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Abstract

We consider the Bogomol’nyi equations of the Abelian Chern-
Simons-Higgs model with SU(N)global⊗U(1)local symmetry. This is a
generalization of the well-known Abelian Chern-Simons-Higgs model
with U(1)local symmetry. We prove existence of both topological and
nontopological multivortex solutions of the system on the plane.

1 Introduction

The Abelian Chern-Simons-Higgs model with SU(N)global ⊗ U(1)local sym-
metry is defined by the Lagrangian,

L =
κ

4
εµνλFµνAλ + (DµΦ)†(DµΦ)− 1

κ2
|Φ|2(|Φ|2 − 1)2,

where Aµ(µ = 0, 1, 2) is the gauge field on R3, Fµν = ∂
∂xµ Aν − ∂

∂xν Aµ is the
corresponding gauge curvature tensor, Dµ = ∂

∂xµ − iAµ is the gauge covariant
derivative, Φ = (Φ1, Φ2, · · · , ΦN) is a CN valued function on R3, called the
Higgs multiplet, εµνρ is the totally skewsymmetric tensor with ε012 = 1, and
finally κ > 0 is the Chern-Simons coupling constant. Our metric on R3 is
(gµν) = diag(1,−1,−1). This model was suggested by Khare[6], generalizing
the original Abelian Chern-Simons-Higgs model, due to Hong-Kim-Pac[4]
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and Jackiw-Weinberg[5]. We also mention that there are also studies of the
corresponding Abelian Higgs model with SU(N)global ⊗ U(1)local symmetry
in [14], [3]. Similarly to the case of Abelian Chern-Simons-Higgs model, in
the static case, the following Bogomol’nyi system in R2 is obtained[6],

{
(D1 ± iD2)Φk = 0, ∀k = 1, · · ·N
F12 = ± 2

κ2 |Φ|2(|Φ|2 − 1).
(1.1)

This system is equipped with one of the following boundary conditions; either

|Φ(z)|2 → 1 as |z| → ∞, (1.2)

or
|Φ(z)|2 → 0 as |z| → ∞, (1.3)

Following the standard Jaffe-Taubes reduction procedure[13], we introduce
new variable (u1, · · · , uN) by

Φk(z) = exp

[
1

2
uk + i

Mk∑
j=1

Arg(z − zk,j)

]
, z = x1 + ix2 ∈ C1 = R2,

where Zk = {zk,j}Mk
j=1 is the set of zeros of Φk(z). Then, the system (1.1)

becomes the following semilinear elliptic system for (u1, · · · , uN) in R2.

∆uk =

(
N∑

j=1

euj

)(
N∑

j=1

euj − 1

)
+ 4π

Mk∑
j=1

δ(z − zk,j), k = 1, · · · , N, (1.4)

where we set κ = 2 for simplicity. In terms of (u1, · · · , uN), the boundary
condition (1.2) reads

{
euk → σk as |z| → ∞
with σk ≥ 0 for all k = 1, · · ·N , and

∑N
k=1 σk = 1,

(1.5)

while (1.3) reads

euk → 0 as |z| → ∞ for all k = 1, · · · , N . (1.6)

The boundary condition (1.5) is called topological, while the boundary
condition (1.6) is called nontopological. We observe that when N = 1, the
system (1.4) reduces to the well-known (scalar) Chern-Simons equation, for
which there are many studies for topological vortices([11, 15]), nontopological
vortices([10, 1, 2]), periodic vortex condensates([12, 9, 8, 16]) respectively.
We first consider the nontopological case. In the system (1.4) equipped with
(1.3), without loss of generality, we assume M1 ≥ Mk for all k = 1, · · ·N .
Let us define

fk(z) = (Mk + 1)

Mk∏
j=1

(z − zk,j), Fk(z) =

∫ z

0

fk(ξ)dξ. (1.7)
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Given ε > 0, a = a1 + ia2 ∈ C, let us introduce the functions ρ
(k)
ε,a(z) by

ρ(k)
ε,a(z) =

8ε2Mk+2|fk(z)|2(
1 + ε2M1+2|F1(z) + a

εM1+1 |2
)2 . (1.8)

We note that for any ε > 0 and a ∈ C1, ln ρ
(1)
ε,a(z) is a solution of the Liouville

equation.

