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OPTIMAL FILTER AND MOLLIFIER FOR PIECEWISE SMOOTH SPECTRAL DATA
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This paper is dedicated to Eitan Tadmor for his direction.

ABSTRACT. We discuss the reconstruction of piecewise smooth data from its (pseudo-) spectral information.
Spectral projections enjoy superior resolution provided the function is globally smooth, while the presence of
jump discontinuities is responsible for spurious O(1) Gibbs’ oscillations in the neighborhood of edges and an
overall deterioration of the convergence rate to the unacceptable first order. Classical filters and mollifiers
are constructed to have compact support in the Fourier (frequency) and physical (time) spaces respectively,
and are dilated by the projection order or the width of the smooth region to maintain this compact support
in the appropriate region. Here we construct a non-compactly supported filter and mollifier with optimal
joint time-frequency localization for a given number of vanishing moments, resulting in a new fundamental
dilation relationship that adaptively links the time and frequency domains. Not giving preference to either
space allows for a more balanced error decomposition, which when minimized yields an optimal filter and
mollifier that retain the robustness of classical filters, yet obtain true exponential accuracy.

1. INTRODUCTION

The Fourier projection of a 27 periodic function Sy f(-), enjoys the well known spectral convergence rate, that
is, the convergence rate is as rapid as the global smoothness of f(-) permits. Specifically, if f(-) has s bounded
derivatives then |Sy f(z)—f(z)| < Const||f||cs-N' %, and if f(-) is analytic, |Sn f(z)—f(z)| < Const-e "N,
In the dual (frequency) space the global smoothness and spectral convergence are reflected in rapidly decaying
Fourier coefficients | fy| < 27k™*||f||cs. On the other hand, spectral projections of piecewise smooth functions
suffer from the well known Gibbs’ phenomena, where the uniform convergence of Sy f(z) is lost in the
neighborhood of discontinuities. Moreover, the global convergence rate of Sy f(z) deteriorates to first order.
Two interchangeable processes for recovering the rapid convergence associated with globally smooth functions
are mollification, 9(-), in the physical space and filtering, o(-), in the dual space,

x) = o Z aly)e
k=—o0
where the filter is traditionally supported in [—1, 1] and dilated by the projection order, N. When viewed as
operating in the Fourier dual space, filtering accelerates convergence by premultiply the Fourier coefficients fk
by a smoothly decreasing function, o(+), resulting in modified coefficients fka(k /N) with a greatly accelerated
decay rate as |k| T N. For filters the smoothness in the dual space corresponds to localization in the physical
(time) space, exhibited through the action of the filter’s associated mollifier, (-). Customarily mollifiers
have been defined to have compact support in the physical space, ¢¥/(z) = 0 for |z| > ; and the error after
mollifying a function’s spectral projection is analyzed in terms of the competing dual space localization error,
and accuracy error which is controlled by a number of (near) vanishing moments possessed by the mollifier,

-
/ zip(z)dz ~ &0 j=0,1,...,p—1.

Alternatively, filters have traditionally been defined to have compact support in the Fourier dual space,
(&) =0 for [£| > 1, and the error after filtering a function has been decomposed into a competing physical
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space localization error and an accuracy error, which is again directly related to the (near) vanishing moments
of the filter’s associated mollifier, through the classical filter accuracy condition,

(1.3) o) ~dj0 §j=0,1,...,q9—1.

The restriction of compact support in either the physical or Fourier dual space does not permit analytic
mollifiers or filters, and as a results limits their time-frequency localization. In [17] and [18] a somewhat
less regular space! was utilized to derive root-exponential convergence by balancing the competing errors
through linking the mollifier and filter orders,p and ¢ respectively, to the degree of the function’s spectral
projection, N, and the distance from the point being recovered to the nearest discontinuity, d(z). Although
compact support in either of the physical or dual space is desirable in some instances, as discussed in §5; to
achieve minimal error neither space has priority and the filter or mollifier should possess the optimal joint
time-frequency localization for a given number of near vanishing moments. Here a mollifier and filter are
introduced which, for a given accuracy, possess optimal joint localization in both spaces as measured by the
classical uncertainty principle?

(1.4) ar||zg(z)l|z2 - 1E(Fg)(E)llz2 > llgllZ--

Rather than maximizing the overall localization, in order to maintain compact supported in the domain
of the Fourier projection, [—-N, N], or region of smoothness in the physical space, [z — d(z),z + d(z)],
filters and mollifiers have been dilated by N and d(z) respectively. Yet, for filtering and mollification to
be performing the same action in the two spaces, the Fourier transform would imply that their dilation
factors would be the inverse of one another. In §2 a new error decomposition applicable for non-compactly
supported filters and mollifiers is formulated, separated into the classical accuracy error as well as competing
physical and dual space localization errors. By balancing the joint time-frequency localization for the region
[z — d(z),z + d(z)] x [-N, N] a new fundamental scaling factor is determined, 1/N/d(z) and its inverse for
the dual and physical spaces respectively. The resulting optimal filter and mollifier introduced in §3 and §4,
achieve substantially improved convergence rates over classical filters and mollifiers as stated in Theorems
3.2 and 4.2, and exhibited in the numerical examples, §5. Additionally, similar to [17] and [18] the adaptive
optimal number of near vanishing moments is determined for this scaling relation, balancing the overall
error.

