
A COMPARISON OF PARALLEL BLOCK MULTI-LEVEL PRECONDITIONERS
FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

ROBERT SHUTTLEWORTH∗

Abstract. Over the past several years, considerable effort has been placed on developing efficient solution
algorithms for the incompressible Navier–Stokes equations. The effectiveness of these methods requires that the
solution techniques for the linear subproblems generated by these algorithms exhibit robust and rapid convergence;
These methods should be insensitive to problem parameters such as mesh size and Reynolds number. This study
concerns a preconditioner derived from a block factorization of the coefficient matrix generated in a Newton nonlinear
iteration for the primitive variable formulation of the system. This preconditioner is based on the approximation of the
Schur complement operator using a technique proposed by Kay, Loghin, and Wathen [11] and Silvester, Elman, Kay,
and Wathen [18]. It is derived using subsidiary computations (solutions of pressure Poisson and convection–diffusion–
like subproblems) that are significantly easier to solve than the entire coupled system, and a solver can be built
using tools, such as smooth aggregation multigrid for the subproblems. We discuss a computational study performed
using MPSalsa, a stabilized finite element code, in which parallel versions of these preconditioners from the pressure
convection-diffusion preconditioners are compared with an overlapping Schwarz domain decomposition preconditioner.
Our results show nearly ideal convergence rates for a wide range of Reynolds numbers on two-dimensional problems
with both enclosed and in/out flow boundary conditions on both structured and unstructured meshes.

1. Introduction. We are concerned with the incompressible Navier–Stokes equations

−ν∇2u + (u · grad)u + gradp = f
−div u = 0 in Ω ⊂ R

2, (1)

where the velocity, u, satisfies suitable boundary conditions on ∂Ω. Our focus is on developing robust,
scalable, and efficient solution algorithms for the systems of equations that arise after linearization
of the system (1).

The block coefficient matrix that results from linearization and discretization of the incompress-
ible Navier-Stokes equations, has the form

A =
(

F BT

B̂ −C

)
. (2)

The strategies we employ for solving (2) are derived from the LDU block factorization of this
coefficient matrix

A =
(

I 0
B̂F−1 I

)(
F 0
0 −S

)(
I F−1BT

0 I

)
(3)

where S = C + B̂F−1BT is the Schur complement (of F in A). Use of the exact Schur comple-
ment is not feasible, but replacement of S with carefully derived approximations leads to efficient
preconditioning strategies for use with iterative solvers.

The remainder of this paper is organized as follows. Section 2 gives some brief background on
the Newton iteration and provides an overview on the type of discretization and resulting coefficient
matrix used for our numerical experiments. Section 3 describes the pressure convection-diffusion
preconditioner and the merits of this choice of preconditioner. Section 4 provides an overview of the
parallel implementation of the nonlinear and linear solvers. Details of the numerical experiments
and the results of these experiments are described in Section 5. Concluding remarks are provided
in Section 6.

∗Applied Mathematics and Scientific Computing Program and Center for Scientific Computation and Mathematical
Modeling, University of Maryland, College Park, MD 20742. rshuttle@math.umd.edu. This work was partially
supported by the National Science Foundation under grant DMS0208015, the Department of Energy under grant
DOEG0204ER25619, and the ASC Program at Sandia National Laboratories under contract number DE-AC04-
94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy’s National Nuclear Security Administration.

1



2. Background. Our focus is on solution algorithms for the systems of equations that arise
after linearization of the system (1). We will use a nonlinear iteration based on an inexact Newton-
Krylov method to solve this problem. If we write the nonlinear problem to be solved as F (x) = 0,
where F : Rn → Rn. At the kth step of Newton’s method, the solution of the linear Newton equation

J(xk)sk = −F (xk), (4)

where xk is the current solution and J(xk) denotes the Jacobian matrix of F at xk. Once the Newton
step, sk, is determined, the approximation is updated via

xk+1 = xk + sk.

