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Abstract

We extend the Aw-Rascle macroscopic model of car traffic into a two-way multi-
lane model of pedestrian traffic. Within this model, we propose a technique for the
handling of the congestion constraint, i.e. the fact that the pedestrian density cannot
exceed a maximal density corresponding to contact between pedestrians. In a first
step, we propose a singularly perturbed pressure relation which models the fact that
the pedestrian velocity is considerably reduced, if not blocked, at congestion. In a

1



second step, we carry over the singular limit into the model and show that abrupt
transitions between compressible flow (in the uncongested regions) to incompressible
flow (in congested regions) occur. We also investigate the hyperbolicity of the two-
way models and show that they can lose their hyperbolicity in some cases. We study
a diffusive correction of these models and discuss the characteristic time and length
scales of the instability.

1 Introduction

Crowd modeling and simulation is a challenging problem which has a broad range of
applications from public safety to entertainment industries through architectural and
urban design, transportation management, etc. Common and crucial needs for these
applications are the evaluation and improvement (both quantitatively and qualitatively) of
existing models, the derivation of new experimentally-based models and the construction
of hierarchical links between these models at the various scales.

The goal of this paper is to propose a phenomenological macroscopic model for pedes-
trian movement in a corridor. A macroscopic model describes the state of the crowd
through locally averaged quantities such as the pedestrian number density, mean velocity,
etc. Macroscopic models are opposed to Individual-Based Models (IBM’s) which follow
the location and state of each agent over time. Macroscopic models provide a description
of the system at scales which are large compared to the individuals scale. Although they
do not provide the details of the individuals scale, they are computationally more efficient.
In particular, their computational cost does not depend on the number of agents, but only
on the refinement level of the spatio-temporal discretization. In addition, by comparisons
with the experimental data, they give access to large-scale information about the system.
This information can provide a preliminary gross analysis of the data, which in turn can
be used for building up more refined IBM’s. This procedure requires that the link be-
tween the microscopic IBM and the macroscopic model has been previously established.
Therefore, macroscopic models which can be rigorously derived from IBM’s are crucial.

The present work focuses on a one-dimensional model of pedestrian traffic in corridors.
This setting has several advantages:

1. It makes the problem essentially one-dimensional and is a preliminary step for the
development of more complex multi-dimensional problems. The present work will
consider that pedestrian traffic occurs on discrete lanes. This approximation can
be viewed as a kind of discretization of the actual two-dimensional dynamics. It
prepares the terrain for the development and investigation of truly two-dimensional
models.

2. We can build up on previous experience in the field of traffic flow models. Our
approach relies on the Aw-Rascle model of traffic flow [3], which has been proven an
excellent model for traffic flow engineering [42]. In the present work, this approach
will be extended to two-way multi-lane traffic flow of pedestrians.

3. It is easier to collect well-controlled experimental data in corridors than in open
space (see for instance [34]).
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4. The relation of the macroscopic model to a corresponding microscopic IBM is more
easily established in the one-dimensional setting. In [2], it has been proven that
the Aw-Rascle model can be derived from a microscopic Follow-the-Leader model
of car traffic. The proof uses a Lagrangian formulation of the Aw-Rascle model.
The correspondence between the Lagrangian formulation and the IBM cannot be
carried over to the two dimensional case, because of the very special structure of
the Lagrangian model in one-dimension.

The most widely used models of pedestrian traffic are IBM’s. Several families of
models have been developed. Rule based models [38] have been used in particular for
the development of games and virtual reality, with several possible levels of description.
But their aim is more to have a realistic appearance rather than really reproducing a
realistic behavior. More robust models are needed for example to test and improve the
geometry of various types of buildings. Physicists have proposed some models inspired
from the fluid simulation methods. In the so-called ’social force’ model [18, 20, 21], the
equations of motion for each pedestrian have the form of Newton’s law where the force
is the sum of several terms each representing the ’social force’ under consideration. It
obviously relies on the analogy existing between the displacement of pedestrians and the
motion of particles in a gas. It describes quite well dense crowds, but not the individual
trajectories of a few interacting pedestrians. Other approaches have been developed in
the framework of cellular automata [9, 16, 31]. In these models, the non-local interactions
between pedestrians are made local through the mediation of a virtual floor field. These
models also are meant to describe the motion of crowds, not of individuals. Besides, a
systematic study of the isotropy of cellular automata models is still lacking. More recently,
some geometrical models have been developed. Pedestrians try to predict each others’
trajectories, and to avoid collisions [17, 33, 40]. The knowledge of other pedestrians’
trajectories depends on the perception that the pedestrian under consideration has, which
may vary with time. [35] takes into account the fact that this knowledge is acquired
progressively. Another type of perception based on the visual field is proposed in [32].
These models describe well the individual trajectories of a few interacting pedestrians,
but it is not obvious yet whether they can handle crowds.

By contrast to microscopic IBM’s, macroscopic crowd models are based on the anal-
ogy of crowd flow with fluid dynamics. A first approach has been proposed in [22]. In
[19], a fluid model is derived from a gas-kinetic model through a moment approach and
phenomenological closures. Recently, a similar approach has been proposed in [1]. In
[23, 24, 25], a continuum model is derived through optimal control theory and differential
games. It leads to a continuity equation coupled with a potential field which describes the
velocity of the pedestrians. Other phenomenological models based on the analogy with
the Lighthill-Whitham-Richards model of car traffic have been proposed by [4, 10, 11].
In [36, 37], instead of considering a continuous time evolution described by PDE’s, the
evolution of measures is performed on a discrete time scale. In the present paper, we
shall consider a continuous time description. Macroscopic models provide a description of
the system at large spatial scales. They can be heuristically justified for a long corridor
stretch like a subway corridor, when the spatial inhomogeneities are weak (such as low
variations of the density or velocity in the direction of the corridor). Of course, they
cannot be used when the spatial inhomogeneities are at the same scale as for instance
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the mean-interpedestrian distance in the longitudinal direction. In the case of narrow
corridors, this mean-interpedestrian distance is larger because there are less pedestrians
in a cross-section, and the condition of weak spatial inhomogeneities is more stringent.
From a rigorous standpoint, the derivation of macroscopic models from Individual-Based
models requires that the number of agents be large, which is obviously questionable in
most situations in pedestrians and highway traffic. Still there is a large literature devoted
to macroscopic models which seem to provide adequate models for large scale dynamics.

We will be specifically interested in two-way multi-lane traffic flow models with a
particular emphasis on the handling of congestions. These points have been previously
addressed in [41] for pedestrian counter-flows, [39] for multi-lane traffic and [29, 30] for the
treatment of congestions. However, to the best of our knowledge, none of these different
features have been included in the same model at the same time. The most difficult point
is the treatment of congestions. In the recent approach [29, 30] the congestion constraint
(i.e. the limitation of the density by a maximal density corresponding to contact between
pedestrians) is enforced by means of convex optimization tools (for IBM’s) or techniques
borrowed from optimal transportation such as Wasserstein metrics (for continuum mod-
els). However, these abstract methods do not leave much space for parameter fitting to
data and cannot distinguish between the behavior of pedestrians and say, sheep. Our
technique relies on the explicit derivation of the dynamics of congestions, in the spirit of
earlier work for traffic [6, 7, 13]. This procedure was initiated in the seminal work [8].

The outline of the paper is as follows. We first present the modeling approach for a
one-way one-lane Aw-Rascle model (1W-AR) of pedestrian flow in corridors in section 2.
We then successively extend this model into a two-way one-lane Aw-Rascle model (2W-
AR) in section 3 and to a two-way multi-lane Aw-Rascle model (ML-AR) in section 4. In
each section, we present the corresponding Aw-Rascle model, together with a simplified
version of it supposing that the pedestrian desired velocity is constant and uniform. We
refer these simplified models as ”Constant desired velocity Aw-Rascle” (CAR) models.
Therefore, we successively have the 1W-CAR, 2W-CAR and ML-CAR models as Constant
desired velocity versions of respectively the 1W-AR, 2W-AR and ML-AR models. The
1W-CAR model can be recast in the form of the celebrated Lighthill-Whitham-Richards
(LWR) model of traffic.

Finally, for each of these models, we propose a specific treatment of congestion regions.
This treatment consists in introducing a singular pressure in the AR model which tends
to infinity as the density approaches the congestion density (i.e. the density at which the
agents are in contact to each other). This singularly perturbed pressure relation provides
a significant reduction of the flow when the density reaches this maximal density. A small
parameter ε controls the thickness of the transition region. In the limit ε → 0, two phases
appear: an uncongested phase where the flow is compressible and a congested phases
where the flow is incompressible. The transition between these two phases is abrupt, by
contrast to the case where ε stay finite, where this transition is smooth. The location
of the transition interface is not given a priori and is part of the unknowns of the limit
problem.

Table 1 below provides a summary of the various proposed models and their relations.
One interesting characteristics of two-way models as compared to one-way models

is that they may lose their hyperbolicity in situations close to the congestion regime.
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Basic model Congestion model Congestion model
with smooth transition: with abrupt transition:

finite ε ε → 0

1W-AR Section Section Section
1-way 2.1 2.3.1 2.3.2
1-lane
1W-CAR Section Section Section
1-way 2.2 2.3.3 2.3.3
1-lane item (i) item (ii)

2W-AR Section Section Section
2-way 3.1 3.3.1 3.3.2
1-lane
2W-CAR Section Section Section
2-way 3.2 3.3.3 3.3.3
1-lane item (i) item (ii)

ML-AR Section Section Section
2-way 4.1 4.4.1 4.4.2
multi-lane
ML-CAR Section Omitted Omitted
2-way 4.3
multi-lane

Table 1: Table of the various models, with some of their characteristics and the sections in
which they are introduced. The meaning of the acronyms is as follows: AR=’Aw-Rascle model’,
CAR=’Aw-Rascle model with Constant Desired Velocity’. The left column (basic model) refers
the general formulation of the model and the middle and right columns, the modified models
taking into account the congestion phenomena. The middle column corresponds to a smooth
transition from uncongested state to congestion while the right column corresponds to an abrupt
phase transition.

