Let N > 2. For
each k = 1,--- N let M € N with My > My, for all k = 1,--- N, and let
Zn,- - Ly be given with Zj, = {zk]}j\i’“l € R2. Then, there exists a constant
g1 > 0 such that for any € € (0,e1) there exists a family of solutions to 1.4,
(ug,ug, -+ ,uyn) equipped with the boundary condition 1.6). Moreover, the
solutions we constructed have the following representations:

ur(2) = In pl. (2) + e2w(elz]) + 205 (e2), (1.10)

ug(z) = In pékgg(z) + 2w(e|z|) + e®vf(ez) + Ine? (1.11)

forallk=2,---N.

In (1.10) and (1.11), the function € — a} is a continuous in a neighborhood
of 0, and |aX| — 0 as e — 0. The radial function w in (1.10) and (1.11) has
the following asymptotic behavior.

w(|z]) = —CoIn|z| + O(1), (1.12)
as |z| — oo with the constant Cy > 0 defined by

4m M2(2M, + 18
= AmMI2M + 1) (1.13)

15(M, + 1) sin (M)

Mi+1

The function v¥ in (1.10) and (1.11) satisfies

vz (e2)|
sup ————— < o(1 as € — 0. 1.14
e =" .
Next, we consider the system (1.4) equipped with the topological boundary
condition (1.5). Without loss of generality, we assume that for m € {1,--- N}

e — o as|z| o0 fork=1---,m. (1.15)
e —0 as|z| o0 forallk=m+1,--- N, (1.16)
where > " ox = 1, and oy € (0,1] for each k = 1,--- ,m. The following is

our second main theorem.



Theorem 1.2 (Existence of topological vortices) In order to have so-
lution to the system (1.4) equipped with (1.15) and (1.16), it is necessary
that

My=My=---=My(=M), and My<M forallk=m+1,--- N
(1.17)
If the condition (1.17) is satisfied, then there exists a solution (uy,--- ,uy)
to the problem. Moreover, the solutions we constructed have the following
representations:

M
Uk(Z):1n<0kH( 'Z_Z’”"%z)>+v fork=1,--,m,  (L18)

M
Hj:kl |z — Zk,j|2

ug(z) = In i
2 (Hj1<,“ + |z = 21,4%)

for a function v € N2, HI(R?).

>+v fork=m+1,--- N (1.19)

2 Existence of Nontopological Vortices

In this section our aim is to prove Theorem 1.1. From the equation,
Aln|z — z|> = 476(2 — zp) in R? we find that

Mk My
Al up—u — E In|z — 2;4)* + E In|z —2,4* | =0.
j:l j:l
Hence, we obtain the relations between u; and wuy’s

My, 2
|2 — 2k
up = up + In (Hj_l | k’]‘ > + hk(z) (2.1)

M
Hj:ll |z — 21,47

for all k =1,--- N, where hy(z) is a harmonic function in R?. We choose

hi(z) = Ingtt2Me—20M,

Then, (2.1) becomes

gA+2M—2M; H]\{k \z — ,’2
U = Uy + In M ]__1 2 7 . (22)
Hj:l |z — 21,4

We introduce g*) (2), pr(r), k=1,--- N as follows

1 z 8( My + 1)27"21”16 .
(k) — — k) z — k _ (k)
9e.a (2) -2 pa,a(e)v pr(r) (1 -+ r2Mi+2)2 <_ lmol 9e,0 (Z)> - (23)
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Let us make a change of variables from wu; to v by the following formula
u1(z) =In pglg(z) + e2w(e|z]) + e*v(ex), (2.4)

where w(-) is a radial function to be determined below. Then, after elemen-
tary computations we find that combination of (2.2) and (2.4) implies the
following representation formula for wuy,

uk(z) =1In pgkg(z) + e2w(e|z]) + *v(ex) + Inet (2.5)

forall k=2,---N.
Then, the equation for u; in (1.4) can be written as the functional equa-
tion P(v,a,e) = 0, where