Newton-Krylov methods relax the requirement to solve (4) exactly. A Krylov subspace method is
used to compute an iterate, sk, that satisfies the inexact Newton condition,

‖F (xk) + J(xk)sk‖ ≤ ηk‖F (xk)‖, (5)

where the forcing term, ηk ∈ [0, 1]. If ηk = 0, this is Newton’s method. There are many different
means for choosing ηk, for a discussion of the merits of each of these choices, see [2]. For our
computational study, we have chosen ηk to be a constant. We solve for the Newton step, sk, using
the Krylov subspace method, GMRES [14].

We will discretize the Navier-Stokes equations with a stabilized finite element method for which
the Jacobian system at the kth step that arises from Newton’s method has the form(

Fk BT

B̂ −C

)(
∆uk

∆pk

)
=
(

fk
gk

)
(6)

where Fk resembles a discrete convection-diffusion operator, BT is a discrete gradient operator, B̂
is a small perturbation of the discrete divergence operator, and C is an operator that stabilizes the
finite element discretization.

The right hand side of the above expression represents the kth residual of the nonlinear system,
which has the form (

fk
gk

)
=
(

f
g

)
−
(

Fk BT

B̂ −C

)(
uk

pk

)
. (7)

The condition (5) then becomes∥∥∥∥
(

f
g

)
−
(

Fk BT

B̂ −C

)(
uk

pk

)∥∥∥∥ ≤ ηk

∥∥∥∥
(

fk
gk

)∥∥∥∥ . (8)

3. Pressure Convection-Diffusion Preconditioner. The strategy we will use to solve (2)
is derived by grouping the block diagonal and upper triangular factors shown in (3). The block
factorization of the coefficient matrix is then(

F BT

B̂ −C

)
=
(

I 0
B̂F−1 I

)(
F BT

0 −S

)
. (9)

This implies that

(
F BT

B̂ −C

)(
F BT

0 −S

)−1

=
(

I 0
B̂F−1 I

)
, (10)

2



which suggests a preconditioning strategy for (2). If it were possible to use the matrix

Q =
(

F BT

0 −S

)
(11)

as a right-oriented preconditioner, then the preconditioned operator would be the matrix on the right
in (10). The efficacy of this preconditioner choice can be seen by analyzing the following generalized
eigenvalue problem: (

F BT

B̂ −C

)(
u
p

)
= λ

(
F BT

0 S

)(
u
p

)
,

whose eigenvalues are identically one. The preconditioned operator contains Jordan blocks of di-
mension at most 2, so at most two iterations of a preconditioned GMRES iteration would be needed
to solve the system [13].

To apply this preconditioner Q in a Krylov subspace iteration, at each step the application of
Q−1 to a vector is needed. By expressing Q in factored form,(

F BT

0 −S

)−1

=
(

F−1 0
0 I

)(
I −BT

0 I

)(
I 0
0 −S−1

)

the computational issues involved for the particular choice (11) can be seen. Two potentially difficult
operations are required to apply Q−1 to a vector: S−1 must be applied to a vector in the discrete
pressure space, and F−1 must be applied to a vector in the discrete velocity space. The application
of F−1 can be performed relatively cheaply using iterative techniques, such as multigrid. However,
applying S−1 to a vector is too expensive. So, we will discuss how an effective preconditioner can be
built by replacing this operation with an inexpensive approximation. This gives rise to the pressure
convection-diffusion preconditioning strategy.

To derive the pressure convection-diffusion strategy, we will begin by defining a new operator,
denoted Fp, used in approximating the Schur complement, using the following premise:

Suppose that we begin with a discrete version of a convection-diffusion operator derived by lin-
earizing the nonliner term in (1),

(ν∇2 + (w · grad)).

Here w can be viewed as an approximation to the velocity from a previous nonlinear iteration.
Suppose that there is an analogous operator that is defined on the pressure space,

(ν∇2 + (w · grad))p.