∆ ln ρ(1)
ε,a(z) = −ρ(1)

ε,a(z) + 4π

M1∑
j=1

δ(z − z1,j). (1.9)

We state the existence theorem for the nontopological vortices.

Theorem 1.1 (Existence of nontopological vortices) Let N ≥ 2. For
each k = 1, · · ·N let Mk ∈ N with M1 ≥ Mk for all k = 1, · · ·N , and let
Z1, · · ·ZN be given with Zk = {zk,j}Mk

j=1 ∈ R2. Then, there exists a constant
ε1 > 0 such that for any ε ∈ (0, ε1) there exists a family of solutions to 1.4,
(u1, u2, · · · , uN) equipped with the boundary condition 1.6). Moreover, the
solutions we constructed have the following representations:

u1(z) = ln ρ
(1)
ε,a∗ε(z) + ε2w(ε|z|) + ε2v∗ε(εz), (1.10)

uk(z) = ln ρ
(k)
ε,a∗ε(z) + ε2w(ε|z|) + ε2v∗ε(εz) + ln ε4 (1.11)

for all k = 2, · · ·N .
In (1.10) and (1.11), the function ε 7→ a∗ε is a continuous in a neighborhood
of 0, and |a∗ε| → 0 as ε → 0. The radial function w in (1.10) and (1.11) has
the following asymptotic behavior.

w(|z|) = −C0 ln |z|+ O(1), (1.12)

as |z| → ∞ with the constant C0 > 0 defined by

C0 =
4πM2

1 (2M1 + 1)6

15(M1 + 1)5 sin
(

πM1

M1+1

) (1.13)

The function v∗ε in (1.10) and (1.11) satisfies

sup
z∈R2

|v∗ε(εz)|
ln(1 + |z|) ≤ o(1) as ε → 0. (1.14)

Next, we consider the system (1.4) equipped with the topological boundary
condition (1.5). Without loss of generality, we assume that for m ∈ {1, · · ·N}

euk → σk as |z| → ∞ for k = 1, · · · ,m. (1.15)

euk → 0 as |z| → ∞ for all k = m + 1, · · · , N , (1.16)

where
∑m

k=1 σk = 1, and σk ∈ (0, 1] for each k = 1, · · · , m. The following is
our second main theorem.
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Theorem 1.2 (Existence of topological vortices) In order to have so-
lution to the system (1.4) equipped with (1.15) and (1.16), it is necessary
that

M1 = M2 = · · · = Mm(≡ M), and Mk < M for all k = m + 1, · · · , N
(1.17)

If the condition (1.17) is satisfied, then there exists a solution (u1, · · · , uN)
to the problem. Moreover, the solutions we constructed have the following
representations:

uk(z) = ln

(
σk

M∏
j=1

|z − zk,j|2
(µ + |z − z1,j|2)

)
+ v for k = 1, · · · ,m, (1.18)

while

uk(z) = ln

( ∏Mk

j=1 |z − zk,j|2∏M
j=1(µ + |z − z1,j|2)

)
+ v for k = m + 1, · · · , N (1.19)

for a function v ∈ ∩∞q=1H
q(R2).

2 Existence of Nontopological Vortices

In this section our aim is to prove Theorem 1.1. From the equation,
∆ ln |z − z0|2 = 4πδ(z − z0) in R2 we find that

∆

(
uk − u1 −

Mk∑
j=1

ln |z − zk,j|2 +

M1∑
j=1

ln |z − z1,j|2
)

= 0.

Hence, we obtain the relations between u1 and uk’s

uk = u1 + ln

(∏Mk

j=1 |z − zk,j|2∏M1

j=1 |z − z1,j|2

)
+ hk(z) (2.1)

for all k = 1, · · ·N , where hk(z) is a harmonic function in R2. We choose

hk(z) ≡ ln ε4+2Mk−2M1 .