Although, this loss of hyperbolicity can be seen as detrimental to the model, the resulting
instability may explain the appearance of crowd turbulence at high densities. We note
that a loss of (strict) hyperbolicity has already been found in a multi-velocity one-way
model [5]. In order to gain insight into this instability, in section 5, we analyze the
diffusive perturbation of the two-way Aw-Rascle model with constant desired velocity,
and exhibit the typical time scale and growth rate of the so-generated structures. These
observables can be used to assess the model and calibrate it against empirical data. In
order to illustrate these considerations, we show numerical simulations that confirm the
appearance of these large-scale structures which consist of two counter-diffusing crowds.
In these simulations, which are presented for illustrative purposes only, in order to explore
what kind of structures the lack of hyperbolicity of the model leads to, we assume a smooth
pressure-density relation. Thanks to this assumption, we omit to treat the congestion
constraint, which is a difficult stiff problem, for which special methods have to be designed
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(see e.g. [15, 14] for the case of Euler system of gas dynamics and [6, 13] for the AR model).

2 One-way one-lane traffic model

2.1 An Aw-Rascle model for one-lane one-way pedestrian traffic

In this section, we construct a one-lane one-way continuum model of pedestrian traffic in
corridors. In this model, we will pay a particular attention to the occurrence of conges-
tions. We encode the congestion effect into a constraint of maximal total density. This
work is inspired by similar approaches for vehicular traffic, which have been developed in
[6, 7, 13].

For that purpose, the building block is a one-lane, one-way Aw-Rascle (1W-AR) model
which has been proposed for vehicular traffic flow [3]. This model belongs to the class of
second-order models in the sense that it considers that both the density and the velocity
are dynamical variables which are subject to time-differential equations. By contrast, first
order models use the density as the only dynamical variable and prescribe the density flux
as a local function of the density. The Aw-Rascle model with constant desired velocity
considered in section 2.2 is an example of a first order model.

Definition 2.1 (1W-AR model) Let ρ(x, t) ∈ R the density of pedestrians on the lane,
u ∈ R+ their velocity, w(x, t) ∈ R+ the desired velocity of the pedestrian in the absence
of obstacles and p(ρ) the velocity offset between the desired and actual velocities of the
pedestrian. The 1W-AR model is written:

∂tρ+ ∂x(ρu) = 0, (1)

∂t(ρw) + ∂x(ρwu) = 0, (2)

w = u+ p(ρ). (3)

In this model, the offset p(ρ) is an increasing function of the pedestrian density. By
analogy with fluid mechanics, this offset will be often referred to as the pressure, but its
physical dimension is that of a velocity.

Using the mass conservation equation, we can see that the desired velocity is a La-
grangian quantity (i.e. is preserved by the flow), in the sense that:

∂tw + u∂xw = 0. (4)

It is natural, since the desired velocity is a quantity which is attached to the particles and
should move together with the particles at the flow velocity.

This model has been studied in great detail in [3] and proven to derive from a follow-
the-leader model of car traffic in [2]. Of particular interest is the fact that this model is
hyperbolic, with two Riemann invariants. The first one is obviously the desired velocity w
as (4) testifies. The second one is less obvious but is nothing but the actual flow velocity
u. Indeed, from (4) and using (1), we get:

∂tu+ u∂xu = −(∂tp+ u∂xp)

= −p′(ρ)(∂tρ+ u∂xρ)

= p′(ρ)ρ∂xu,
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and therefore

∂tu+ (u− p′(ρ)ρ)∂xu = 0. (5)

Therefore, information about the fluid velocity propagates with a velocity

cu = u− p′(ρ)ρ. (6)

In the reference frame of the fluid, this gives raise to waves moving upstream the flow
with a speed equal to −p′(ρ)ρ.

Remark 1 We can also consider the evolution of ρu instead of that of u. We obtain from
(4) and using (1):

∂t(ρu) + ∂x(ρuu) = −(∂t(ρp) + ∂x(ρpu))

= −ρ(∂tp+ u∂xp)

= −ρ
dp

dt
, (7)

where we have introduced the material derivative d/dt = ∂t+u∂x. This form is motivated
by the observation [3] that drivers do not react to local gradients of the vehicle density
but rather to their material derivative in the frame of the driver. This modification to
standard gas dynamics like models of traffic was crucial in obtaining a cure to the various
deficiencies of second order models as observed by Daganzo [12]. Eq. (7) can also be put
in the form

∂t(ρu) + ∂x(ρuw) = −∂t(ρp)

= −π′(ρ)∂tρ

= π′(ρ)∂x(ρu), (8)

with

π(ρ) = ρp(ρ), π′(ρ) = ρp′(ρ) + p(ρ). (9)

We will consider the 1W-AR model as a building block for the pedestrian model. In
order to make the connection with a microscopic view of pedestrian flow, we consider a
subcase of this model in the section below.

2.2 Constant desired velocity

This one-way Constant Desired Velocity Aw-Rascle (1W-CAR) model assumes that the
pedestrians can have only two velocities: either a fixed uniform velocity V which is the
same for all pedestrians and does not vary with time ; or zero, indicating that they
are immobile. In other words, if because of the high density of obstacles in front, the
pedestrians cannot proceed further with the velocity V , they have to stop.

In this case,

w = V
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f(ρ)

ρρmax
Figure 1: Density flux f(ρ) = ρ(V − p(ρ)) as a function of ρ in the 1W-CAR model.

is a fixed value and therefore, the actual flow velocity

u = V − p(ρ) (10)

is a local function of ρ. This leads to a first-order model where the flux velocity is given
as a local prescription of the density.

Definition 2.2 (1W-CAR model) Let ρ(x, t) ∈ R the density of pedestrians on the
lane, V ∈ R+ the (constant) desired velocity of pedestrians and p(ρ) the pressure. The
1W-CAR model is written:

∂tρ+ ∂x(ρ(V − p(ρ))) = 0. (11)

We denote by f(ρ) = ρ(V −p(ρ)) the mass flux. The quantity p(ρ) being an increasing
function of ρ, f(ρ) has a concave shape (and is actually concave if ρp(ρ) is convex), which is
consistent with classical first-order traffic models such as the Lighthill-Whitham-Richards
(LWR) model [28]. Figure 1 provides a graphical view of f(ρ). It is interesting to note that
the original 1W-AR model can be viewed as a LWR model with a driver-dependent flux
function f(ρ, w) = ρ(w−p) where w is the driver dependent parameter, and consequently
moves with the flow speed. It follows that the LWR is a useful lab to test concepts
ultimately applying to the 1W-AR model. However, some of the features of the LWR
model are too simple (such as the conservation of the maxima and minima of ρ) and a
realistic description of the dynamics requires more complex models such as the 1W-AR
model.

It is also instructive to write the 1W-CAR model as a second order model, like the
1W-AR model. Indeed, using (8) and (10), we can write (11) as:

∂tρ+ ∂x(ρu) = 0, (12)

∂t(ρu) + ∂x(ρuV ) = π′(ρ)∂x(ρu). (13)

Conversely, if ρ and u are solutions of this model, using the fact that V is a constant
together with eq. (12) to modify the second term of (13), and using the r.h.s. of eq. (8)
to modify the r.h.s of (13), we find, :

∂t(ρ(p+ u− V )) = 0.

Therefore, if (10) is satisfied initially, it is satisfied at all times and we recover (11).
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Remark 2 The 1W-CAR model in the form (12), (13) has an interesting interpretation
in terms of microscopic dynamics, when the pedestrians have two velocity states, the
moving one with velocity V and the steady one, with velocity 0. Indeed, denoting by
g(x, t) the density of moving pedestrians and by s(x, t) that of steady pedestrians, we have

ρ = g + s.

Because the moving pedestrians move with velocity V , we can write the pedestrian flux ρu
as

ρu = V g. (14)

Since by (11), ρu = ρ(V − p(ρ)), we deduce that

g = ρ(1 − p(ρ)

V
), s = ρ

p(ρ)

V
.

Not surprisingly, the offset velocity scaled by the particle velocity is nothing but the pro-
portion of steady particles and it is completely determined by the total density ρ.

We deduce from (14) that system (12), (13) can be rewritten in the form:

∂t(g + s) + ∂x(V g) = 0, (15)

∂t(V g) + ∂x(V
2g) = V π′(ρ)∂xg, (16)

Dividing (16) by V and subtracting to (15), we find:

∂tg + ∂x(V g) = π′(ρ)∂xg,

∂ts = −π′(ρ)∂xg.

Thus, the term π′(ρ)∂xg represents the algebraic transfer rate from immobile to moving
particles, while −π′(ρ)∂xg represents the opposite transfer. Therefore, this model assumes
that the pedestrians decide to stop or become mobile again, based not only on local ob-
servation of the surrounding density, but on the observation of their gradients. More
precisely, keeping in mind that π′(ρ) and V have the same sign, the transfer rate from
the immobile to moving state is positive if the moving particle density increases in the
downstream direction, indicating a lower congestion. Symmetrically, the transfer rate
from the moving to immobile state increases if the moving particle density decreases in
the downstream direction, indicating an increase of congestion. These evaluations of the
variation of the moving particle density derivative are weighted by increasing functions of
the density, meaning that the reactions of the pedestrians to their environment are faster
if the density is large.