2. NON-COMPACT FILTERS AND MOLLIFIERS

We begin with the classical filter dilation N, and consider general analytic filter o(-), mollifier ¢(-), pairs
that are jointly well localized in both the dual Fourier and physical space. Although equivalent, filters are
viewed as operating in the Fourier dual space,

kY » . . 1 [7 )
(2.1) Snfo(@):= )Y o (N) fre®™ fri= o) f(z)e **da,
|kI<N
and mollifiers acting under convolution in the physical space,
o — N . 1 - k ik
(2:2) SwfT@) = v Sxf@) = [ wwfe-vd Y@= Y o (N) .

k=—o00
Although the filter may not be compactly supported, when applied to a function’s spectral projection, only
the low modes participate, |k| < N, and as such, the mollifer’s definition may similarly be formulated using
only those elements of the filter. The error after mollification (filtering) is traditionally decomposed as

(23) E(Naan) = f(.’l?) - ¢ * SNf(w)
= (f(z)—9v=* f(@) + (¥ - Sny) * (f(z) — Svf(z))
=: R(N,q,z)+ Lp(N,q,x)

which we refer to as the regularization and dual space localization errors respectively. Although the second
term of (2.3) is a measure of the mollifier’s dual space localization, it has traditionally been labeled the

1A function p(-) is in Gevrey regularity o if ||p(®)] Lo < K, (s!)*n, ° for some K,,n, independent of s. Analytic functions
satisfy @« = 1, and compactly supported functions can at most satisfy a > 1.

2For consistency with the Fourier series expansion used here, (2.1), we use the Fourier transform normalization (Fg)(¢) :=
i I3, et g(x)dx; and note that equality in (1.4) is satisfied if and only if g(z) = exp(—ca?) for ¢ > 0.
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truncation error, as it is the error introduced by truncating the mollifier’s spectral representation, [10]. The
regularization error can be further decomposed into the accuracy and physical space localization errors,

R(N,qz) = /| @)~ fe vy + / R CRa
= A(J\_f,q,x)-l-Lp(N,q,x). o

The physical space localization error is determined by the decay of the mollifier for |y| > r, which is a
consequence of the associated filter’s smoothness; and the accuracy error is controlled by both the localization
of the mollifier, as well as the number of (near) vanishing moments possessed by the mollifier. Combining
these components, the total error is composed of the localization and the accuracy errors,

(24) E(Na q, .’L‘) = LD(N, q,x) + LP(Nv q,.’L‘) + A(N,q,.’l?).

Classical compactly supported mollifiers and filters enforce Lp = 0 and Lp = 0 respectively, with compact
support in both spaces simultaneously excluded®, [12]. Alternatively, the minimal total error is achieved
by balancing the three competing errors in (2.4). In lieu of carrying out the analysis for a general smooth
(analytic) filter, or (exponentially) well localized mollifier, we focus on a specific filter mollifier pair that
possess optimal joint time-frequency localization, and which allows for an increasing number of near vanishing
moments. The Distributed Approximating Hermite Functionals, DAHF, introduced in [13] are such a class
of functions and we catalog some of their properties in the following lemma.

Lemma 2.1. The p order DAHF is given by

2 2 P —4)~"
(25) bala) = /0y 1y 0, (2],

n=0

where Hs, is the Hermite polynomial of order 2n, and the DAHF’s Fourier transform is given by

e—E7°/2 (£*7%)
(2:6) (Fopa)(€) = Z m,
Let 6¢p ~ = [pp.y—Pp—1,4] be the difference between consecutive order DAHF's, and expand the time-frequency
uncertainty for ¢, in terms of the increase in frequency (dual) space uncertainty

lotn @) (168010 Ol + 1688, @) +2Re [ @(F8,m1,)(OFotn) €0 ).

The p order DAHF possesses joint minimal uncertainty in physical and Fourier dual space in the sense
that ¢y (z) possesses the minimal joint variance, |z¢p(z)||%2 - [|E(Fédp)(€)||22, while also increasing
the number of vanishing moments and holding the remainder of the function, ¢, ~(-)’s, joint uncertainty
constant. Characteristic plots of the DAHF are presented in Figures 5.1 and 5.2.
We also state the properties of the Hermite polynomials relevant here; orthogonality under the Gaussian
weight,

o0 2

/ e ¥ Hy(z)Hy(z)dz = /72" nl6y m,

—00

and the decay condition
|H,(z)| < kV/nl2n/2e®" /2

where k =~ 1.09, [11].