Then, (2.1) becomes

uk = u1 + ln

(
ε4+2Mk−2M1

∏Mk

j=1 |z − zk,j|2∏M1

j=1 |z − z1,j|2

)
. (2.2)

We introduce g
(k)
ε,a (z), ρk(r), k = 1, · · ·N as follows

g(k)
ε,a (z) =

1

ε2
ρ(k)

ε,a(
z

ε
), ρk(r) =

8(Mk + 1)2r2Mk

(1 + r2M1+2)2

(
= lim

ε→0
g

(k)
ε,0 (z)

)
. (2.3)
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Let us make a change of variables from u1 to v by the following formula

u1(z) = ln ρ(1)
ε,a(z) + ε2w(ε|z|) + ε2v(εx), (2.4)

where w(·) is a radial function to be determined below. Then, after elemen-
tary computations we find that combination of (2.2) and (2.4) implies the
following representation formula for uk,

uk(z) = ln ρ(k)
ε,a(z) + ε2w(ε|z|) + ε2v(εx) + ln ε4 (2.5)

for all k = 2, · · ·N .
Then, the equation for u1 in (1.4) can be written as the functional equa-

tion P (v, a, ε) = 0, where

P (v, a, ε) = ∆v +
1

ε2
g(1)

ε,a(z)(eε2(v+w) − 1)− [g(1)
ε,a(z)]2e2ε2(v+w)

+ε2

N∑

k=2

g(k)
ε,a (z)eε2(v+w) − ε4

N∑

k=2

g(1)
ε,a(z)g(k)

ε,a (z)e2ε2(v+w)

−ε8

N∑

k,l=2

g(l)
ε,a(z)g(k)

ε,a (z)e2ε2(v+w). (2.6)

Now we introduce the functions spaces introduced in [1]. Let us fix α ∈ (0, 1
2
)

throughout this paper. Following [1], we introduce the Banach spaces Xα and
Yα as

Xα = {u ∈ L2
loc(R2) |

∫

R2

(1 + |x|2+α)|u(x)|2dx < ∞}

equipped with the norm ‖u‖2
Xα

=
∫
R2(1 + |x|2+α)|u(x)|2dx, and

Yα = {u ∈ W 2,2
loc (R2) | ‖∆u‖2

Xα
+

∥∥∥ u(x)

1 + |x|1+α
2

∥∥∥
2

L2(R2)
< ∞}

equipped with the norm ‖u‖2
Yα

= ‖∆u‖2
Xα

+
∥∥ u(x)

1+|x|1+ α
2

∥∥2

L2(R2)
. We recall the

following propositions proved in [1].

Proposition 2.1 Let Yα be the function space introduced above. Then we
have the followings.

(i) If v ∈ Yα is a harmonic function, then v ≡ constant.

(ii) There exists a constant C1 > 0 such that for all v ∈ Yα

|v(x)| ≤ C1‖v‖Yα ln(e + |x|), ∀x ∈ R2.
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Proposition 2.2 Let α ∈ (0, 1
2
), and let us set

L = ∆ + ρ1 : Yα → Xα. (2.7)

We have
KerL = Span {ϕ+, ϕ−, ϕ0} , (2.8)

where we denoted

ϕ+(r, θ) =
rM1+1 cos(M1 + 1)θ

1 + r2M1+2
, ϕ−(r, θ) =

rM1+1 sin(M1 + 1)θ

1 + r2M1+2
, (2.9)

and

ϕ0 =
1− r2M1+2

1 + r2M1+2
. (2.10)

Moreover, we have

ImL = {f ∈ Xα|
∫

R2

fϕ± = 0}. (2.11)

We can check easily that P is a well defined continuous mapping from Bε0 ⊂
Yα × C × R+ into Xα, where Bε0 = {‖v‖Yα + |a| ≤ ε < ε0} for sufficiently
small ε0. In order to have a continuous extension to ε = 0 of P (·) we require
that limε→0 P (0, 0, ε) = 0, which implies the following equation for w,

∆w + ρ1w − ρ2
1 = 0. (2.12)

We first note the following lemma about asymptotic behaviors of the solutions
w ∈ Yα, the proof of which is in Appendix.

Lemma 2.1 Let C0 be the number introduced in (1.13). Then, there exist
radial solutions w(|z|) of (2.12) belonging to Yα, and satisfying the asymptotic
formula in (1.12).

In order to obtain the linearized operator P ′
(v,a)(0, 0, 0) = A we first com-

pute,

∂g
(k)
ε,a (z)

∂a1

∣∣∣∣∣
ε=0,a=0

= −4ρkϕ+,
∂g

(k)
ε,a (z)

∂a2

∣∣∣∣∣
ε=0,a=0

= −4ρkϕ−,

for all k = 1, · · · , N , where
Using these we find

A[ν, β] = Lν − 4
(
ρ1w − 2ρ2

1

)
(ϕ+β1 + ϕ−β2).