€,a

1
P(U, a, 6) = Av+ —29513(2)(@52(U+w) _ 1) _ [g(l)(z)]Qesz(erw)
8 I

N
+€2 Zgéka)(z 2(vtw) 4 Zg(l) 25 (v+w)
2 vTw
* Zgéll (2)gld (2)e* ). (2.6)
k=2

Now we introduce the functions spaces introduced in [1]. Let us fix o € (0, 3)
throughout this paper. Following [1], we introduce the Banach spaces X, and
Y, as

X = {ue B ®)| [ (14 o) u(e)do < o0}
R2

equipped with the norm ||u||%, = [p (1 + |2[*T)|u(x)|*dz, and

: Ol
= {u e W) | A}, + | it

L2 (R2)

equipped with the norm |Jul|}, = [|Aul), + | — We recall the

1+|$|1+2 ||L2 RQ
following propositions proved in [1].

Proposition 2.1 Let Y, be the function space introduced above. Then we
have the followings.

(i) If v € Y, is a harmonic function, then v = constant.

(i1) There exists a constant Cy > 0 such that for all v € Y,

[v(z)] < Cillvlly, In(e + |2]), Vo e R



Proposition 2.2 Let a € (0,3), and let us set

L=A+p :Y,— X, (2.7)

We have
KerL = Spa’n{gp—l-? - 900} ) (28>

where we denoted

rMitl cos(M; +1)0 rMFlsin(M,; +1)60

and 1 — p2Mi+2
—7r 1
Y0 = T e (2.10)
Moreover, we have
ImL:{fEXa|/ for =0} (2.11)
R2

We can check easily that P is a well defined continuous mapping from B,, C
Y, x C x Ry into X,, where B, = {||v]ly, + |a| < e < go} for sufficiently
small g9. In order to have a continuous extension to € = 0 of P(+) we require
that lim._o P(0,0,¢) = 0, which implies the following equation for w,

Aw + pyw — pj = 0. (2.12)

We first note the following lemma about asymptotic behaviors of the solutions
w € Y,, the proof of which is in Appendix.

Lemma 2.1 Let Cy be the number introduced in (1.13). Then, there exist
radial solutions w(|z|) of (2.12) belonging to Y,,, and satisfying the asymptotic
formula in (1.12).

In order to obtain the linearized operator P/ (0,0,0) = A we first com-

(v,a)
pute,

(k) o (k)
99:4(7) = —4prps, g2 2) = —4pp-,
(‘9@1 aa2

forall k=1,---, N, where
Using these we find

Aly, f] = Lv — 4 (p1w — 297) (941 + ¢ Ba).

For the linearized operator A[-] we need the following key lemma lemma.



Lemma 2.2 The operator A : Y, x R?> — X2 defined above is onto. More-
over, kernel of A is given by

KerA = Span{¢s,v_,po} x {(0,0)}. (2.13)

Thus, if we decompose Yo x R? = U, ® Ker A, where we set U, = (Ker A)*,
then A is an isomorphism from U, onto X,.

For the proof of Lemma 2.2 we need the following proposition, the proof of
which is in Appendix.

Proposition 2.3

L= / (p1w — 2p7)gidx # 0.
RQ

With Proposition 2.3 equipped, the proof of Lemma 2.2 is the same as
the one in [1], since the linearized operator, A is the same as the one in it.
We are now ready to prove our main theorem.

Proof of Theorem 1.1: Let us set
Uy = (KerL)*: x R

Then, Lemma 2.2 shows that P(’U’g’ﬁ)(O,O,O, 0) : Uy — Xo X X, is an iso-
morphism for a € (0, 3). Then, the standard implicit function theorem(See
e.g. [17]), applied to the functional P : U, X (—&g,&0) — Xo X X4, im-
plies that there exists a constant ¢; € (0,&9) and a continuous function
e ¥ = (v}, al) from (0,e;) into a neighborhood of 0 in U, such that

g1 e

P(vl,al,e)=0 forallee (0,e).

e Yeo

This completes the proof of Theorem 1.1. Since My > M forallk =1,--- N,
the representation of solutions wu;, and the explicit form of

In[pt), (2)] = —[(4My — 2My) + 4] In|z| + O(1)

€,af

as |z| — oo, together with the asymptotic behaviors of w(-) described in
Lemma 2.1, the fact that v} € Y,, combined with Proposition 2.1, implies
that the solutions satisfy the boundary condition in (1.6). Now, from Propo-
sition 2.1 we obtain that