Consider the commutator of these operators with the gradient:

ε = (ν∇2 + (w · grad))∇− (ν∇2 + (w · grad))p∇. (12)

Supposing that ε is small, then we can rewrite (12) as

(ν∇2 + (w · grad))∇ ≈ ∇(ν∇2 + (w · grad))p

∇(ν∇2 + (w · grad))−1
p ≈ (ν∇2 + (w · grad))−1∇

Then after multiplying on both sides of the above equation by the divergence operator

∇2(ν∇2 + (w · grad))−1
p ≈ ∇ · (ν∇2 + (w · grad))−1∇ (13)

3



In discrete form, this becomes

(Q−1
p Ap)(Q−1

p Fp)−1 ≈ (Q−1
p B)(Q−1

v F )−1(Q−1
v BT )

ApF
−1
p ≈ Q−1

p (BF−1BT )

ApF
−1
p ≈ Q−1

p S

where here F represents a discrete convection-diffusion operator on the velocity space, Fp is the
discrete convection-diffusion operator on the pressure space, Ap is a discrete Laplacian operator,
Qv the velocity mass matrix, and Qp is the pressure mass matrix. This suggests a suitable Schur
complement approximation for a finite element discretization when C = 0. In the case of stabilized
finite element discretizations, the discrete version of (13) is

C + BF−1BT ≈ ApF
−1
p Qp.

The preconditioner for (2) then becomes(
F BT

B̂ −C

)
≈
(

F BT

0 ApF
−1
p Qp

)
.

Applying the inverse of ApF
−1
p Qp to a vector requires solving a system of equations with a

discrete Laplacian operator, then multiplication by the matrix Fp, and solving a system of equations
with the pressure mass matrix. Both the convection-diffusion-like system (with coefficient matrix F ),
and the Schur complement system (with coefficient matrix ApF

−1
p Qp), solves can be approximated

using multigrid with little deterioration of effectiveness.
Considerable empirical evidence for two-dimensional problems indicates that this precondition-

ing strategy is effective, leading to convergence rates that are independent of mesh size and mildly
dependent on Reynolds numbers for steady problems [4, 7, 11, 18]. A proof that convergence rates
are independent of the mesh is given in [12]. One drawback is that many industrial codes do not
provide the Fp operator. Means for generating this operator directly from the coefficient matrix can
be found in [5].

4. Implementation. A pressure stabilized, streamwise upwinded Petrov Galerkin least squares
finite element scheme [19] with Q1 − Q1 elements is used to discretize the incompressible Navier-
Stokes equations. This scheme couples together the momentum equation with the incompressiblity
constraint, thus giving rise to a nonlinear, coupled, nonsymmetric system of equations. This stabi-
lized discretization is first-order accurate and is provided by the MPSalsa [15] chemically reactive
fluid flow code developed at Sandia National Laboratories. One advantage for using this finite ele-
ment scheme is that the velocity and pressure degrees of freedom are defined at the same grid points,
so equal order interpolants for both velocity and pressure are used.

For the Newton equations, the structure of F is a 2 × 2 block matrix with the form

F =

(
−ν∆ + u(n−1) · ∇ + (u(n−1)

1 )x (u(n−1)
1 )y

(u(n−1)
2 )x −ν∆ + u(n−1) · ∇ + (u(n−1)

2 )y

)
. (14)

For the Ap operator required by this strategy, we choose it by taking 1/ν times the symmetric part
of Fp. This generates a Laplacian type operator suitable for the use in this preconditioning strategy.
For Qp, we use a lumped version of the pressure mass matrix. All of these operators, including the
Fp operator, are generated by the application code, MPSalsa. For problems with inflow boundary
conditions, such as the flow over a diamond obstruction, we specify Dirichlet boundary conditions
on the inflow boundary for all of the preconditioning operators. For singular operators found in

4



problems with enclosed flow, we pin all of the operators as the stabilization matrix is pinned [3, ch.
8].

One key to the pressure convection-diffusion style of preconditioning is that it requires two
subsidiary computations (solutions of pressure Poisson and convection-diffusion subproblems) that
are significantly easier to solve than the entire coupled system. Both of these computations are
amenable to being solved with multigrid methods. We employ smoothed aggregation algebraic
multigrid (AMG) for these computations because AMG does not require mesh or geometric infor-
mation, and thus are attractive for problems posed on complex domains or unstructured meshes.
More details on AMG can be found at [22, 24].