We now undertake a detailed error analysis of a filter, §3, and mollifier, §4, constructed from the DAHF,
realizing the optimal values for the localization, v, and accuracy, p, parameters. By determining the localiza-
tion parameter y we obtain the new filter dilation factor of 1/ N/d(z), achieving optimal joint time-frequency
localization to [z — d(z), z + d(z)] X [N, N]. Furthermore, the optimal number of near vanishing moments,
p, is selected to balance the accuracy error with the minimized localization errors; yielding the minimal total
error.

3This is also a direct consequence that either a function or its Fourier transform is analytic, and analytic continuation
excludes compact support except for the zero function.
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3. OPTIMAL ADAPTIVE ORDER FILTER

As stated in Lemma 2.1, the filter

p 2,.2\n
2.2 &y
(3.1) 0y(€) =e tT2Y %
n=0 '
satisfies optimal joint time-frequency localization for the given order, a,(,n)(O) = dpo for n =0,1,...,2p.

To bound the error after filtering a function’s spectral projection with (3.1), we must determine bounds
on the physical and dual space localization errors, as well as the accuracy error, (2.4). After constructing
these bounds we will determine the optimal localization and moment parameters, v and p respectively, by
balancing the competing error component’s decay rates. We begin with the dual space localization error
which is bounded by,

ILp(N,p,z)| = [|(¥ — Swe) * (f(x) — Snf(z))l|lz=
< f = Snfliz - 1Y — Snepllnes
- k
< Consts - o (>
! k:zN:-f—l T\N
< C’onstf-/ o,(&)d¢
1
_ e\’
(3.2) < Consts -y ?p* <%) eV /2

where Const; is a possibly different constant depending on f. Note that the quantity (y%e/2p)? is maximized
at p = 72 /2, canceling the exponential decay, exp(—v2/2); and as such, for exponential dual space localization
to [—1,1], the filter order must satisfy p < v2/2.

We now turn to the physical space localization error which is controlled by the decay of the filter’s associated
mollifier. As the filter is dilated by the factor N in the Fourier dual space, its associated mollifier is dilated
by 1/N in the physical space. Although we do not have an explicit representation of the mollifier formed
from the filter’s samples, (2.2), the mollifier is directly related to the filter’s inverse Fourier Transform. More
precisely, the mollifier is constructed from the uniform sampling of the filter, and accordingly the Poisson
summation formula states that the dual space sampling corresponds to physical space periodization of the
filter’s Fourier transform, (2.6),

(3.3) b@)= Y Gpay(N(e +2mm)).

m=—oo
Before investigating the localization bound for the mollifier, we determine a bound on the filter’s Fourier
transform,(2.6),

|6y ()] < —22/(292) . —1 - (_4)—nH ( T >
x 2 g n| —=
P = L TR WV
2 2 vV 4an:
< ez /(M1 E
= ¢ 7 ano 2nn!
(3.4) < Const- 7_1p3/46_22/472.

where the sum in the second line is bounded using Sterling’s inequality. From relationship (3.3) and the
decay of ¢, ,(x) we note that for |z| < 7, the mollifier and the filter’s Fourier transform are exponentially
close,

3/4 y
(85) (@)~ pa(N2)| = | Y @y (N(w+27m))| < Const - pme™ N2 o] <,
m#0

and therefore they decay at the same exponential rate, |1 (z)| < Const|¢p ,(Nz)|. Returning to the physical
space localization error we obtain the bound,
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Lol = [ (@)~ fle-wlvdy| <20le= [ 6wy
r<|y|<w r
Q 3/4 )
(3.6) < Constf/r |¢p.(Ny)| dy < Const; - %e—(rN/m) )

With the localization errors quantified we now turn to bounding the accuracy error by determining the
number and quality of the associated mollifier’s near vanishing moments. As in the case of the physical
space localization, we approach this through the properties of the filter’s Fourier transform, ¢, (), which
possesses 2p + 1 exactly vanishing moments when taken over the entire real line. However, here we are
interested in local symmetric moments, defined as

T

M, - :=/ z"Y(z)dz r <.
-7

The mollifier possesses exactly vanishing odd moments, we express the even moments for n < p as

Muny = [ op@hdo— [ a¥p0(Na)da

—_r —

/ 2 [)(z) — ¢p o (Nz)]dz — /| | z*¢, o (Nz)dr =: My + M,
- z|>T

where the first component is small due to the similarity of the mollifier and the filter’s Fourier transform,
(3.5)
i */ 2
|My| < max ]|w(:c) — ¢p(Nz)| - 2/ z*dx < Const - Wr%e*(“v/z"’) ,
zE|—m, T 0
and the second is controlled by the physical space localization (3.4)

IMa| < / ac2"|¢p,7(Nw)|da:SConst-7_1p3/4/ a?re=@N/2)* g
|z|>r

r

3/4 2n n N 2k
P ey (2 1 (rN
< Const N2r1/26 % kz_ok! 5

3/4 N\?
P N 9n _(rN/2v)2 T
< Const- N2 12 p2ne=(rN/27) n < <§) .