[02(2)] < Cllvllly, (In" [2] + 1) < CllYelu, (In 2] + 1).
This implies then

[v2(e2)] < Cllvelly, (™ lez| + 1) < Cllellu, (I |2] + 1). (2.14)

7



From the continuity of the function € +— 1. from (0, &) into U, and the fact
i = 0 we have
[Yellv, =0 ase—0. (2.15)

The proof of (1.14) follows from (2.15) combined with (2.14). This completes
the proof of Theorem 1.1. [

3 Existence of Topological Vortices

Our aim in this section is to prove Theorem 1.2.

Proof of Theorem 1.2: We first establish that in order to have existence
of solution (uq,---uy) satisfying (1.4) and (1.15)-(1.16), it is necessary to
have (1.17). Without loss of generality we may assume M; > M, for all
k =1,---m. Suppose that there exists My < M; for some k € {1,--- ,m}.
Then, from (1.4) we have

Mk My
A (uk — U — Zln|z — zk,j|2 + Zln|z — zl7j|2> =0,
j=1 j=1

My, 2
|z — 2k
up = u; + In (Hjl | bl > + hi(2) (3.1)

M
Hj:ll |2 = 2,42
for some harmonic function hy(z). Since
M
Hj:kl 2 — 24
M
Hj:ll |z — 2152

as |z| — o0, (3.1) implies hy, = Cy(constant), and provides an absurd relation.

and

up — Inog, w3 —Inoy, In (

Hence, My = --- = M,, = M. Similarly, the relation (3.1) with £ = m +
1,--- N implies M < M for all k = m +1,--- | N, since for all k = m +
1,--+ N, up — —o0, while u; — Inoy as |z| — oco.

Then, choosing Cy = In(oy/oq) for all k =1,--- ,m, (2.1) becomes
o T |2 — 22
up =uy +n | ET[E 2RI 3.2
e (01]-1;[112—2’1,3"2 32

for k=1,---N. Let us set

( M
H |Z_Zk,j|2 for k
o orke{l,--- ,m}

ol =2

M,
Hj:kl |Z - Zk;7j|2

M
L Hj:l(:u + 12 = 21,4[%)

Mk(2) = <

forke{m+1,--- N},




where p > is a sufficiently large parameter. We introduce new unknown v
by

up = v+ Inn. (3.3)
Then, (3.2) combined with (3.3) implies the representation for wuy, k =
1,---,N by

ur = v+ Inng.

We introduce

R i
9(2) = Z_: ENE _Zl,j|2)2.

7j=1
We note that

Alnn(z) =4n Z §(z — z15) — g(2). (3.4)

We also introduce the function ug defined by

N
Zﬁk =e". (3.5)
k=1

Note that since " — > | o = 1, we have uy — 0 as |z] — oco.
Using (3.4) and (3.5), we can rewrite the equation for u; in (1.4) as follows

Ap = evtuo (e”+u° —1)+g,
which is the Euler-Lagrange equation of the functional

Flv) = / [1|vv|2 + Lpewtuo _1y2 4 g0 da. (3.6)
e 2 2
After this step the arguments for the existence of solution by minimization
of the functional F'(v) by showing the coercivity and the weak lower semi-
continuity in H'(R?) for sufficiently large pu, is exactly the same as in [15],
[11] or [16], and we do not repeat them here. This finishes the proof of
Theorem 1.2 [

4 Appendix

Here we prove Lemma 2.1 and Proposition 2.3. We begin with the following
elementary integration lemma

Lemma 4.1 Let m > k + 1, then we have

/mﬂ I (VG g = DI NG+~ 1] (4.1)
o (1 r2NF2)m 2(m — 1)Y(N + 1)™sin (ﬁ%l)



Proof:

0o Lk(2N+2)-3 1 00 yh—1-51y
dr = dt  (Setting t = r?V T2
/0 (1+r2v2)m ™ = 9N 12 / At (Settingt=r7)

1 / th- 1‘7(1 1
S — dt
2N+2 J, (m—=1)dt(1+¢t)m!