The implementation of the preconditioned Krylov subspace solution algorithm was done using
Trilinos [10]. This project is an effort at Sandia National Laboratories to develop parallel solu-
tion algorithms in an object-oriented collection of software packages for the solution of large-scale
multiphysics simulations. The pressure convection-diffusion preconditioner detailed in this study
is implemented in the package Meros. This package provides scalable block preconditioning for
the Navier-Strokes equations. One advantage of using Trilinos is its capability to seamlessly use
other Trilinos packages for core operations, such as Epetra for matrix vector products, AztecOO
for the Krylov subspace iteration, and ML for algebraic multigrid preconditioning. Meros uses the
Epetra package for basic linear algebra functions. Epetra also facilitates matrix construction on
parallel distributed machines. Each processor constructs the subset of matrix rows assigned to it
via the static domain decomposition partitioning generated by stand-alone library, CHACO [9], and
a local matrix-vector product is defined. Epetra handles all the distributed parallel matrix details
(e.g. local indices versus global indices, communication for matrix-vector products, etc.). Once the
matrices F , B, B̂, and C are defined, a global matrix-vector product for (6) is defined using the
matrix-vector products for the individual systems. Construction of the preconditioner follows in a
similiar fashion. That is, the individual components are defined and then grouped together to form
the preconditioner. All of the Krylov methods (i.e. those for solving (6), for the F , and Schur
complement approximation subsystems) are supplied by AztecOO [21] which we access through
Trilinos [10]. The multigrid preconditioning for the subsystems is done by ML [20], an algebraic
multigrid preconditioning package, which we also access through Trilinos.

Once all of the matrices and matrix-vector products are defined, we can use Trilinos to solve the
incompressible Navier–Stokes equations using our block preconditioner with specific choices of linear
solvers for the Jacobian system, the convection–diffusion, and pressure Poisson subproblems. For
the pressure Poisson problem, we use CG preconditioned with four levels of algebraic multigrid, and
for solving the system with coefficient matrix F we use GMRES preconditioned with three levels of
algebraic multigrid. For the pressure Poisson problem, a multilevel smoother polynomial was used
for the smoothing operations and for the convection-diffusion problem,a block Gauss Seidel smoother
was used [1]. To solve the linear problem associated with each Newton iteration, we use GMRESR, a
variation on GMRES proposed by van der Vorst and Vuik [23] allowing the preconditioner to vary at
each iteration. GMRESR is required because we used a multigrid preconditioned Krylov subspace
method to generate approximate solutions in the subsidiary computations (pressure Poisson and
convection-diffusion-like) of the preconditioner, so the preconditioner is not a fixed linear operator.

In our experiments, we compare the pressure convection-diffusion preconditioner with a one-level
Schwarz domain decomposition preconditioner [16]. This preconditioner does not vary from iteration
to iteration (as the pressure convection-diffusion does), so GMRES can be used as the outer solver.
Domain decomposition methods are based upon computing approximate solutions on subdomains.
Robustness can be improved by increasing the coupling between processors, thus expanding the
original subdomains to include unknowns outside of the processor’s assigned nodes. Again, the
original Jacobian system matrix is partitioned into subdomains using CHACO, whereas AztecOO
is used to implement the one-level Schwarz method and automatically construct the overlapping

5



0 0.5 1
0

0.2

0.4

0.6

0.8

1

Selected streamlines

0

0.5

1

0

0.5

1
−4

−2

0

2

4

Pressure field

Fig. 1. Sample velocity field and pressure field from 2D lid driven cavity. h = 1/128, Re = 100.

submatrices. Instead of solving the submatrix systems exactly we use an incomplete factorization
technique on each subdomain (processor). For our experiments, we used an ILUT with a fill-in of
1.0 and a drop tolerance of 0.0. Therefore, the ILU factors have the same number of nonzeros as
the original matrix with no entries dropped [16].

5. Numerical Results. For our computational study, we have focused our efforts on two
benchmark flow problems, the lid driven cavity problem and flow over a diamond obstruction. For
the driven cavity, we consider a two-dimensional model of a square region with unit length sides.
Velocities are zero on all edges except the top (lid), which has a driving velocity of one. This problem
is then discretized on a uniform mesh of width h. In two dimensions, we have approximately 3/h2

unknowns, i.e. 1/h2 pressure and 2/h2 velocity unknowns.
For the diamond obstruction, we consider a two dimensional rectangular region with unit length

width and a channel length of seven units, where the fluid flows in one side of a channel, then
around the obstruction and out the other end of the channel. Velocities are zero along the top and
bottom of the channel, and along the diamond obstruction. The flow is set with a parabolic inflow
condition and a natural outflow condition, i.e. ∂ux

∂x = p and ∂uy

∂y = 0. This model is discretized on
an unstructured mesh.