In the above bound for My, the sum is initially increasing, reaching is maximum at k = (rN/2v)?; as a
result, for n < (rNN/27v)? the sum reaches its maximized at k = n canceling the term n!(2y/N)?". Combining
the bounds for M; and Mj, the number and quality of the moments is given by

p*/*yn 2n_—(rN/2y)? rN\’

(3.9) | M3, | < Const - Nl e n < (E) .

With near vanishing moments quantified in (3.9), we outline our approach to bounding the accuracy error,
A(N,p,z) := flyl Sr[ f(z)—f(z—y)]¥(y)dy. Traditionally the accuracy error is bounded by Taylor expanding
9z (y) == [f(z)— f (z—y)] about zero and taking the largest symmetric region where g, (y) is analytic, r < d(z)
where d(z) is the distance from z to the nearest discontinuity of f(-). The canonical Taylor expansion bound is
then controlled by the vanishing moments, My, », and the truncation of the Taylor expansion, r?||g;||cq/q!.
Here we focus on piecewise analytic functions in which case the Cauchy integral formula quantifies the
regularity as

s!

Il fllcsfz—d(z),etd(z)) < Const - pr

f
where f(x—z) is analytic for the strip in the complex plane, |¥(z)| < n¢, |t —R(2)| < d(z). Incorporating the
regularity bound in the classical g—1 term truncated Taylor expansion yields a truncation error proportional
to (r/ns)? which is only decreasing for » < ny. For a given order spectral projection, optimal joint time-
frequency localization in [z — 7,z 4+ r] X [—N, N]| requires r selected as large as possible, making the Taylor
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expansion bound ineffectual. Alternatively, the Chebyshev expansion of g,(-) over [—r, 7] gives a near min-
max approximation for a given order polynomial. Before investigating this alternative Chebyshev polynomial
based error decomposition we state relevant results for the Chebyshev polynomials in the following lemma,
more general results are cataloged in [14].

Lemma 3.1. The k" order Chebyshev polynomial is given by
szm (k) (k) k—1
T, = k—21 = (—1 le—2l—1 A -
k(z) P cl T cl ( ) k _ l l

and the Chebyshev expansion of a function, h(-), by

- - r. 2 [' Tu(2)h(z)
ST h(z):=S hlTy(z) RE =2 [ B2
l;) R k TJ 1 V11— z2

The coefficients for a Chebyshev expansion of an analytic function decay exponentially, and as a result,
Chebyshev projections converge at an exponential rate

(3.12) |hf| < Consty, - B F = lmlzg |h(z) — Sirh(z)| < ConstpBy ™,

where By, > 1 is a constant depending on the analytic extension of h(-) to the complex plane. Additionally,

the classical three term recursion relationship gives a bound on the growth of the coefficients composing a
Chebyshev polynomial

c§k+1) _ 2cl(lc) _ cl(_lf_zl) — ‘Cgk)| < (1 + ﬁ)k Vi.

We now turn to bounding the accuracy error, A(N,p,z), decomposed into the two terms

A(N,p,z) = i< ¥(y)92(y)dy

= ¥(y) (9:(y) — S, (92)(v)) dy + YY) Sy (9:)(y)dy = A1 + A2 7 < d(),

ly|<r lyl<r

where the first component is controlled by the decay of Chebyshev coefficients, (3.12), of g,(y) := f(z) —
f(z — y) which is analytic for r < d(z),

|Ai| < Consty - max 192(y) = Sy (92)(v)] ” [¥(y)|dy < Consty - TNB,?.
=T y|<r

The second component, A, is small for modest p due to the near vanishing moments of the mollifier which
correspond to near orthogonality with low order Chebyshev polynomials*

[ (3) vwea

T_2j|M2j,r|
rN) 2
2y ’

4We only consider the even Chebyshev polynomials as the mollifier is even, giving exact orthogonality to all odd functions.

M=

k
< Z”Q(l_k) ‘Cz(%)‘ Mgy | < (14 V2)%
1=0 j

Il
<)

p3/4k27

gz (L V2)2kem(rN/2T g

IN

Const -

IA
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resulting in the bound

Az = P(y)S, (9:)(y)dy
ly|<r
— - T Yy
= Yt [ n(}) v
lp/2] o y
< Consty kZ:O ﬂf /|y|§r Tox, (;) P(y)dy
<

15/4 1+v2)"
P (rNy29)? +
Consty N2 1/2€ 1+ 5; .