We now turn to the introduction of the density constraint in the 1W-AR or 1W-CAR
models.
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2.3 Introduction of the maximal density constraint in the 1W-

AR model

The maximal density constraint (also referred to below as the congestion constraint) is
implemented in the expression of the velocity offset or pressure p. Two ways to achieve
this goal are proposed.

In the first one, p is a smooth function of the particle density which blows-up at the
approach of the maximal allowed density ρ∗.

In the second one, congestion results in an incompressibility constraint which produces
non-local effects with infinite speed of propagation of information. In congested regions,
the pressure is no longer a function of the density but becomes implicitly determined by
the incompressibility constraint. The transition from uncongested to congested regions is
abrupt and appears as a kind of phase transition. This second approach can be realized
as an asymptotic limit of the first approach where compression waves (or acoustic waves
by analogy with gas dynamics) propagate at larger and larger speeds (so-called low Mach-
number limit).

Below, we successively discuss these two strategies. Then, we specifically consider the
introduction of the congestion constraint within the 1W-CAR model.

2.3.1 Congestion model with smooth transitions between uncongested and
congested regions

To implement the congestion constraint, we will highly rely on previous work [6, 7, 13],
where this constraint has been implemented in the 1W-AR model. We take a convex
function p(ρ) such that p(0) = 0, p′(0) ≥ 0 and p(ρ) → ∞ as ρ → ρ∗. More explicitly, we
can choose for instance for the pressure:

p(ρ) = pε(ρ) = P (ρ) +Qε(ρ), (17)

P (ρ) = Mρm, m > 1, (18)

Qε(ρ) =
ε

(

1
ρ
− 1

ρ∗

)γ , γ > 1. (19)

P (ρ) is the background pressure of the pedestrians in the absence of congestion (and
is taken in the form of an isentropic gas dynamics equation of state). Qε is a correction
which turns on when the density is close to congestion (i.e. ε ≪ 1 is a small quantity), and
modifies the background pressure to have it match the congestion condition p(ρ) → ∞ as
ρ → ρ∗.

Indeed, as long as ρ−ρ∗ is not too small, the denominator in (19) is finite and Qε(ρ) is
of order ε. Thus the pressure p is dominated by the P term. However, a crossover occurs
when

(

1

ρ
− 1

ρ∗

)γ

∼ ε,

i.e. when
ρ∗ − ρ ∼ ρρ∗ε1/γ. (20)
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ε1/γ

ρ

pε(ρ)

pε

P

Qε

ρ∗

Figure 2: Schematic representation of Qε, P , and pε = P +Qε, as a function of ρ.

Thus in a density range near ρ∗ which scales as ε1/γ , the correction Qε(ρ) becomes of
order unity.

This is represented schematically on Figure 2. Note that the precise shape of the term
(

1
ρ
− 1

ρ∗

)γ

is not important, as it does not contribute to the pressure law, except in a

narrow region close to congestion. The chosen expression ensures that Qε(ρ = 0) = 0,
and that it becomes significant in the vicinity of ρ∗ only. Note also that Qε is an increasing
function of ρ, in order to keep the problem hyperbolic.

The pressure singularity at ρ = ρ∗ ensures that the congestion density ρ∗ cannot be
exceeded. Indeed, let us consider a closed system (e.g. the system is posed on an interval
[a, b] with periodic boundary conditions) for simplicity. Let u0 and w0 be the initial
conditions and suppose that they satisfy

0 ≤ um ≤ u0 ≤ uM, 0 ≤ wm ≤ w0 ≤ wM,

for some constants um, uM, wm, wM. Then, [3] notices that, at any time, u and w satisfy
the same estimates:

0 ≤ um ≤ u(x, t) ≤ uM, 0 ≤ wm ≤ w(x, t) ≤ wM, ∀(x, t) ∈ [a, b]× R+. (21)

In other words, this estimate defines an invariant region of the system. It follows from
the fact that, u and w being the two Riemann invariants, they are transported by the
characteristic fields (see eqs. (5), (4)) and therefore, satisfy the maximum principle. From
(21), we deduce that w − u = p(ρ) ≤ wM − um, and we also have that p(ρ) ≥ 0 at all
times. Let p−1 be the inverse function of p. Since p maps [0, ρ∗) increasingly to R+, then
p−1 maps increasingly R+ onto [0, ρ∗), from which the estimate ρ ≤ p−1(wM − um) < ρ∗

follows. This indeed shows that the constraint ρ < ρ∗ is satisfied at all times. From the
estimate (21), we also see that u cannot become negative, so that the estimate w ≥ p(ρ)
is also satisfied at all times.

With this ε-dependent pressure, the 1W-AR model becomes a perturbation problem,
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written as follows:

∂tρ
ε + ∂x(ρ

εuε) = 0, (22)

∂t(ρ
εwε) + ∂x(ρ

εwεuε) = 0, (23)

wε = uε + pε(ρε). (24)

The next section investigates the formal ε → 0 limit.

2.3.2 Congestion model with abrupt transitions between uncongested and
congested regions

In the limit ε → 0, the uncongested motion remains unperturbed until the density hits
the exact value ρ∗. Once this happens, congestion suddenly turns on and modifies the
dynamics abruptly. In the uncongested regions, the flow is compressible ; it becomes
incompressible at the congestion density ρ∗. Therefore, in the limit ε → 0, the abrupt
transition from uncongested motion (when ρ < ρ∗) to congested motion (when ρ = ρ∗)
corresponds to the crossing of a phase transition between a compressible to an incom-
pressible flow regime.

In the limit ε → 0, the arguments of [6, 7, 13] can be easily adapted. Suppose that
ρε → ρ < ρ∗. In this case, Qε(ρε) → 0 and we recover an 1W-AR model associated to the
pressure P (ρ):

∂tρ
0 + ∂x(ρ

0u0) = 0, (25)

∂t(ρ
0w0) + ∂x(ρ

0w0u0) = 0, (26)

w0 = u0 + P (ρ0). (27)

If on the other hand, ρε → ρ∗, then Qε(ρε) → Q̄ with 0 ≤ Q̄ ≤ wM. Therefore, the
total pressure is such that pε(ρε) → p̄ with P (ρ∗) ≤ p̄. In this case, the model becomes
incompressible:

∂xu
0 = 0, (28)

∂tw
0 + u0∂xw

0 = 0, (29)

w0 = u0 + p̄, with P (ρ∗) ≤ p̄. (30)

Note that in this congested region, the density does not vary (it is equal to ρ∗) and cannot
determine the pressure anymore. Indeed, the functional relation between the density and
the pressure is broken and p̄ may be varying with x even though ρ does not. The spatial
variations of p̄ compensate exactly (through (30)) the variations of w0, in such a way
that all the pedestrians, whatever their desired velocity is, move at the same speed in the
congestion region.

This can also be seen when taking the limit ε → 0 in (5). Indeed, if ρε → ρ∗ with
pε(ρε)(= wε−uε) staying finite, then ρε−ρ∗ = O(ε1/γ) (see (20)) and dpε/dρ ∼ ε−1/γ → ∞.
Therefore, in the congested regime, the derivative of the pressure with respect to the
density becomes infinite. Inserting this in (5) shows that ∂xu

ε → 0. This ensures that
all the pedestrians move at the same speed. Simultaneously, this blocks any further
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increase of the density, which cannot become larger than ρ∗. Indeed, the mass conservation
equation (1) tells us that

d

dt
ρε = ∂tρ

ε + uε∂xρ
ε = −ρε∂xu

ε,

and consequently, if ∂xu
ε → 0, any further increase of the density is impeded.

In the general case, we expect that the two limit regimes coexist. The congested
region may appear anywhere in the flow, depending on the initial conditions. Congestion
regions must be connected to uncongested regions by interface conditions. Across these
interfaces, ρ and ρw, which are conserved quantities obey the Rankine-Hugoniot relations.
The quantity w, which is thought of as the (locally averaged) pedestrians’ desired velocity
is modified across the interfaces through these relations. However, the bounds (21) are
preserved (see [3]).

Connecting congested and uncongested regions is a delicate problem which has been
investigated in [6] by a careful inspection of Riemann problem solutions. Specifically, [6]
treats the special case M = 0 in (17)-(19). The present choice of the pressure (17)-(19)
is slightly different: in the limit ε → 0, it produces a non-zero pressure in the uncon-
gested region, while [6] considers that uncongested regions are pressureless in this limit.
Pressureless gas dynamics develops some unpleasant features (such as the occurrence of
vacuum, weak instabilities, and so on). Keeping a non-zero pressure in the uncongested
region in the limit ε → 0 allows to bypass some of these problems and represents an
improvement over [6]. Of course, the precise choice of m and M must be fitted against
experimental data.

We do not attempt to derive interface conditions between uncongested and congested
regions for the present choice of the pressure. Indeed, the perturbation problem (22)-(24),
even with a small value of ε is easier to treat numerically than the connection problem
between the two models (25)-(27) and (28)-(30). Therefore, we will not regard the limit
model as a numerically effective one, but rather, as a theoretical limit which provides some
useful insight. Still, the numerical treatment of the perturbation problem requires some
care. Of particular importance is the development of Asymptotic-Preserving schemes, i.e.
of schemes that are able to capture the correct asymptotic limit when ε → 0. This is not
an easy problem because of the blow up of the pressure near ρ∗. Indeed, due to the blow
up of the characteristic speed in (5), the CFL stability condition of a classical explicit
shock-capturing method leads to a time-step constraint of the type ∆t = 0(ε1/γ) → 0
as ε → 0. For this reason, classical explicit shock-capturing methods cannot be used to
explore the congestion constraint when ε → 0 and Asymptotic-Preserving schemes are
needed.