For the linearized operator A[·] we need the following key lemma lemma.
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Lemma 2.2 The operator A : Yα × R2 → X2
α defined above is onto. More-

over, kernel of A is given by

KerA = Span{ϕ+, ϕ−, ϕ0} × {(0, 0)}. (2.13)

Thus, if we decompose Yα×R2 = Uα⊕KerA, where we set Uα = (KerA)⊥,
then A is an isomorphism from Uα onto Xα.

For the proof of Lemma 2.2 we need the following proposition, the proof of
which is in Appendix.

Proposition 2.3

I± :=

∫

R2

(ρ1w − 2ρ2
1)ϕ

2
±dx 6= 0.

With Proposition 2.3 equipped, the proof of Lemma 2.2 is the same as
the one in [1], since the linearized operator, A is the same as the one in it.
We are now ready to prove our main theorem.

Proof of Theorem 1.1: Let us set

Uα = (KerL)⊥ × R2.

Then, Lemma 2.2 shows that P ′
(v,ξ,β)(0, 0, 0, 0) : Uα → Xα × Xα is an iso-

morphism for α ∈ (0, 1
2
). Then, the standard implicit function theorem(See

e.g. [17]), applied to the functional P : Uα × (−ε0, ε0) → Xα × Xα, im-
plies that there exists a constant ε1 ∈ (0, ε0) and a continuous function
ε 7→ ψ∗ε := (v∗ε , a

∗
ε) from (0, ε1) into a neighborhood of 0 in Uα such that

P (v∗ε , a
∗
ε, ε) = 0 for all ε ∈ (0, ε1).

This completes the proof of Theorem 1.1. Since M1 ≥ Mk for all k = 1, · · ·N ,
the representation of solutions uk, and the explicit form of

ln[ρ
(k)
ε,a∗ε(z)] = −[(4M1 − 2Mk) + 4] ln |z|+ O(1)

as |z| → ∞, together with the asymptotic behaviors of w(·) described in
Lemma 2.1, the fact that v∗ε ∈ Yα, combined with Proposition 2.1, implies
that the solutions satisfy the boundary condition in (1.6). Now, from Propo-
sition 2.1 we obtain that

|v∗ε(z)| ≤ C‖v∗ε‖Yα(ln+ |z|+ 1) ≤ C‖ψε‖Uα(ln+ |z|+ 1).

This implies then

|v∗ε(εx)| ≤ C‖ψε‖Uα(ln+ |εx|+ 1) ≤ C‖ψε‖Uα(ln+ |x|+ 1). (2.14)
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From the continuity of the function ε 7→ ψε from (0, ε0) into Uα and the fact
ψ∗0 = 0 we have

‖ψε‖Uα → 0 as ε → 0. (2.15)

The proof of (1.14) follows from (2.15) combined with (2.14). This completes
the proof of Theorem 1.1. ¤

3 Existence of Topological Vortices

Our aim in this section is to prove Theorem 1.2.

Proof of Theorem 1.2: We first establish that in order to have existence
of solution (u1, · · · uN) satisfying (1.4) and (1.15)-(1.16), it is necessary to
have (1.17). Without loss of generality we may assume M1 ≥ Mk for all
k = 1, · · ·m. Suppose that there exists Mk < M1 for some k ∈ {1, · · · ,m}.
Then, from (1.4) we have

∆

(
uk − u1 −

Mk∑
j=1

ln |z − zk,j|2 +

M1∑
j=1

ln |z − zl,j|2
)

= 0,

and

uk = u1 + ln

(∏Mk

j=1 |z − zk,j|2∏M1

j=1 |z − zl,j|2

)
+ hk(z) (3.1)

for some harmonic function hk(z). Since

uk → ln σk, u1 → ln σ1, ln

(∏Mk

j=1 |z − zk,j|2∏M1

j=1 |z − zl,j|2

)
→ O((Mk −M1) ln |z|),

as |z| → ∞, (3.1) implies hk ≡ Ck(constant), and provides an absurd relation.
Hence, M1 = · · · = Mm ≡ M . Similarly, the relation (3.1) with k = m +
1, · · ·N implies Mk < M for all k = m + 1, · · · , N , since for all k = m +
1, · · ·N , uk → −∞, while u1 → ln σ1 as |z| → ∞.