The two-dimensional lid driven cavity is a well-known benchmark for fluids problems because it
contains many features of harder flows, such as recirculations. The lid driven cavity poses challenges
to both linear and nonlinear solvers and exhibits unsteady solutions and multiple solutions at high
Reynolds numbers. In two dimensions, unsteady solutions appear around Reynolds number 7000
to 10,000 [17]. Figure 1 shows the velocity field and pressure field for an example solution to a
two-dimensional lid driven cavity problem with h = 1/128.

The two-dimensional flow over a diamond obstruction also poses many difficulties for both linear
and nonlinear solvers. It contains many important features appearing in realistic flows, including
an unstructured mesh with inflow and outflow conditions. In two dimensions, unsteady solutions
appear around Reynolds number 50 [8].

For the lid driven cavity problem, we terminate the nonlinear iteration when the relative solution
error is 10−5, i.e. ∥∥∥∥

(
f − (Fu + BT p)
g − (B̂u − Cp)

)∥∥∥∥ ≤ 10−5

∥∥∥∥
(
f
g

)∥∥∥∥ . (15)

The tolerance for (8), the Jacobian solver, is fixed at 10−5. For the diamond obstruction, the non-
linear solution error (15) is 10−3 and the tolerance for (8) is 10−3. For both problems, we employ
inexact solves on the subsidiary pressure Poisson type and convection-diffusion subproblems. For

6



solving the system with coefficient matrix Ap, we use six iterations of algebraic multigrid precon-
ditioned CG and for the convection-diffusion-like subproblem, with coefficient matrix F , we fix a
tolerance of 10−2, i.e. this iteration is terminated when ‖(y−Fu)‖ ≤ 10−2‖y‖ [6]. We compare this
method to a one-level overlapping Schwarz domain decomposition preconditioner that uses GMRES
to solve the Jacobian system (8) at each step using the same tolerances. For both preconditioners,
we use a Krylov subspace of 300 and a maximum number of iterations of 3000. All two-dimensional
results were obtained in parallel on Sandia’s Institutional Computing Cluster (ICC). Each of this
cluster’s compute nodes are dual Intel 3.6 GHz Xenon processors with 2GB of RAM.

5.1. Experimental Results.

5.1.1. Lid Driven Cavity Problem. We first compared the performance of the pressure
convection-diffusion preconditioner to the domain decomposition preconditioner on the 2D lid driven
cavity problem generated by MPSalsa. In the first column of Table 1, we list the Reynolds number
followed by three mesh sizes in column two. In columns three and four, we list the total CPU time and
the average number of outer linear iterations per Newton step for the pressure convection-diffusion
and domain decomposition preconditioners, respectively. For the pressure convection-diffusion pre-
conditioner, we notice iteration counts that are largely independent of mesh size for a given Reynolds
number. As the mesh is refined, we do notice an increase in the computational time for a given
Reynolds number. This is due to a number of reasons, including an increase in communication time
amongst processors and an increase in the difficulty of solving the linear system with coefficient
matrix F to a specified tolerance for higher Reynolds numbers. The domain decomposition precon-
ditioner does not display mesh independent convergence behavior as the mesh is refined. However,
there is much less computational effort involved in one iteration of preconditioning with domain
decomposition than in one iteration of preconditioning with pressure convection-diffusion. For the
fine meshes, we notice the CPU time for the pressure convection-diffusion preconditioner is a factor
of 5 faster than domain decomposition.

Re Number Mesh Size Pressure Convection-Diffusion Domain Decomposition Procs
iters time iters time

Re = 10 64 × 64 26.0 19.7 79.4 19.4 1
128 × 128 26.0 68.9 220.6 91.4 4
256 × 256 32.0 114.9 1018.6 596.6 16

Re = 100 64 × 64 34.2 30.2 86.5 26.4 1
128 × 128 35.9 59.8 300.3 150.2 4
256 × 256 41.3 156.1 1603.9 1326.6 16

Re = 500 64 × 64 109.2 490.2 89.7 44.4 1
128 × 128 92.2 606.0 334.9 258.8 4
256 × 256 98.0 948.7 5433.1 4543.9 16

Table 1

Comparison of the iteration counts and CPU time for the pressure convection-diffusion and domain decomposi-
tion preconditioners for the lid driven cavity problem.