T 2N +2)(m—1) (k_l_NJrl)/O (1+t)m—1dt:

k1) -2- ) () o E

2N+ D) (m—=1)(m—2)---(m—k+1) /0 (1+t)m—k+1dt
(4.2)

Now we use the well-known formula from the Mellin transform(see e.g. [7])

o pa—1 7r|(a—1)(a—2)...(a_(n_l))l
/O (1 + t)"dt - (n _ 1)!Sin(7ra) , a€ (O, 1)

in order to evaluate

1
/°° t N dt—/oo ot dt_7T|(a—1)(a—2)---(a—m+k)]
o (L4 t)ym=kt170 7 o (1 4 gym—ht17" (m — k)!'sin(ma) ’
(4.3)
where we set a = 5. Substituting (4.3) into (4.2), we obtain (4.1).0]

Proof of Lemma 2.1: Let us set f(r) = pi(r). Then, it is found in [1]
that the ordinary differential equation(with respect to r), Aw + pyw = f(r)
has a solution w(r) € Y, given by

ol [0 )

<1 + r2M1+2)2 (1—7)?

1 — r2Mit2 r 0

with

po(t)Lf (t)di

where ¢¢(1) and w(1) are defined as limits of ¢¢(r) and w(r) as r — 1. From
the formula (4.4) we find that

¢5(r) =

1 — s2Mi+2 S

T 2M1+2
w(r) = ¢o(r) / (1 R ) I<S)d8 + (bounded function of r)  (4.5)
2

as r — oo, where

1) = [ ettt

10



Since po(r) — —1 as r — oo, (1.12) follows if we show

I =1(0)= /000 wo(r)rp1(r)dr = Cy.

We evaluate the integral,
1= [ e = [ eanplrrds
0 0

(1 _ T2M1+2)T4M1+1
= 64(M; +1)* ( d
( 1+ ) /0 (1 +T2M1+2>5 r

. oo 7"4M1+1 0 TGMH-S
= 64(M; +1 —dr — ————d
(4 +1) Uo (1 4 r2Mit2)5 ' /0 (1 4 r2Mat2)5 r}

TMP(2My +1)(3M +2) TM2(2M, +1)?

= 64(M; +1)*

2. 41(M, + 1) sin ( My ) 2. 41(M, + 1) sin ( My )

Mi+1 Mi+1
Ar M2 (2M, + 1) .

15(M,; + 1) sin (%)

where we used (4.1) with (k,m) = (2,5) and (3,5) in the fourth line. This
completes the proof of Lemma 2.1. [J

Proof of Proposition 2.3: In order to transform the integral we use the
formula

1 (M + 1)2 AM7+2
L [16(1 +r2M1+2)2} o (1 +T2M1+2)4 ’

which can be verified by an elementary computation. Using this, we have
the following

Ii—/ (1w —2p7) 2 de

r2Mi+2 cos®(M; +1)0
_/ / (prw — 2p7) (1 + r2Mii2)2 { sin’(M; 4 1)0 }rd?‘dé’

00 8<M1—|—1)2 2M1 ) 7.2M1+2
- 2M1+2)2 w —2p; (1+r2Ml+2)2rdT

o _1L 1 2p3 M t2 J
o (1+T2M1+2)2 w = (1+r2M1+2)2 rar

2

00 "1 1 2 2 2M1+2
—Lw - — P rdr
9 (14 p2Mi42)2 (] 4 p2Mi+2)2

/0 L
/oo r 2 2,.2M1+2

|
3

I
)

P1 . 2prr
0 _2(1_|_7«2M1+2)2 (1+r2M1+2>2

I
3

=7 ~ oh1 — 20 rdr
- 0 _2(1+T2Ml+2)2 (1_|_T.2M1+2>

11




A o) 5pAMi+1 QpaMi+1
T ME(2M, + 1)(3M, + 2)(4M; + 3)

441y + 1) sin (720;)

= 64m(M; +1)*

A0y + 1)7sin (722

3(M; + 1)%sin %)

where we used (4.1) with (k,m) = (2,6) and (2,5) respectively in order to
evaluate the integrals in the seventh line. This completes the proof of the
proposition. []
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