Another reason for considering the perturbation problem (22)-(24) instead of the limit
model is that the congestion may appear gradually rather than like an abrupt phase
transition from compressible to incompressible motion. In particular, for large pedestrian
concentrations, some erratic motions occur (this is referred to as crowd turbulence) and
might be modeled by a suitable (may be different) choice of the perturbation pressure Qε.
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2.3.3 Introduction of the congestion constraint in the constant desired ve-
locity 1W-CAR model

(i) Congestion model with smooth transitions. The smooth pressure relations (17)-(19)
can be used for the 1W-CAR model. Because ρ now satisfies a convection equation:

∂tρ+ (V − (ρp)′(ρ))∂xρ = 0,

the initial bounds are preserved. Indeed, suppose that

0 ≤ ρm ≤ ρ0 ≤ ρM < ρ∗,

for some constants ρm, ρM, then, at any time, ρ satisfy the same estimates.

0 ≤ ρm ≤ ρ(x, t) ≤ ρM < ρ∗, ∀(x, t) ∈ [a, b]× R+.

In this way, the constraint 0 ≤ ρ ≤ ρ∗ is always satisfied. However, the fact that the
bounds on the density are preserved by the dynamics can be viewed as unrealistic. In
real pedestrian traffic, strips of congested and uncongested traffic spontaneously emerge
from rather space homogeneous initial conditions. The generation of new maximal and
minimal bounds is an important feature of real traffic systems which is not well taken
into account in the 1W-CAR model and more generally, in LWR models.

(ii) Congestion model with abrupt transitions. If the limit ε → 0 is considered, and if the
upper bound ρM = ρεM depends on ε and is such that ρεM → ρ∗, then, some congestion
regions can occur. The limit model in the uncongested region does not change, and is
given by the single conservation relation (11) with the pressure p(ρ0) = P (ρ0). In the
congested region, we have ρ0 = ρ∗, which implies ∂xu

0 = 0. In terms of the moving and
steady pedestrian densities, the congested regime means that

∂xg
0 = 0, s0 = ρ∗ − g0,

i.e. both the steady and moving pedestrian densities are uniform in the congested region.

3 Two-way one-lane traffic model

3.1 An Aw-Rascle model for two-way one-lane pedestrian traffic

The extension of the 1W-AR model to 2-way traffic, denoted by 2W-AR model, may seem
rather easy, the 2-way traffic is written as a system of two 1-way models. However, we
will see that the mathematical properties of the 2-way models are rather different from
their one-way counterpart.

Definition 3.1 (2W-AR model) Let ρ± the density of pedestrians, u± their velocity,
w± their desired velocity and p the pressure, with an index + for the right-going pedestrians
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and − for the left-going ones. The 2W-AR model for 2-way traffic is written:

∂tρ+ + ∂x(ρ+u+) = 0,

∂tρ− + ∂x(ρ−u−) = 0,

∂t(ρ+w+) + ∂x(ρ+w+u+) = 0,

∂t(ρ−w−) + ∂x(ρ−w−u−) = 0,

w+ = u+ + p(ρ+, ρ−),

w− = −u− + p(ρ−, ρ+).

The coupling of the two flows of pedestrians in the 2W-AR model is through the
prescription of the pressures which are functions of the densities of the two species ρ+ and
ρ−. Our conventions are that the desired velocities w± and the velocity offsets p(ρ±, ρ∓)
are magnitudes, and as such, are positive quantities. The actual velocities u± are signed
quantities: u+ > 0 for right-going pedestrians and u− < 0 for left-going pedestrians.
These conventions explain the different signs in factor of the velocities for (31) and (31).
However, we do not exclude that, in particularly congested conditions, the right-going
pedestrians may have to go backwards (i.e. to the left) or vice-versa, the left-going
pedestrians have to go to the right. Therefore, we do not make any a priori assumption
on the sign of u±. For obvious symmetry reasons, the same pressure function is used for
the two particles, with reversed arguments. The function p is increasing with respect to
both arguments since the velocity offset of one of the species increases when the density
of either species increases.

Some of the properties of the 1W-AR system extend to the 2W-AR one. For instance,
the desired velocities are Lagrangian variables, as they satisfy:

∂tw+ + u+∂xw+ = 0,

∂tw− + u−∂xw− = 0.

Unfortunately, the velocities u+ and u− do not constitute Riemann invariants any longer
because of the coupling induced by the dependence of p upon ρ+ and ρ−. For this reason
initial bounds on u+ and u− are not preserved by the flow, as they were in the case of
the 1W-AR model. Since the velocity offsets p(ρ+, ρ−) and p(ρ−, ρ+) are not bounded a
priori, the velocities u+ and u− can reverse sign when the velocity offsets are large. This is
expected to reflect the fact that a dense crowd moving in one direction may force isolated
pedestrians going the other way to move backwards. Of course, such a situation is only
expected in close to congestion regimes.

Nonetheless, the evolution of the pedestrian fluxes reflects the same phenomenology
as in the one-way case, namely that pedestrians react to the Lagrangian derivative of the
pressure, as shown by the following eqs. (which are the 2-way equivalents of eq. (7)):

∂t(ρ+u+) + ∂x(ρ+u+u+) = −ρ+

(

d

dt

)

+

[p(ρ+, ρ−)],

∂t(ρ−u−) + ∂x(ρ−u−u−) = ρ−

(

d

dt

)

−

[p(ρ−, ρ+)],
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where the material derivatives (d/dt)± = ∂t + u±∂x depend on what type of particles is
concerned. These equations can also be put in the form (equivalent to (8) for the 1W-AR
model):

∂t(ρ+u+) + ∂x(ρ+u+w+) =
[

p(ρ+, ρ−) + ρ+ ∂1p|(ρ+,ρ−)

]

∂x(ρ+u+) +

+ρ+ ∂2p|(ρ+,ρ−) ∂x(ρ−u−), (31)

∂t(ρ−u−)− ∂x(ρ−u−w−) = −
[

p(ρ−, ρ+) + ρ− ∂1p|(ρ−,ρ+)

]

∂x(ρ−u−)

−ρ− ∂2p|(ρ−,ρ+) ∂x(ρ+u+), (32)

where we denote by ∂1p and ∂2p the derivatives of the function p with respect to its first
and second arguments respectively. This form of the equations will be used below for the
derivation of the Constant Desired Velocity model.

The 2W-AR model is not always hyperbolic. Before stating the result, we introduce
some notations. We define:

c++ = ∂1p(ρ+, ρ−), c+− = ∂2p(ρ+, ρ−), (33)

c−+ = ∂2p(ρ−, ρ+), c−− = ∂1p(ρ−, ρ+). (34)

We assume that p is increasing with respect to both arguments, which implies that all
quantities defined by (33), (34) are non-negative. This assumption simply means that the
pedestrian speed is reduced if the densities of either categories of pedestrians increase.
For a given state (ρ+, w+, ρ−, w−), the fluid velocities are given by:

u+ = w+ − p(ρ+, ρ−), u− = −w− + p(ρ−, ρ+).

We also define the following velocities

cu+
= u+ − ρ+c++, cu−

= u− + ρ−c−−.

These are the characteristic speeds (6) of the 1W-AR system. Specifically, cu+
is the wave

at which information about velocity would propagate in a system of right-going pedestri-
ans without coupling with the left-going ones. A similar explanation holds symmetrically
for cu−

.
We now have the following theorem, the proof of which is elementary and left to the

reader.

Theorem 3.2 The 2W-AR system is hyperbolic about the state (ρ+, w+, ρ−, w−) if and
only if the following condition holds true:

∆ := (cu+
− cu−

)2 − 4ρ+ρ−c+−c−+ ≥ 0. (35)

The quantities u± are two characteristics velocities of the system. If condition (35) is
satisfied, the two other characteristic velocities are

λ± =
1

2

[

cu+
+ cu−

±
√
∆
]

. (36)
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Non-hyperbolicity occurs when the two characteristic velocities cu+
and cu−

of the uncou-
pled systems are close to each other. In this case, the first term of ∆ is close to zero and
does not compensate for the second term, which is negative. These conditions happen in
particular when both velocities cu+

and cu−
are close to zero, which corresponds to the

densities where the fluxes ρ+u+, ρ−u− are maximal as functions of the densities ρ+, ρ−
respectively. In particular, in the one-way case with constant speed of figure 1, this would
correspond to the point ρmax. These conditions correspond to the onset of congestion.
Therefore, instabilities linked to the non-hyperbolic character of the model will develop
in conditions close to congestion.

The occurrence of regions of non-hyperbolicity is not entirely surprising. The insta-
bility of two counter-propagating flows is a common phenomenon in fluid mechanics. In
plasma physics, the instability of two counter-propagating streams of charged particles
is well known under the two-stream instability. The situation here is extremely similar,
in spite of the different nature of the interactions (which are mediated by the long-range
Coulomb force in the plasma case).

The occurrence of a non-hyperbolic region is often viewed as detrimental, because in
this region, the model is unstable. On the other hand, self-organization phenomena like
lane formation or the onset of crowd turbulence cannot be described by an everywhere
stable model. For instance, morphogenesis is explained by the occurrence of the Turing
instability in systems of diffusion equations. Here, diffusion is not taken into account and
the instability originates from a different phenomenon. However, in practice, some small
but non-zero diffusion always exists. This diffusion damps the small scale structures but
keeps the large scale structures growing. The typical size of the observed structures can
be linked to the threshold wave-number below which instability occurs.