Combining the bounds for 4; and A5 yields the total accuracy error bound,

15/4 14++2 P
_ PN (N2 +
(3.15) |A(N, p,z)| < Constj - T'Nﬂfp + ConSth2r1/26 (rN/2v) (1 + < 5; ) .

Now that the different error components (Lp, Lp, A)(N,p,z) have been bounded we arrive at the overall
error bound,

(3.16) |f(z) — Snf(z)| < Consty [TNﬂ?’ LGy Cze*(TN/Q’Y)z]
with functions
om e ()G et (5))
v 2p rN2 N2p1/2 ,Bf
The optimal behavior of the localization and accuracy parameters, v and p respectively, are selected so that

the competing error components possess the same decay rate, with the dominant error components given by
,B;p , exp(—72/2), and exp(—(rN/27)?). Although the optimal values of v and p depend on the particular

function being approximated through 3y, the decay rates can be balanced by equating, p = v2/2 = (rN/27)?,
resulting in

(3.18) v:=VarN  p:=krN.

With these relationships we return to the second and third components of the overall error, as expressed in
equation (3.16), fully including the growth rate of C; and Cs. For the parameters selected as described in
(3.18), the second component is bounded by,

2 kpa/2\ ~TN
Cre 2 Ry (2550
a ()" ’

and the third error element simplifies to

—KkrN
Coe "NI20* < Const - pBB/AN/1 (14 ( ﬂf ) e za™N
B 1++2
el/2 —rN
< Const- p15/4 \9/4 () ,
(1+v2)~

where the second line is due to 85 > 1 for f(-) piecewise analytic. Exponential decay in N of the second
and third component then requires (ae/k)"/2e*/? < 1, and exp(1/2a)(1 + +/2) " > 1 respectively.

In all of the above bounds, the exponential convergence rate is gained through the factor IV, which for a
given projection order, N, obtains its largest value for r = d(z) where d(z) is the distance from the point z
to the nearest discontinuity in f(-). The localization and accuracy parameters are then given adaptively by

(3.20) v:=+v/aNd(z) and p := kNd(z).

The above bounds are summarized in the following theorem:
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Theorem 3.2. Given the N truncated Fourier coefficients, of a piecewise analytic function, { fk}|k|5 N, the
function can be recovered within the exponential bound

1 L

(3.21) f(z)— o Z Oopt (ky N, z) fret*®| < Consty - N/47r=Nd(@)
" k<N

where T := min (,8’;, 2e2/2 (é)N , df%) and with the adaptive filter

(322) Oopt (k,N, .’17) =e 2N T

arae) e ak?d(z)\"
a .

n=0

The optimal values for the free constants, a and k, depend on the function’s regularity constant®, 8 +. None
the less, numerical experiments encourage a relatively small value for k, making the dominant contributions
from the localization constant given by e*/2 and e'/2*, which are balanced for a = 1. Numerical experiments
then indicate that selecting x = 1/15 gives good results for a variety of functions with significantly different
regularity constants; for these selections, 7 reduces to

(3.23) 7 = min (1.55, ﬂ}/”’) with a=1, =1/15.

Unlike classical filters which are dilated by IV, to maximize the localization for the time-frequency domain
[z — d(z),z + d(z)] x [N, N], the localization parameter, v = 1/Nd(z), yields the optimal filter which
is dilated by 4/N/d(z). In the following section we construct the optimal mollifier defined in the physical
space, arriving at the dilation rate /d(z)/N, in contrast to traditional mollifiers which are dilate by d(z).
Consequently, the optimal filter and mollifier satisfy dilation relationships which are the inverse of each other,
as the Fourier transform implies, but which is not satisfied for classical filters and mollifiers.

4. OPTIMAL ADAPTIVE ORDER MOLLIFIER

Rather than a function’s spectral projection, Sy f, the function’s pseudo-spectral information can be given
_

in the form of its equidistant samples, f(y,) where y, := 3-(v — N) for v = 0,1,...,2N — 1. The function’s
trigonometric interpolant is formed from these samples,

2N—1
Inf@)= Y fue®  fui= 5 Y f@)e
lkI<N v=0

where the pseudo-spectral coefficients, fk, are an approximation of the true Fourier coefficient, fk; replacing
the integral in (2.1) with its trapezoidal sum. Although for piecewise smooth functions the trapezoidal
quadrature is only first order, |fx — fk| ~ O(N~1), the function can be approximated within the same bound
as presented in Theorem 3.2. This approximation may be implemented either by filtering the trigonometric
interpolant, or entirely in the physical space through a discrete convolution with a mollifier,

2N—-1
~ ™

o 1 k ik

(4.2) Info(2) =9 * Inf(z) = Yoo (N) frett® = ~ > fly)Snv(z — w).
|kI<N v=0

We now conduct a short analysis proving the filtered interpolant yields an approximation within the same

bound as that given in Theorem 3.2.