5.1.2. Flow over a Diamond Obstruction. We will now compare the pressure convection-
diffusion preconditioner to the domain decomposition preconditioner on the flow over a diamond
obstruction problem generated by MPSalsa. In the first column of Table 2, we list the Reynolds
number followed by the number of unknowns for four problem sizes in column two. In columns three
and four, we list the total CPU time and the average number of outer linear iterations per Newton
step for the pressure convection-diffusion and domain decomposition preconditioners, respectively.
We see many similiar trends to the results from the driven cavity problem, mainly iteration counts

7



that are largely independent of mesh size for a given Reynolds number and an increase in the com-
putational time as the mesh size is refined. The domain decomposition preconditioner does not
display mesh independent convergence behavior as the mesh is refined. For Re 10 and Re 25, the
pressure convection-diffusion preconditioner was faster in all cases. For Re 40, it was faster for
all meshes except for the small problems with 62,000 unknowns run on one processor. Note that
the GMRES solver preconditioned with domain decomposition stagnated and did not converge to
a solution for the problems with 4 million unknowns. The pressure convection-diffusion precondi-
tioner converged without difficulty on this problem. On modest sized problems where both methods
converged, the pressure convection-diffusion preconditioner ranged from 4 to 15 times faster than
domain decomposition.

Re Number Unknowns Pressure Convection-Diffusion Domain Decomposition Procs
iters time iters time

Re = 10 62K 20.5 138.8 110.8 186.6 1
256K 22.5 266.2 284.6 1657.4 4
1M 22.9 501.0 1329.0 7825.5 16
4M 29.4 1841.7 NC NC 64

Re = 25 62K 32.9 248.0 101.7 198.8 1
256K 35.9 480.6 273.8 1583.1 4
1M 38.3 956.9 1104.8 7631.5 16
4M 52.0 4189.8 NC NC 64

Re = 40 62K 54.6 565.8 70.4 267.2 1
256K 70.1 1280.9 203.9 1420.7 4
1M 65.4 2011.7 997.1 8188.2 16
4M 79.8 9387.9 NC NC 64

Table 2

Comparison of the iteration counts and CPU time for the pressure convection-diffusion and domain decomposi-
tion preconditioners for the flow over a diamond obstruction. NC stands for no convergence.

6. Conclusions. The pressure convection-diffusion multilevel block preconditioner presented
and studied in this paper has been developed for linear systems generated from the solution of the
incompressible Navier-Stokes equations. The key to this preconditioner is the approximation of the
Schur complement using a convection-diffusion operator defined on the pressure space. This method
requires block solves (convection diffusion and pressure Poisson-type) that are significantly easier to
solve than the entire coupled system.

In this study, we have demonstrated asymptotic convergence that is mesh independent in 2D
for problems generated by an application code, MPSalsa, over a range of Reynolds numbers and
problems discretized on structured and unstructured meshes with inflow and outflow conditions.
For the steady-state problems, the iteration counts see a slight degradation for increasing Reynolds
number.

While the overall results are promising, the CPU times can be greatly improved by employing a
more efficient convection-diffusion solver. In the future, we intend to further expand this technique
to time dependent problems and problems posed on more complex domains.

7. Acknowledgements. I would like to thank Howard Elman, my thesis advisor at the Uni-
versity of Maryland, for all of his invaluable comments and encouragement throughout this project.
I would also like to thank Vicki Howle, John Shadid, and Ray Tuminaro, of Sandia National Labo-
ratories, for their guidance and willingness to work with me on these block preconditioners.

8



REFERENCES

[1] M. Adams, M. Brezina, J. Hu, and R. Tuminaro, Parallel multigrid smoothing: Polynomial versus Gauss-
Seidel, Journal of Computational Physics, 188 (2003), pp. 593–610.

[2] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method, SIAM Journal
on Scientific Computing, 17 (1996), pp. 16–32.