Numerical simulations to be presented in a forthcoming work will allow us to determine
whether the phenomena which are observed in dense crowds may be explained by this
type of instability. In section 5, a stability analysis of a diffusive two-way LWR model
will provide more quantitative support to these concepts.

3.2 The constant desired velocity Aw-Rascle model for two-way

one-lane pedestrian traffic

To construct the two-way constant desired velocity Aw-Rascle model (2W-CAR) for two-
way one-lane pedestrian traffic, we must set

w+ = w− = V, (37)

and

u+ = V − p(ρ+, ρ−), u− = −V + p(ρ−, ρ+). (38)

This leads to the following model:

Definition 3.3 (2W-CAR model) Let ρ+ and ρ− the densities of pedestrians moving
to the right and to the left respectively, V the (constant) desired velocity of pedestrians
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and p the pressure term. The 2W-CAR model is written:

∂tρ+ + ∂x(ρ+(V − p(ρ+, ρ−))) = 0, (39)

∂tρ− − ∂x(ρ−(V − p(ρ−, ρ+))) = 0. (40)

These are two first-order models coupled by a velocity offset which depends on the
two densities.

We can find the same interpretation of this model in terms of moving and steady
particles as in the one-way model case. Using (31), (32) and (37), we can write:

∂tρ+ + ∂x(ρ+u+) = 0, (41)

∂tρ− + ∂x(ρ−u−) = 0, (42)

∂t(ρ+u+) + ∂x(ρ+u+V ) =
[

p(ρ+, ρ−) + ρ+ ∂1p|(ρ+,ρ−)

]

∂x(ρ+u+) +

+ρ+ ∂2p|(ρ+,ρ−) ∂x(ρ−u−), (43)

∂t(ρ−u−)− ∂x(ρ−u−V ) = −
[

p(ρ−, ρ+) + ρ− ∂1p|(ρ−,ρ+)

]

∂x(ρ−u−)

−ρ− ∂2p|(ρ−,ρ+) ∂x(ρ+u+). (44)

Conversely, if ρ+, u+, ρ−, u− are solutions of this model, using the same method as in the
one-way case, we easily find that:

∂t(ρ±(p± u± − V )) = 0.

Therefore, if (38) is satisfied initially, it is satisfied at all times and we recover (39), (40).
Now, we denote by g±(x, t) the density of the moving particles and by s±(x, t) that of

the steady particles with a + (respectively a −) indicating the right-going (respectively
left-going) pedestrians. Although steady, the pedestrians have a desired motion either to
the right or to the left, and we need to keep track of these intended directions of motions.
We have

ρ± = g± + s± and ρ±u± = ±V g±.

We deduce that

s+
ρ+

=
p(ρ+, ρ−)

V
,

s−
ρ−

=
p(ρ−, ρ+)

V
.

Therefore, the offset velocities p(ρ+, ρ−) and p(ρ−, ρ+) scaled by the particle velocity V
represent the proportions of the steady particles s+/ρ+ and s−/ρ− respectively. Now, we
can rewrite (41)-(44) as follows:

∂t(g+ + s+) + ∂x(V g+) = 0,

∂t(g− + s−)− ∂x(V g−) = 0,

∂t(V g+) + ∂x(V
2g+) =

[

p(ρ+, ρ−) + ρ+ ∂1p|(ρ+,ρ−)

]

∂x(V g+)

−ρ+ ∂2p|(ρ+,ρ−) ∂x(V g−),

∂t(V g−)− ∂x(V
2g−) = −

[

p(ρ−, ρ+) + ρ− ∂1p|(ρ−,ρ+)

]

∂x(V g−) +

+ρ− ∂2p|(ρ−,ρ+) ∂x(V g+).
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By simple linear combinations, this system is equivalent to

∂tg+ + ∂x(V g+) =
[

p(ρ+, ρ−) + ρ+ ∂1p|(ρ+,ρ−)

]

∂xg+

−ρ+ ∂2p|(ρ+,ρ−) ∂xg−,

∂tg− − ∂x(V g−) = −
[

p(ρ−, ρ+) + ρ− ∂1p|(ρ−,ρ+)

]

∂xg− +

+ρ− ∂2p|(ρ−,ρ+) ∂xg+,

∂ts+ = −
[

p(ρ+, ρ−) + ρ+ ∂1p|(ρ+,ρ−)

]

∂xg+ + ρ+ ∂2p|(ρ+,ρ−) ∂xg−,

∂ts− =
[

p|(ρ−,ρ+) + ρ−∂1p|(ρ−,ρ+)

]

∂xg− − ρ−∂2p|(ρ−,ρ+)∂xg+.

Like in the one-way model, we find that the transition rates from the steady to moving
states or vice-versa depend on the derivatives of the concentrations of moving pedestrians.
Now, both the left and right going pedestrian total densities appear in the expressions of
the transitions rates for either species. This is due to the coupling through the pressure
term, which depends on both densities.

Like the 2W-AR model, the 2W-CAR model is not always hyperbolic. Using the same
notations as in the previous section, we have the:

Theorem 3.4 The 2W-CAR system is hyperbolic about the state (ρ+, ρ−) if and only if
condition (35) is satisfied. In this case, the two characteristic velocities are given by (36).

This can be seen directly from equations (39) and (40), once they are put under the form

∂t

(

ρ+
ρ−

)

+

(

cu+
−ρ+c+−

ρ−c−+ cu−

)

∂x

(

ρ+
ρ−

)

= 0.

We refer to the end of section 3.1 for more comments about this property.

3.3 Introduction of the congestion constraint in the 2W-AR

model

3.3.1 Congestion model with smooth transitions

It is difficult to make a prescription for the function p. Its expression should be fitted to
experimental data. Here we propose a form which allows us to investigate the effects of
congestion. We propose:

p(ρ+, ρ−) = pε(ρ+, ρ−) = P (ρ) +Qε(ρ+, ρ−), with ρ = ρ+ + ρ− (45)

P (ρ) = Mρm, m ≥ 1, (46)

Qε(ρ+, ρ−) =
ε

q(ρ+)
(

1
ρ
− 1

ρ∗

)γ , γ > 1. (47)

The rationale for this formula is as follows. First, in uncongested regime, we expect
that the velocity offsets of the right and left going pedestrians are the same, this common
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offset being a function of the total particle density. Thus, the uncongested flow pressure
P given by (46) is a function of ρ only, and has the same shape as in the one-way case.
Congestion occurs when the total density ρ becomes close to ρ∗. Therefore, formula
(47) resembles (19), except for the prefactor q(ρ+). With this choice of the pressure, we
anticipate that the constraint

ρ = ρ+ + ρ− ≤ ρ∗

will be satisfied everywhere in space and time, like in the one-way case.
The prefactor q(ρ+) takes into account the fact that the velocity offset for the majority

particle is smaller than that of the minority particle. Therefore, we prescribe q to be an
increasing function of ρ+. For further usage, we note the following formula, which follows
from eliminating ((1/ρ)− (1/ρ∗))γ between Qε(ρ+, ρ−) and Qε(ρ−, ρ+):

q(ρ+)Q
ε(ρ+, ρ−) = q(ρ−)Q

ε(ρ−, ρ+). (48)

It is more convenient to express this formula as

Qε(ρ+, ρ−)

Qε(ρ−, ρ+)
=

q(ρ−)

q(ρ+)
,

remembering that q is an increasing function. This formula states that the velocity offset
for the right and left-going particles are inversely proportional to the ratios of a (function
of) the densities. Since q is increasing and taking ρ− < ρ+ as an example, we deduce
that the velocity offset of the right-going particles will be less than that of the left-going
particles. In other words, the flow of the majority category of pedestrians is less impeded
than that of the minority one. In order to keep Qε(ρ±, ρ∓) small whenever ρ < ρ∗, we
require that q(ρ±) = O(1) when ρ± < ρ∗ . Physically relevant expressions of q(ρ±) can
be obtained from real experiments. A possible extension, that we will not consider here,
would be to have different functions q+(ρ+) and q−(ρ−). This could model the fact that
for example, a crowd heading towards a train platform could be more pushy than the one
going in the opposite direction.

The 2W-AR model with ε-dependent pressure becomes a perturbation problem:

∂tρ
ε
+ + ∂x(ρ

ε
+u

ε
+) = 0,

∂tρ
ε
− + ∂x(ρ

ε
−u

ε
−) = 0,

∂t(ρ
ε
+w

ε
+) + ∂x(ρ

ε
+w

ε
+u

ε
+) = 0,

∂t(ρ
ε
−w

ε
−) + ∂x(ρ

ε
−w

ε
−u

ε
−) = 0,

wε
+ = uε

+ + pε(ρε+, ρ
ε
−),

wε
− = −uε

− + pε(ρε−, ρ
ε
+).

3.3.2 Congestion model with abrupt transitions

This case corresponds to the formal limit ε → 0 of the previous model. Suppose that
ρε → ρ < ρ∗. In this case, Qε(ρε±, ρ

ε
∓) → 0 and we recover a 2W-AR model associated to

the pressure P (ρ):
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∂tρ
0
+ + ∂x(ρ

0
+u

0
+) = 0,

∂tρ
0
− + ∂x(ρ

0
−u

0
−) = 0,

∂t(ρ
0
+w

0
+) + ∂x(ρ

0
+w

0
+u

0
+) = 0,

∂t(ρ
0
−w

0
−) + ∂x(ρ

0
−w

0
−u

0
−) = 0,

w0
+ = u0

+ + P (ρ0), u0
+ ≥ 0,

w0
− = −u0

− + P (ρ0), u0
− ≤ 0.