An error decomposition similar to (2.4) is satisfied for the filtered trigonometric interpolant

(43) E(N,p,il?) = f(x) _"/)*INf(z)
= (f(z) == f(z)) + (¥ — Sny) * (f(z) — Inf(z))
=: R(N,p,z)+ Lp(N,p,z) = Lp(N,p,z) + Lp(N,p,z) + AN, p, z),

5Here we concern ourselves with near optimal function independent estimates, but note that the convergence rate for a given
function may be increased if 3 were approximated, [5].
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where the physical space localization and accuracy errors are unchanged from the spectral projection error
expansion. For the modified dual space localization error we follow the same steps as for the original dual
space localization error, (3.2),

Lo(N,p,a)| = 116 = Sxv) + (f(@) — Inf(@))l|z»
< f = Inflloe - 19 — Snelloe
& k
< Constf- o (—)
< Consty - /oo o, (&)d€
1
(4.4) < Consts-vy 2p* (72—2;);0672/2.

Combining the modified dual space localization bound, (4.4) with the unchanged physical space localization
and accuracy bounds, (3.6) and (3.15) respectively, yields the same composite error bound as for the filtered
spectral projection, equation (3.16). The optimal filter parameters are then selected in the same fashion;
resulting in a convergence rate of the same order as in Theorem 3.2.

Theorem 4.1. Given the 2N equidistant samples, of a piecewise analytic function, {f(F (v — N)) 2N
the function can be recovered within the exponential bound

f(z)— — Z Oopt(k, N, ) fre*®| < Consty - N%/47r~Nd(@)

" k<N

where T and the adaptive filter are given in Theorem 3.2.

As stated earlier, alternatively to filtering the trigonometric interpolant, the same approximation can be
implemented as a discrete physical space convolution with the mollifier Sy(-), (4.2). Although the samples
are given in the physical space, and the implementation is also conducted in the physical space, this mollifier
is defined in terms of the dual space filter o, (-). We now construct a mollifier defined in the physical space,
using the optimal order filter’s inverse Fourier transform, ¢, ,(N:), which was shown to be exponentially
close to the optimal filter’s associated mollifier, (3.5). With such a mollifier defined entirely in the physical
space, a piecewise smooth function can be approximated from its equidistant samples through a purely
physical space implementation. We now detail the error analysis for the mollifier, ¢, (IN-), proving that the
overall convergence rate in Theorem 4.1 is not adversely effected by replacing the dual space constructed
mollifier Sy(-) with physical space mollifier ¢, (V).

Unlike the filter’s associated mollifier, 9(-), the mollifier defined directly in the physical space, ¢p (), is
not periodic, and as such the implementation requires the periodic extension of the samples,

fr(yy +2mn) := f(y) for n=-1,0,1.

Furthermore we define the symmetric region surrounding z as I, = (z — u,z + u]. The mollifier can
either be applied to the entire 2N distinct samples contained in I, . =: I, or to those points in the largest
symmetric smooth region by restricting to I, 4(;), where an additional physical space localization error is
introduced. In the following analysis we use the full set of points, but note that the additional error when
using I, () does not effect the overall convergence rate, and as discussed in §5, with proper normalization
allows for improved first order accuracy in the immediate neighborhood of the discontinuity.

The error after discrete mollification with ¢, ,(IV-) is defined, and can be expanded as follows:

Buna(N,p,2) = @)= 5 D Sa)bps(N(@ - u.))
= (@) -5 Y F@ISNeE )+ 1 D ) [Snb(e - u) — ¥l - u)]
+ oy 2 £~ w) = by (N (e =)

(4.7) = &+ & +E&.
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The first component is simply the error when filtering the trigonometric interpolant,
T
&= f@) - § EE; Fr(yo)Sni(@ — y) = f(2) = ¥ In f (@),
Yv z

with the last equality due to v¥(-) being 27 periodic, so that the sum over I, is the same as over v =
0,1,...,2N — 1. The bound for &; is given in Theorem 4.1, and is composed of the elements in equation
(4.3).

The second component of E,,, satisfies the same bound as the dual space localization error, Lp(N, p, z),

£l = §| 2 Fr@)Snile —u) bz —u)

Yu €l

< 27T||f||Lco[77r,7r]||¢_SN’l/}”L“’
k o0
< Consty Z N SConstf/ a(§)d¢
|k|>N 1
2 2.\ P
< Consty (p) (”) e /2,
Y 2p

and the third component is controlled by the different mollifiers, ¢(-) and ¢, ,(IN-), being exponentially close
as quantified in equation (3.5)

€] = | D A~ 1)~ dpa(N(z—u.)

Y€l
27| fll oot - 19(2) = Gp,y (N2)|| Loo [ ]

3/4
< Consty %ef(’w/h)z.