Then, choosing Ck = ln(σk/σ1) for all k = 1, · · · ,m, (2.1) becomes

uk = u1 + ln

(
σk

σ1

M∏
j=1

|z − zk,j|2
|z − z1,j|2

)
. (3.2)

for k = 1, · · ·N . Let us set

ηk(z) =





σk

M∏
j=1

|z − zk,j|2
(µ + |z − z1,j|2) for k ∈ {1, · · · ,m}

∏Mk

j=1 |z − zk,j|2∏M
j=1(µ + |z − z1,j|2)

for k ∈ {m + 1, · · · , N},

8



where µ > is a sufficiently large parameter. We introduce new unknown v
by

u1 = v + ln η1. (3.3)

Then, (3.2) combined with (3.3) implies the representation for uk, k =
1, · · · , N by

uk = v + ln ηk.

We introduce

g(z) =
M∑

j=1

4µ

(µ + |z − z1,j|2)2
.

We note that

∆ ln η1(z) = 4π
M∑

j=1

δ(z − z1,j)− g(z). (3.4)

We also introduce the function u0 defined by

N∑

k=1

ηk = eu0 . (3.5)

Note that since eu0 → ∑m
k=1 σk = 1, we have u0 → 0 as |z| → ∞.

Using (3.4) and (3.5), we can rewrite the equation for u1 in (1.4) as follows

∆v = ev+u0(ev+u0 − 1) + g,

which is the Euler-Lagrange equation of the functional

F (v) =

∫

R2

[
1

2
|∇v|2 +

1

2
(eu+u0 − 1)2 + gv

]
dx. (3.6)

After this step the arguments for the existence of solution by minimization
of the functional F (v) by showing the coercivity and the weak lower semi-
continuity in H1(R2) for sufficiently large µ, is exactly the same as in [15],
[11] or [16], and we do not repeat them here. This finishes the proof of
Theorem 1.2 ¤

4 Appendix

Here we prove Lemma 2.1 and Proposition 2.3. We begin with the following
elementary integration lemma

Lemma 4.1 Let m ≥ k + 1, then we have

∫ ∞

0

rk(2N+2)−3

(1 + r2N+2)m
dr =

π
∏k−1

j=1(Nj + j − 1)
∏m−k

j=1 [Nj + j − 1]

2(m− 1)!(N + 1)m sin
(

πM1

M1+1

) . (4.1)
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Proof:

∫ ∞

0

rk(2N+2)−3

(1 + r2N+2)m
dr =

1

2N + 2

∫ ∞

0

tk−1− 1
N+1

(1 + t)m
dt

(
Setting t = r2N+2

)

= − 1

2N + 2

∫ ∞

0

tk−1− 1
N+1

(m− 1)

d

dt

1

(1 + t)m−1
dt

=
1

(2N + 2)

1

(m− 1)

(
k − 1− 1

N + 1

) ∫ ∞

0

tk−2− 1
N+1

(1 + t)m−1
dt = · · ·

=

(
k − 1− 1

N+1

) (
k − 2− 1

N+1

) · · · (1− 1
N+1

)

2(N + 1)(m− 1)(m− 2) · · · (m− k + 1)

∫ ∞

0

t−
1

N+1

(1 + t)m−k+1
dt.

(4.2)

Now we use the well-known formula from the Mellin transform(see e.g. [7])

∫ ∞

0

ta−1

(1 + t)n
dt =

π|(a− 1)(a− 2) · · · (a− (n− 1))|
(n− 1)! sin(πa)

, a ∈ (0, 1)

in order to evaluate

∫ ∞

0

t−
1

N+1

(1 + t)m−k+1
dt =

∫ ∞

0

ta−1

(1 + t)m−k+1
dt =

π|(a− 1)(a− 2) · · · (a−m + k)|
(m− k)! sin(πa)

,

(4.3)
where we set a = N

N+1
. Substituting (4.3) into (4.2), we obtain (4.1).¤

Proof of Lemma 2.1: Let us set f(r) = ρ1(r). Then, it is found in [1]
that the ordinary differential equation(with respect to r), ∆w + ρ1w = f(r)
has a solution w(r) ∈ Yα given by

w(r) = ϕ0(r)