If on the other hand, ρε → ρ∗, then Qε(ρε+, ρ
ε
−) → Q̄+ and Qε(ρε−, ρ

ε
+) → Q̄−. Fur-

thermore, following (48), Q̄+ and Q̄− are related by:

q(ρ0+) Q̄+ = q(ρ0−) Q̄−. (49)

Therefore, the total pressure is such that pε(ρε+, ρ
ε
−) → p̄+ and pε(ρε−, ρ

ε
+) → p̄− with

P (ρ∗) ≤ p̄± and p̄+ and p̄− related through (49) (with Q̄± replaced by p̄± − P (ρ∗)).
We stress the fact that Q̄± and consequently p̄± are not local function of ρ0+, ρ

0
− (only

the ratio Q̄+/Q̄− = q(ρ0−)/q(ρ
0
+) is a local function of ρ0+, ρ

0
−). Indeed the value of Q̄± of

two different solutions of the model may be different, even if the local values of (ρ0+, ρ
0
−)

are the same. Therefore, there is no local function of (ρ0+, ρ
0
−) which can match the value

of Q̄±.
Then, in this case, the model becomes:

∂tρ
0
+ + ∂x(ρ

0
+u

0
+) = 0,

∂tρ
0
− + ∂x(ρ

0
−u

0
−) = 0,

∂t(ρ
0
+w

0
+) + ∂x(ρ

0
+w

0
+u

0
+) = 0,

∂t(ρ
0
−w

0
−) + ∂x(ρ

0
−w

0
−u

0
−) = 0,

w0
+ = u0

+ + p̄+ with P (ρ∗) ≤ p̄+,

w0
− = −u0

− + p̄− with P (ρ∗) ≤ p̄−,

ρ0+ + ρ0− = ρ∗, (50)

q(ρ0+) (p̄+ − P (ρ∗)) = q(ρ0−) (p̄− − P (ρ∗)). (51)

Relations (50) and (51) furnish the two supplementary relations which allow us to compute
the two additional quantities p̄+ and p̄−. The last relation (51) specifies how, at congestion,
the left and right going pedestrians share the available space. We see that this sharing
relation depends upon the choice of the function q. Obviously, q is an input of the model
which must be determined from the experimental measurements. If some flow asymmetry
must be taken into account (like if one crowd is more pushy than the other one), different
functions q+(ρ+) and q−(ρ−) can be used.

This model is a system of first-order differential equations in which the fluxes are
implicitly determined by the constraint (50). As a consequence of this constraint, the
total particle flux ρ0+u

0
+ + ρ0−u

0
− is constant within the congestion region. We note the

difference between this constrained model and the constrained 1W-AR model (see section
2.3.2). In the 1W-AR model, there was a single unknown congestion pressure p̄ and
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a single density constraint ρ = ρ∗. In the 2W-AR model, there are two congestion
pressures p̄+ and p̄−, which play a similar role in the dynamics of their associated category
of pedestrians. However, there is still a single density constraint, acting on the total
density ρ+ + ρ− = ρ∗. The additional condition which allows for the computation of
the two congestion pressures is provided by the ’space-sharing’ constraint (51). The two
constraints express very different physical requirements and must be combined in order
to find the two congestion pressures which, themselves, have a symmetric role.

3.3.3 Introduction of the congestion constraint in the 2W-CAR model

(i) Congestion model with smooth transitions. The smooth pressure relations (45)-(47)
can be used for the 2W-CAR model. With this pressure relation, we anticipate that the
bound ρ ≤ ρ∗ is enforced.

(ii) Congestion model with abrupt transitions. If the limit ε → 0 is considered, then, the
limit model in the uncongested region remains of the same form, i.e. is given by (39),
(40) with the pressure given by p(ρ0+, ρ

0
−) = P (ρ0+ + ρ0−). In the congested region, using

the same arguments as in section 3.3.2, we find that (ρ0+, ρ
0
−) satisfies:

∂tρ
0
+ + ∂x(ρ

0
+(V − p̄+)) = 0,

∂tρ
0
− − ∂x(ρ

0
−(V − p̄−)) = 0,

ρ0+ + ρ0− = ρ∗, (52)

q(ρ0+) (p̄+ − P (ρ∗)) = q(ρ0−) (p̄− − P (ρ∗)). (53)

Again, this model gives rise to a system of first order differential equations in which the
fluxes are implicitly determined by the constraints (52), (53). As a consequence of this
constraint, the total particle flux ρ0+u

0
+ + ρ0−u

0
− (where u0

± = V − p̄±) is constant within
the congestion region.

4 Two-way multi-lane traffic model

4.1 A Two-way multi-lane Aw-Rascle model of pedestrians

We now consider a multi-lane model to describe the structure of the flow in the cross
sectional direction to the corridor. The models presented so far considered averaged
quantities in the cross section of the corridor. However, it is a well observed phenomenon
that two-way pedestrian flow presents interesting spontaneous lane structures (see e.g.
[9]), with a preferential side depending on sociological behavior: pedestrians show a pref-
erence to the right side in western countries, while the preference is to the left in Japan for
instance. In order to allow for a description of the cross-section of the flow, we discretize
space in this cross-sectional direction and suppose that pedestrians walk along discrete
lanes, like cars on a freeway, with lane changing probabilities depending on the state of
the downwind flow. In this way, we design a model which may, if the parameters are
suitable chosen, exhibit the spontaneous emergence of a structuration of the flow into
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lanes. We stress however, that the lanes in our model must be viewed as a mere spatial
discretization and that spontaneously emerging pedestrian lanes may actually consist of
several contiguous discrete lanes of our model.

Let k ∈ Z be the lane index. So far, we consider an infinite number of lanes. Of course,
there is a maximal number of K lanes and k ∈ {1, . . . , K}. Extra-conditions due to the
finiteness of the number of lanes are discarded here for simplicity. For each of the lane, we
write a 2W-AR model in the form described in section 3, supplemented by lane-changing
source terms.

Definition 4.1 (ML-AR model) For any index k ∈ Z, let ρk,± the density of pedes-
trians in the k-th lane, uk,± their velocity, wk,± their desired velocity and pk a pressure
term, with an index + for the right-going pedestrians and − for the left-going ones. The
ML-AR model is given by:

∂tρk,+ + ∂x(ρk,+ uk,+) = Sk,+, (54)

∂tρk,− + ∂x(ρk,− uk,−) = Sk,−, (55)

∂t(ρk,+wk,+) + ∂x(ρk,+wk,+ uk,+) = Rk,+, (56)

∂t(ρk,−wk,−) + ∂x(ρk,−wk,− uk,−) = Rk,−, (57)

wk,+ = uk,+ + pk(ρk,+, ρk,−), (58)

wk,− = −uk,− + pk(ρk,−, ρk,+). (59)

where Sk,± and Rk,± are source terms coming from the lane-changing transition rates.

We allow for different pressure relations in the different lanes, to take into account for
instance that the behavior of the pedestrians may be more aggressive in the fast lanes
than in the slow ones, or to take into account that circulation along the walls may be
different than in the middle of the corridor. This point must be assessed by comparisons
with the experiments. We specify the pressure relation in each lane in the form of (45),
(47) with parameter values depending on k.

We denote by

ρk = ρk,+ + ρk,−,

the total density on the k-th lane. We assume that the congestion density ρ∗ is the same
for all lanes (this assumption can obviously be relaxed).

4.2 Interaction terms in the multi-lane model

We assume that pedestrians prefer to change lane than to reduce their speed, i.e. they
change lane if they feel that the offset velocity of their lane (i.e. pk(ρk,+, ρk,−) in the
case of right-going pedestrians on lane k) increases. If facing such an increase, right-
going pedestrians change from lane k to lanes k ± 1 (not changing their direction of
motion) with rates λ+

k→k±1. Similarly, these rates are λ−
k→k±1 for left-going pedestri-

ans. These rates increase with the value of (d/dt)k,+(pk(ρk,+, ρk,−)) for λ
+
k→k±1 and with

(d/dt)k,−(pk(ρk,−, ρk,+)) for λ−
k→k±1 to indicate that the lane changing probability is in-

creased when an increase of the downstream density is detected. We have denoted by
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(d/dt)k,± the material derivatives for particles moving on the k-th lane in the positive
or negative direction: (d/dt)k,± = ∂t + uk,±∂x. Strongly congested lanes do not attract
new pedestrians. Therefore, λ+

k→k+1 is also a decreasing functions of ρk+1 which vanishes
at congestion, when ρk+1 = ρ∗. Similarly, λ−

k→k+1 is decreasing with ρk+1 and vanishes
at congestion ρk+1 = ρ∗ and λ±

k→k−1 decreases with ρk−1 and vanishes at congestion
ρk−1 = ρ∗.

Given these assumptions on the transition rates, the lane-changing source terms for
the density equations are written:

Sk,α = λα
k+1→k ρk+1,α + λα

k−1→k ρk−1,α − (λα
k→k+1 + λα

k→k−1)ρk,α, α = ±. (60)

It is easy to see that this formulation gives:
∑

k∈Z

Sk,α = 0, α = ±

which implies the balance equation of the total number of particles moving in a given
direction:

∂tρα + ∂xjα = 0, ρα =
∑

k∈Z

ρk,α, jα =
∑

k∈Z

ρk,αuk,α, α = ±.