IN

Combining the above bounds we achieve the same overall bound as for the filtered spectral projection,

2
p e’ e /2 4 ﬂe—(mv/zv)z
v N?

|Emol(N7pa iB)l 2p

IN

|f(z) —¢ = Inf(x)| + Consty

< Const; [TN B+ Cre™ /% ¢ 026—(TN/27)2}

where C; and C; are defined in equation (3.17). As this is the same bound as was achieved for filtering the
spectral projection, (3.16), the localization and accuracy parameters are selected in the same fashion as for
the optimal adaptive order filter, v := \/aNd(z) and p := kNd(z). The above results are summarized in
the following theorem:

Theorem 4.2. Given the 2N equidistant samples, of a piecewise analytic function, {f(F (v — N)) ,2,50_ Y
the function can be recovered within the exponential bound

f(:l:) - % Z fﬂ(yu)¢opt(N($ - yu)) < ConStf . N9/4T_Nd(z)

Y€l
where T := min (ﬂ’;,Qea/z (&)n , (111/7\2%)’ and the mollifier is given by
[Nd(z)/15]
1 Nz? ) 4-m N
4.10 opt (N, ) := ex —Hy, |24/ —— | .
(4.10) Popt (N, ) JNd(@) P (2d(a:) T;) nt 2 < 2d($)>

Again we select the parameter constants as @ = 1 and k = 1/15 for the simplified value of 7 in equation
(3.23). Unlike the adaptive filter and mollifier of [18] and [17], modulo exponentially small differences, the
optimal filter and mollifier are performing the same action in the different frequency (dual) and physical
spaces. This is reflected in the mollifier dilation factor /d(z)/N which is the inverse of the filter’s dilation
rate, as the Fourier transform would imply.
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5. NUMERICAL EXAMPLES

For the following example we contrast the optimal adaptive filter, o,p:(-), and mollifier, ¢op(-), presented in
Theorems 3.2 and 4.2 with the more traditional compactly supported adaptive filter and mollifier constructed
and analyzed in [18] and [17],

22
exe-1) g <1

3 18¢% +3¢+14
(5.1) Tadapt (€) = . o1 T e 62
g sin((p(2)+1) F27) 102>
(5.2) Yadapt () 1= { @ sin(gzEy) O (22_'1(2)2) o< d@) ’
0 |z| > d(z)

with adaptive orders, ¢(x) := max (2, %\/Nd(x)), and p(z) := Nd(z)/m/e. In [18] and [17] it was shown
that the above compactly supported filter and mollifier satisfy theorems similar to Theorems 3.2 and 4.2, but
with the root exponential convergence rate, exp(—ns+/Nd(z)) for some 7y > 0 depending on the particular
function being filtered. The optimal filter and mollifier achieve superior, true exponential accuracy by not
imposing compact support in the dual or physical space respectively; rather, they satisfy optimal joint time-
frequency localization to [z — d(z),z + d(z)] x [N, N]. Figure 5.1 illustrates the adaptive filter of [18] and
the optimal filter for a fixed value spectral projection order, N, and various values of d(z).

0.8 0.8

0.6

0.6

0.4

0.4

0.2 0.2

o _ L L L L L L
-1 -0.8 -0.6 -0.4 -0.2 o] 0.2 0.4 0.6 0.8 1 -1 1

Figure 5.1: The compactly supported adaptive filter (5.1) shown left, and optimal filter (3.22) seen right, for
N =128, and d(z) = 3(=3)7 with n = 0,1, 2, solid, dotted, and dashed respectively. The resulting adaptive
filter orders are, ¢ = 2,3, 5 and the optimal filter of order 2p with p = 0,2, 8.

Figure 5.2 shows the mollifiers associated with the optimal adaptive order filter, oop:, shown in Figure
5.1(right). As the filter order increases, the number of near vanishing moments increases, exhibited through
increased oscillations, as well as the asymptotic physical space localization, but at the cost of decreased
initial localization. Selecting the optimal filter parameters as (3.20), the optimal filter (3.22) balances these
competing behaviors, resulting in the minimal error as decomposed in (2.4).
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o _ _ v o

Figure 5.2: The optimal filter ooy (+)’s associated mollifier for N = 128 and d(z) = 3" 37 in (a-c) for
n = 0,1, 2 respectively; and the log of the same mollifiers (d) with increasing asymptotic decay for increasing

d(z).

The following numerical examples are conducted for the function

2% —1—e™)/(e"—=1) z€[0,7/2
(5.3) f(=) :{ (—sin(2x/3—7r)//?f) ) T € %ﬂ/%/?zr) ’

which was constructed as a challenging test problem with a large gradient to the left of the discontinuity at
x = /2. Moreover, lacking periodicity f(-) feels three discontinuities per period;

d(z) = min(|z|, |z — 7/2|, |z — 2w|) =z € [0, 2n],

and has substantially different regularity constants for the two functions composing it.