[3] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Iterative Solvers, Oxford University Press,
Oxford, UK, 2005.

[4] H. C. Elman, Preconditioning for the steady-state Navier–Stokes equations with low viscosity, SIAM Journal
on Scientific Computing, 20 (1999), pp. 1299–1316.

[5] H. C. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, Block preconditioners based
on approximate commutators, SIAM Journal on Scientific Computing, to appear (2006).

[6] H. C. Elman, V. E. Howle, J. Shadid, and R. Tuminaro, A parallel block multi-level preconditioner for the
3D incompressible Navier-Stokes equations, Journal of Computational Physics, 180 (2003).

[7] H. C. Elman, D. J. Silvester, and A. J. Wathen, Performance and analysis of saddle point preconditioners
for the discrete steady-state Navier–Stokes equations, Numer. Math., 90 (2002), pp. 665–688.

[8] B. Fornberg, Computing incompressible flows past blunt bodies–a historical overview, Numerical Methods for
Fluid Dynamics IV, IV (1993).

[9] B. Hendrickson and R. Leland, A users guide to Chaco, version 1.0., Tech. Report SAND93-2339, Sandia
National Laboratories, 1993.

[10] M. A. Heroux, Trilinos/Petra: linear algebra services package, Tech. Report SAND2001-1494W, Sandia Na-
tional Laboratories, 2001.

[11] D. Kay, D. Loghin, and A. J. Wathen, A preconditioner for the steady-state Navier–Stokes equations, SIAM
Journal on Scientific Computing, 24 (2002), pp. 237–256.

[12] D. Loghin, A. Wathen, and H. Elman, Preconditioning techniques for Newton’s method for the incompressible
Navier-Stokes equations, BIT, 43 (2003), pp. 961–974.

[13] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite linear systems,
SIAM Journal on Scientific Computing, 21 (2000), pp. 1969–1972.

[14] Y. Saad and M. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear
systems., SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[15] J. Shadid, A. Salinger, R. Schmidt, T. Smith, S. Hutchinson, G. Hennigan, K. Devine, and H. Moffat.,
MPSalsa version 1.5: A finite element computer program for reacting flow problems, tech. report, Sandia
National Laboratories, 1998.

[16] J. Shadid, R. Tuminaro, K. Devine, G. Hennigan, and P. Lin, Performance of fully-coupled domain de-
composition preconditioners for finite element transport/reaction simulations, Journal of Computational
Physics, 205 (2005), pp. 24–47.

[17] P. N. Shankar and M. D. Deshpande, Fluid mechanics in the driven cavity, Annu. Rev. Fluid Mech, 32 (2000),
pp. 93–136.

[18] D. Silvester, H. Elman, D. Kay, and A. Wathen, Efficient preconditioning of the linearized Navier–Stokes
equations for incompressible flow, J. Comp. Appl. Math., 128 (2001), pp. 261–279.

[19] T. E. Tezduyar, Stabilized finite element formulations for incompressible flow computations, Advances in
Applied Mechanics, 28 (1991), pp. 1–44.

[20] C. Tong, R. Tuminaro, K. Devine, J. Shadid, and D. Day, On a multilevel preconditioning module for
unstructured mesh Krylov solvers: Two-level Schwarz, Comm. Num. Meth. Eng., 18 (2002), pp. 363–389.

[21] R. Tuminaro, M. Heroux, S. Hutchinson, and J. Shadid, Official Aztec user’s guide: Version 2.1, Tech.
Report Sand99-8801J, Sandia National Laboratories, Albuquerque NM, 87185, Nov 1999.

[22] R. Tuminaro and C. Tong, Parallel smoothed aggregation multigrid: Aggregation strategies on massively
parallel machines, in SuperComputing 2000 Proceedings, J. Donnelley, ed., 2000.

[23] H. A. van der Vorst and C. Vuik, GMRESR: a family of nested GMRES methods, Numerical Linear Algebra
with Applications, 1 (1994), pp. 369–386.

[24] P. Vanek, M. Brezina, and J. Mandel, Convergence of algebraic multigrid based on smoothed aggregation,
Numerische Mathematik, 88 (2001), pp. 559–579.

9