Concerning the rates Rk,±, we consider that wk,± being a Lagrangian quantity, the
quantities ρk,±wk,± vary according to the same rates as the densities themselves. Hence,
we let:

Rk,α = λα
k+1→k ρk+1,αwk+1,α + λα

k−1→k ρk−1,αwk−1,α

−(λα
k→k+1 + λα

k→k−1)ρk,αwk,α, α = ±. (61)

The material derivatives of wk,± satisfy:
(

dwk,+

dt

)

k,+

:= ∂twk,+ + uk,+ ∂xwk,+ =
1

ρk,+
(Rk,+ − wk,+ Sk,+) =

= λ+
k+1→k

ρk+1,+

ρk,+
(wk+1,+−wk,+) + λ+

k−1→k

ρk−1,+

ρk,+
(wk−1,+−wk,+),

(

dwk,−

dt

)

k,−

:= ∂twk,− + uk,− ∂xwk,− =
1

ρk,−
(Rk,− − wk,− Sk,−) =

= λ−
k+1→k

ρk+1,−

ρk,−
(wk+1,−−wk,−) + λ−

k−1→k

ρk−1,−

ρk,−
(wk−1,−−wk,−).

The right-hand sides of these equations are not zero because the arrival of pedestrians from
different lanes with a different preferred velocity modifies the average preferred velocity.

4.3 The ’constant desired velocity version’ of the two-way multi-
lane Aw-Rascle model of pedestrians

To construct the constant desired velocity Aw-Rascle model for two-way multi-lane pedes-
trian traffic (ML-CAR model), we must set

wk,+ = wk,− = V, (62)
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and

uk,+ = V − p(ρk,+, ρk,−), uk,− = −V + p(ρk,−, ρk,+). (63)

We can check in this case that Sk,± and Rk,± have been defined in a coherent way by (60)
and (61), i.e. that they are such that equations (54-55) and (56-57) become equivalent.
The corresponding model is written:

Definition 4.2 (ML-CAR model) Let ρk,± the density of pedestrians in the k-th lane,
V the constant desired velocity of pedestrian and pk the pressure term. The ML-CAR
model is given by:

∂tρk,+ + ∂x

(

ρk,+(V − pk(ρk,+, ρk,−))
)

= Sk,+,

∂tρk,− − ∂x

(

ρk,−(V − pk(ρk,−, ρk,+))
)

= Sk,−,

where Sk,± is given by (60).

The features of this model are those of the two-way, one-lane CAR model of section
3.2, combined with the features of the source terms Sk,± as outlined in section 4.2.

4.4 Introduction of the congestion constraint in the multi-lane

ML-AR model

4.4.1 Congestion model with smooth transitions

The prescription for the pressure functions pk are the same as in section 3.3.1, except for
a possible k-dependence of the constants, namely:

pk(ρk,+, ρk,−) = pεk(ρk,+, ρk,−) = Pk(ρk) +Qε
k(ρk,+, ρk,−),

Pk(ρk) = Mkρ
mk
k , mk ≥ 1,

Qε
k(ρk,+, ρk,−) =

ε

qk(ρk,+)
(

1
ρk

− 1
ρ∗

)γk , γk > 1.

With this pressure law, the ML-AR model becomes a perturbation problem. This is
indicated by equipping all unknowns with an exponent ε. This pressure relation can be
used in the constant desired velocity model of section 4.3 where all particles move with
the same speed V .

4.4.2 Congestion model with abrupt transitions

This case corresponds to the formal limit ε → 0 of the previous model. Suppose that
ρεk → ρk < ρ∗. In this case, Qε

k(ρ
ε
k,+, ρ

ε
k,−) → 0 and we recover a ML-AR model associated
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to the pressure Pk(ρk):

∂tρ
0
k,+ + ∂x(ρ

0
k,+ u0

k,+) = S0
k,+,

∂tρ
0
k,− + ∂x(ρ

0
k,− u0

k,−) = S0
k,−,

∂t(ρ
0
k,+w0

k,+) + ∂x(ρ
0
k,+w0

k,+ u0
k,+) = R0

k,+,

∂t(ρ
0
k,−w0

k,−) + ∂x(ρ
0
k,−w0

k,− u0
k,−) = R0

k,−,

w0
k,+ = u0

k,+ + Pk(ρ
0
k),

w0
k,− = −u0

k,− + Pk(ρ
0
k).

If on the other hand, ρεk → ρ∗, the model becomes:

∂tρ
0
k,+ + ∂x(ρ

0
k,+ u0

k,+) = S0
k,+,

∂tρ
0
k,− + ∂x(ρ

0
k,− u0

k,−) = S0
k,−,

∂t(ρ
0
k,+w0

k,+) + ∂x(ρ
0
k,+w0

k,+ u0
k,+) = R0

k,+,

∂t(ρ
0
k,−w0

k,−) + ∂x(ρ
0
k,−w0

k,− u0
k,−) = R0

k,−,

w0
k,+ = u0

k,+ + p̄k,+ with P (ρ∗) ≤ p̄k,+,

w0
k,− = −u0

k,− + p̄k,− with P (ρ∗) ≤ p̄k,−,

ρ0k,+ + ρ0k,− = ρ∗,

qk(ρ
0
k,+) (p̄k,+ − Pk(ρ

∗)) = qk(ρ
0
k,−) (p̄k,− − Pk(ρ

∗)).

The source terms are unchanged compared to the ε > 0 case, and the interpretation of
the model is the same as in section 3.3.2. Performing the limit ε → 0 in the constant
desired velocity model of section 4.3 follows a similar procedure and is left to the reader.

5 Study of the diffusive two-way, one-lane CAR mod-

els

In this section, we restrict ourselves to the 2W-CAR model presented in section 3.2
(i.e. without the introduction of the maximal density constraint), and we investigate the
stability of a diffusive perturbation of this model. The goal of this section is to show
that the addition of a small diffusivity stabilizes the large wave-numbers in the region of
state space where hyperbolicity is lacking. The threshold value of the wave-number below
which the instability grows can be related to the size of macroscopic structures observed
in real crowd flows.

5.1 Theoretical analysis

We consider the following model which is a slight generalization of the 2W-CAR model:

∂tρ+ + ∂xf(ρ+, ρ−) = δ ∂2
xρ+, (64)

∂tρ− − ∂xf(ρ−, ρ+) = δ ∂2
xρ−. (65)
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Typically, for the 2W-CAR model, f(ρ+, ρ−) = ρ+(V − p(ρ+, ρ−)) but we do not restrict
ourselves to this simple flux prescription. The assumptions on f are that for fixed ρ−,
the function ρ+ → f(ρ+, ρ−) has the bell-shaped curve of figure 1, which is characteristic
of the LWR flux. For fixed ρ+, the function ρ− → f(ρ+, ρ−) is just assumed decreasing,
meaning that the flux of right-going pedestrians is further reduced as the density of left-
going pedestrians increases. By symmetry, the diffusivities δ are assumed to be the same
for the two species of particles. Of course, the diffusivities may depend on the densities
themselves, in which case they may be different. But we will discard this possibility here.
We denote by

c̃++ = ∂1f(ρ+, ρ−), c̃+− = ∂2f(ρ+, ρ−),

c̃−+ = ∂2f(ρ−, ρ+), c̃−− = ∂1f(ρ−, ρ+).

These quantities are related to those defined in section 3.1 for the 2W-AR model by

c̃++ = cu+
, c̃+− = −ρ+c+−, c̃−− = −cu−

, c̃−+ = −ρ−c−+. (66)

With the assumptions on f , we have that c̃+− ≤ 0, c̃−+ ≤ 0, while c̃++ (resp. c̃−−)
decreases from positive to negative values when ρ+ (resp. ρ−) increases.

Any state such that (ρ+, ρ−) is independent of x is a stationary solution. We study the
linearized stability of the system about these uniform steady states. Denoting by (r+, r−)
its unknowns, the linear system is written:

∂tr+ + c̃++∂xr+ + c̃+−∂xr− = δ ∂2
xr+, (67)

∂tr− + c̃−+∂xr+ + c̃−−∂xr− = δ ∂2
xr−. (68)

We look for solutions which are pure Fourier modes of the form r± = r̄± exp i(ξx − st)
where r̄± is the amplitude of the mode, ξ and s are its wave number and frequency.
Inserting the Fourier Ansatz into (67), (68) leads to a homogeneous linear system for
(r̄+, r̄−). This system has non-trivial solutions if and only if the determinant of the linear
system cancels. This results in a relation between s and ξ (the dispersion relation). In
this analysis, we restrict to ξ ∈ R and are looking for the time stability of the model. We
denote by λ = s/ξ the phase velocity of the mode.

A given mode remains bounded in time, and therefore stable, if and only if the imag-
inary part of s is non-positive. In the converse situation, the mode is unstable. The
system is said linearly stable about the uniform state (ρ+, ρ−) if and only if all the modes
are stable for all ξ ∈ R. In the converse situation, the system is unstable, and it is then
interesting to look at the range of wave numbers ξ ∈ R which generate unstable modes.
The following result follows easily from simple calculations:

Proposition 1 (i) Suppose (ρ+, ρ−) are such that the following condition:

∆ := (c̃++ + c̃−−)
2 − 4c̃+−c̃−+ ≥ 0, (69)

is satisfied, then the uniform steady state with uniform densities (ρ+, ρ−) is linearly stable
about (ρ+, ρ−). For any given ξ ∈ R, there exist two modes whose phase velocities λ±(ξ)
are given by

λ±(ξ) =
1

2

[

c̃++ − c̃−− − 2iδξ ±
√
∆
]

. (70)
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(ii) Suppose that (ρ+, ρ−) are such that (69) is not true. Then, the uniform steady state
with uniform densities (ρ+, ρ−) is linearly unstable about (ρ+, ρ−). Moreover, we have

|ξ| ≤
√

|∆|
2δ

⇐⇒ ∃ a mode such that Im s > 0 (unstable mode). (71)

The phase velocity is given by

λ±(ξ) =
1

2

[

c̃++ − c̃−− − 2iδξ ± i
√

|∆|
]

. (72)

We note that if (66) is inserted in (69), we recover (35). Therefore, the addition of diffusion
does not change the criterion for stability or instability. However, in the unstable case,
all modes are unstable for the diffusion-free model (this would correspond to δ = 0 in
(71)). The addition of a non-zero diffusivity stabilizes the modes corresponding to the
small scales (large ξ). However, the large scale modes (small ξ) remain unstable. We also
note that, in the stable case, letting the diffusivity go to zero allows us to recover the
characteristic speed of the diffusion-free model (36).