In Figure 5.3 the exact Fourier coefficients, { fk}ks N, are given and then filtered to approximate f(z).
Although the adaptive filter achieves exponential convergence, Figure 5.3(c), it is at a substantially slower
rate than is realized by the optimal order filter, Figure 5.3(d). For the optimal filter the convergence in
the immediate neighborhood of the discontinuities is also improved as illustrated in the removal of small
oscillations seen in Figure 5.3(a) but not 5.3(b).
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1 T T T T T T 1

0.8

0.6

Figure 5.3: The filtered 128 mode spectral projection using the adaptive filter (5.1) and optimal filter (3.22),
(a) and (b) respectively. The error in the reconstructions for N = 32,64, 128 for the adaptive filter (c) and
optimal filter (d).

Figure 5.4 contrasts the adaptive mollifier of [17] with the optimal mollifier, (4.10), where the function f(z) is
approximated from its 2N equidistant samples over [0, 27), through discrete physical space convolution. The
optimal adaptive order mollifier yields a nearly indistinguishable asymptotic convergence rate as the optimal
filter, Figures 5.3(d) and 5.4(d), and the optimal mollifier substantially out performs the adaptive mollifier,
(5.2), as contrasted in Figures 5.4(c,d). For the above computations the optimal mollifier is applied to only
the samples in the symmetric interval, I, 4(;) = [ — d(z),z 4 d(z)], and both mollifiers are normalized to
possess exact unit mass, i.e. the zero’® moment. By further limiting their support to contain at least two
samples, d(z) := max(d(z),n/N), this normalization results in at least first order approximations, signifi-
cantly reducing the blurring in the immediate O(1/N) neighborhood of the discontinuities, as contrasted in
Figure 5.3(a,b) and 5.4(a,b). A full discussion of this normalization is given in [17]. No similar method to
enforce first order accuracy up to the discontinuities is known for filters defined in the Fourier dual space.
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1
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Figure 5.4: The mollified 128 mode spectral projection using the adaptive mollifier (5.2) and optimal mollifier
(4.10), (a) and (b) respectively. The error in the reconstructions for N = 32, 64, 128 for the adaptive mollifier
(c) and optimal mollifier (d).

SUMMARY

Before summarizing the properties of the optimal filter and mollifier, to better put them in context we review
some of the more recent significant advances in the development of filters, a more detailed historical account
is given in [10]. Shortly after Gibbs’ phenomena was discovered, filters were constructed to regain the rapid
convergence associated with Fourier projections of smooth functions, in the context of piecewise smooth
functions. Beginning with Fejér in 1900 a host of polynomial order filters were introduced, culminating in
the infinite order filter of [15], which satisfies (1.3) for g arbitrarily large, yet which gives inferior convergence
near discontinuities. With the goal of recovering a convergence rate faster than any polynomial order,
spectral accuracy, Gottlieb and Tadmor introduced the compactly supported spectral mollifier of [10], with
the number of near vanishing moments selected as a power of the projection order, N® for a =~ 1/2;
additionally, for localization to the largest symmetric smooth region, the spectral mollifier was dilated in the
physical space by the distance to the nearest discontinuity, d(z). Later, Vandeven introduced the spectral
filter, which following the form of other classical compactly supported filters is dilated in the dual space by
the projection order, IV, and similar to the spectral mollifier selects the number of near vanishing moments
as a power of N, [19]. Recently it has been determined that for filters and mollifiers satisfying these classical
dilation relationships, d(z) and N in the dual (frequency) and physical (time) space respectively, the optimal
number of near vanishing moments should be selected adaptively as a function both N and d(z), [17, 18];
resolving the methodology that the order should decrease when approaching discontinuities, [1, 2]. However,
although filters and mollifiers have often been viewed as implementations of the same action in the different
dual (frequency) and physical (time) spaces, their dilation parameters are not the inverse of each other, as
the Fourier transform would imply.

In this work we discard the classical restriction of compact support, and use the theory of time-frequency
analysis to construct a filter and mollifier with optimal joint time-frequency localization to the region dictated
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by the function’s smoothness, and the projection order, [z — d(z), z + d(z)] x [N, N]. This analysis results
in the new fundamental dilation relationship /N/d(z) and its inverse in the dual and physical spaces
respectively. Furthermore, similar to [17, 18] the number of near vanishing moments is selected to balance
the accuracy and localization errors, again determined to be a function of both localization parameters N
and d(z). In addition to very substantial improvements in the convergence rate, as reflected in Theorems
3.2 and 4.2 as well as Figures 5.3 and 5.4, the optimal filter and mollifier are robust to inaccuracies in the
calculation of d(z). Using an incorrect values of d(z) does not destroy the accuracy for the entire smooth
region, rather a sub-optimal exponential accuracy is realized due to the imbalance of the localization and
accuracy errors. In conclusion, the optimal filter and mollifier presented here are a robust, exponentially
accurate, and computationally efficient method for the manipulation of piecewise smooth functions, given
its spectral information.
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