{∫ r

0

φf (s)− φf (1)

(1− s)2
ds +

φf (1)r

1− r

}
(4.4)

with

φf (r) :=

(
1 + r2M1+2

1− r2M1+2

)2
(1− r)2

r

∫ r

0

ϕ0(t)tf(t)dt,

where φf (1) and w(1) are defined as limits of φf (r) and w(r) as r → 1. From
the formula (4.4) we find that

w(r) = ϕ0(r)

∫ r

2

(
1 + s2M1+2

1− s2M1+2

)2
I(s)

s
ds + (bounded function of r) (4.5)

as r →∞, where

I(s) =

∫ s

0

ϕ0(t)tρ1(t)dt.
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Since ϕ0(r) → −1 as r →∞, (1.12) follows if we show

I = I(∞) =

∫ ∞

0

ϕ0(r)rρ1(r)dr = C0.

We evaluate the integral,

I =

∫ ∞

0

ϕ0(r)f(r)rdr =

∫ ∞

0

ϕ0(r)ρ1(r)
2rdr

= 64(M1 + 1)4

∫ ∞

0

(1− r2M1+2)r4M1+1

(1 + r2M1+2)5
dr

= 64(M1 + 1)4

[∫ ∞

0

r4M1+1

(1 + r2M1+2)5
dr −

∫ ∞

0

r6M1+3

(1 + r2M1+2)5
dr

]

= 64(M1 + 1)4


 πM2

1 (2M1 + 1)(3M1 + 2)

2 · 4!(M1 + 1)5 sin
(

πM1

M1+1

) − πM2
1 (2M1 + 1)2

2 · 4!(M1 + 1)5 sin
(

πM1

M1+1

)



=
4πM2

1 (2M1 + 1)6

15(M1 + 1)5 sin
(

πM1

M1+1

) = C0,

where we used (4.1) with (k, m) = (2, 5) and (3, 5) in the fourth line. This
completes the proof of Lemma 2.1. ¤

Proof of Proposition 2.3: In order to transform the integral we use the
formula

L

[
1

16(1 + r2M1+2)2

]
=

(M1 + 1)2r4M1+2

(1 + r2M1+2)4
,

which can be verified by an elementary computation. Using this, we have
the following

I± =

∫

R2

(ρ1w − 2ρ2
1)ϕ

2
±dx

=

∫ 2π

0

∫ ∞

0

(ρ1w − 2ρ2
1)

r2M1+2

(1 + r2M1+2)2

{
cos2(M1 + 1)θ
sin2(M1 + 1)θ

}
rdrdθ

= π

∫ ∞

0

[
8(M1 + 1)2r2M1

(1 + r2M1+2)2
w − 2ρ2

1

]
r2M1+2

(1 + r2M1+2)2
rdr

= π

∫ ∞

0

[
1

2
L

{
1

(1 + r2M1+2)2

}
w − 2ρ2

1r
2M1+2

(1 + r2M1+2)2

]
rdr

= π

∫ ∞

0

[
1

2
Lw · 1

(1 + r2M1+2)2
− 2ρ2

1r
2M1+2

(1 + r2M1+2)2

]
rdr

= π

∫ ∞

0

[
ρ2

1

2(1 + r2M1+2)2
− 2ρ2

1r
2M1+2

(1 + r2M1+2)2

]
rdr

= π

∫ ∞

0

[
5ρ2

1

2(1 + r2M1+2)2
− 2ρ2

1

(1 + r2M1+2)

]
rdr
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= 64π(M1 + 1)4

∫ ∞

0

[
5r4M1+1

2(1 + r2M1+2)6
− 2r4M1+1

(1 + r2M1+2)5

]
dr

= 64π(M1 + 1)4


πM2

1 (2M1 + 1)(3M1 + 2)(4M1 + 3)

4 · 4!(M1 + 1)6 sin
(

πM1

M1+1

)

−πM2
1 (2M1 + 1)(3M1 + 2)

4!(M1 + 1)5 sin
(

πM1

M1+1

)



= −2π2M2
1 (2M1 + 1)(3M1 + 2)

3(M1 + 1)2 sin
(

πM1

M1+1

) < 0,

where we used (4.1) with (k, m) = (2, 6) and (2, 5) respectively in order to
evaluate the integrals in the seventh line. This completes the proof of the
proposition. ¤
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