For unstable modes, (72) provides the typical growth rate νg: it is equal to the positive
imaginary part of |ξ|λ+ , and given by

νg =

√

|∆|
2

|ξ| − δξ2.

It is maximal for

|ξ| =
√

|∆|
4δ

.

Therefore, the typical length scale Ls of the unstable structures is given by the inverse of
this wave-number:

Ls =
4δ

∆
,

because the other modes, having smaller growth rate, will eventually disappear compared
to the amplitude of the dominant one. These length scale Ls and time scale 1/νg may
be related to observations and provide a way to assess the model and calibrate it against
empirical data.

5.2 Numerical simulations

In this part, we want to investigate numerically the system (64),(65) and in particular we
are interested in the profile of the solutions whether the system is in a hyperbolic region
or not.

With this aim, we first fix a flux function f(ρ+, ρ−) defined as:

f(ρ+, ρ−) = ρ+
g(ρ+ + ρ−)

ρ+ + ρ−
, (73)
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where g is a flux depending on the total density ρ = ρ+ + ρ−. We choose for g a simple
function increasing on [0, a] and decreasing on [a, 1]:

g(x) =



















x− x2

2a
for 0 ≤ x ≤ a

a

2
− a(a− x)2

2(1− a)2
for a ≤ x ≤ 1

0 otherwise

Note that here, in order to keep the simulations simple, we choose a much smoother
expression for f than the one that was proposed in section 3.3 to enforce the density
constraint. As a result, the density here can become larger than ρ∗ = 1.
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Figure 3: Left figure: the flux function f(ρ+, ρ−) (73) used in our simulations. Right
figure: the region of non-hyperbolicity (69) of the model, e.g. ∆ < 0 in this region.

In the following, we take the maximum of g to be at .7, e.g. a = .7. The function f is
a decreasing function of ρ− since g satisfies g′(x) ≤ 1 and f is zero when the total mass
is greater than 1, e.g. f(ρ+, ρ−) = 0 if ρ+ + ρ− ≥ 1. We plot the graph of the function
f in figure 3 (left). Then, we numerically compute ∆ to determine the region where the
system is non-hyperbolic (see figure 3, right).

To solve numerically the system (64),(65), we use a central scheme [26]. With this
aim, we consider a uniform grid in space {xi}i (∆x = xi+1 − xi) on a fixed interval [0, L]
along with a fixed time step ∆t. We denote by Un

i the approximation of (ρ+, ρ−) on the
cell [xi−1/2, xi+1/2] (with xi+1/2 = xi + ∆x/2) at the time n∆t. The numerical scheme
consists of the following algorithm:

Un+1
i − Un

i

∆t
+

1

∆x

(

Fi+1/2 − Fi−1/2

)

= δ
Un
i−1 − 2Un

i + Un
i+1

∆x2
.

Here, Fi+1/2 denotes the numerical flux at xi+1/2 defined as:

Fi+1/2 =
F (UL

i+1/2) + F (UR
i+1/2)

2
− ai+1/2

UR
i+1/2 − UL

i+1/2

2
,

29



where F is the flux of the system F (ρ+, ρ−) = (f(ρ+, ρ−),−f(ρ−, ρ+))
T , the vectors UL

i+1/2

and UR
i+1/2 are respectively the left and right value of (ρ+, ρ−) at xi+1/2 computed using a

MUSCL scheme [27] and ai+1/2 is the maximum eigenvalues (36) of the system at xi and
xi+1:

ai+1/2 = max(|λ±
i |, |λ±

i+1|).
As initial condition, we use a uniform stationary state (ρ+, ρ−) perturbed by stochastic
noise:

ρ+(0, x) = ρ+ + σǫ+(x) , ρ−(0, x) = ρ− + σǫ−(x),

with ǫ+(x) and ǫ−(x) two independent white noises and σ the standard deviation of the
noise. We use periodic boundary condition for our simulations. The parameters of our
simulations are the following: space mesh ∆x = 1, time step ∆t = .2 (CFL= .406),
diffusion coefficient δ = .4 and standard deviation of the noise σ = 10−2. We use periodic
boundary conditions.

To illustrate our numerical scheme, we use three different initial conditions. First, we
pick two values for (ρ+, ρ−) in the hyperbolic region:

ρ+ = .35 , ρ− = .3.

The initial datum is plotted on figure 4 (left). As we can see on figure 4 (right), the
solution stabilizes around the stationary state (.35, .3).

For our second simulation, we take (ρ+, ρ−) in a non-hyperbolic region:

ρ+ = .5 , ρ− = .3.

The solution does no longer stabilize around the stationary state (.5, .3). On figure 5
(left), we observe the apparition of clusters of high density. Each cluster for ρ+ faces a
cluster for ρ−. Moreover, in each cluster, the total mass ρ+ + ρ− is greater or equal to
1. Therefore the flux in this region is zero. However, due to the diffusion, the solution is
not in a stationary state. There is exchange of mass between the clusters. If we run the
solution for a long time, only one cluster remains (see figure 5 (right)). In this cluster,
we observe that the profile of ρ+ is concave-down whereas the profile of ρ− is concave-up.
Consequently, the diffusivity makes ρ+ moving backward and ρ− moving forward. As a
result, all the clusters are moving to the left. However, the concavity of the solution is
puzzling. Numerically, it appears that the concavity of ρ+ and ρ− depends on the total
mass: the density with higher mass is concave-down and the density with lower mass is
concave-up. But this property has to be understood analytically.

For the third simulation, we take an initial datum (ρ+, ρ−) close to the non-hyperbolic
region:

ρ+ = .4 , ρ− = .3.

Indeed, we can see on figure 3 (right) that the point (0.4, 0.3) almost lies at the border of
the non-hyperbolic region. The oscillations amplify and clusters of high densities emerge
(figure 6, left). However, if we increase the diffusion coefficient, taking δ = 2 instead of
δ = .4, then the solution stabilizes around the stationary state (.4, .3) as we observe on
figure 6, right. Therefore, a large enough diffusion prevents cluster formation.
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Figure 4: The initial condition (left figure) and the solution at t = 500 unit times. The
solution stabilizes around the stationary state (.35, .3).
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Figure 5: Starting from the initial state (.5, .3), the initial oscillations amplify to create
clusters (left figure). After a longer time (t = 104 unit times), only one cluster remains
(right figure).
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Figure 6: Starting from the initial state (.4, .3), clusters appears once again (left figure).
However, if we increase the diffusion coefficient (δ = 2 instead of δ = .4), the solution is
stabilizing (right figure).
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The simulations are provided for ilfustration purpose only, and explore what kind of
structures the lack of hyperbolicity of the model leads to. The experimental evidence of
the appearance of clusters is difficult to provide since they must occur (if they occur)
at very high densities. Experiments in such high density conditions are not possible for
obvious safety reasons. The observation of real crowds shows that pedestrians can still
move even at very high densities thanks to the spontaneous organization of the flow into
lanes. The simple one-dimensional model that is simulated here cannot account for this
feature. However, we conjecture that cluster formation can be impeded in the multi-lane
model through the introduction of adequate lane-changing probabilities.

6 Conclusion

In this work, we have presented extensions of the Aw-Rascle macroscopic model of traffic
flow to two-way multi-lane pedestrian traffic, with a particular emphasis on the study of
the hyperbolicity of the model and the treatment of congestions.

A first important contribution of the present work is that two-way models may lose
their hyperbolicity in certain conditions and that this may be linked to the generation
of large scale structures in crowd flows. Adding diffusion helps stabilize the small scale
structures and favors the development of large scale structures which may be related to
observations. We have shown numerical simulations which support this interpretation.

A second contribution of this work is to provide a methodology to handle the conges-
tion constraint in pedestrian traffic models. Congestion effects reflect the fact that the
density cannot exceed a limit density corresponding to contact between pedestrians. We
have proposed to treat them by a modification of the pressure relation which reduces the
pedestrian velocities when the density reaches this maximal density. If this modification
occurs on a very small range of densities, then, the model exhibits abrupt transitions
between compressible flow (in the uncongested region) and incompressible flow (in the
congested region).

Mathematically rigorous proofs that these models respect the upper-bound on the
total density are left to future works. Their numerical resolution will require the develop-
ment specific techniques such as Asymptotic-Preserving methodologies in order to treat
the occurrence of congestions. Data learning techniques will then be applied to fit the
parameters of the model to experimental data. Other possible extensions of this work are
the development of more complex models such as two-dimensional models, kinetic mod-
els allowing for a statistical distribution of velocities or crowd turbulence models with
weak compressibility near congestion. Finally, the derivation of approximate equations
describing the geometric evolution of the transition interface between the uncongested
and congested regions would help understanding the dynamics of these interfaces.
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[33] S. Paris, J. Pettré, S. Donikian, Pedestrian reactive navigation for crowd simulation:
a predictive approach, Eurographics, 26 (2007), 665–674.

[34] Pedigree team, Pedestrian flow measurements and analysis in an annular setup, in
preparation.
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