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Abstract

We propose an Individual-Based Model of ant-trail formation. The ants
are modeled as self-propelled particles which deposit directed pheromones and
interact with them through alignment interaction. The directed pheromones
intend to model pieces of trails, while the alignment interaction translates
the tendency for an ant to follow a trail when it meets it. Thanks to ade-
quate quantitative descriptors of the trail patterns, the existence of a phase
transition as the ant-pheromone interaction frequency is increased can be ev-
idenced. Finally, we propose both kinetic and fluid descriptions of this model
and analyze the capabilities of the fluid model to develop trail patterns. We
observe that the development of patterns by fluid models require extra trail
amplification mechanisms that are not needed at the Individual-Based Model
level.
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1 Introduction

One of the many features displayed by self-organized collective motion of animals
or individuals is the formation of trails. For instance, ant displacements are charac-
terized by their organization into lanes consisting of a large number of individuals,
for the purpose of exploring the environment or exploiting its resources. Another
example involving species with higher cognitive capacities is the formation of moun-
tain trails by hikers or herds of animals. In both cases, the main feature is that
the interaction between the individuals is not direct, but instead, is mediated by
a chemical substance or by the environment. Indeed, ants lay down pheromones
as chemical markers. These pheromones are sensed by other individuals which use
them to adjust their path. In the case of mountain trails, the modification of the
soil by walkers facilitates the passage of the next group of individuals and attracts
them. This phenomenon is well-known to biologists under the name of stigmergy, a
concept first forged by Pierre-Paul Grassé [20] to describe the coordination of social
insects in nest building.

The formation of trails by ants has been widely studied in the biological lit-
erature [1, 11, 13–15, 34]. One general observation is the fact that trail formation
is a self-organized phenomenon and expresses the emergence of a large-scale order
stemming from simple rules at the individual level. Indeed, ant colonies in the
numbers of thousands of individuals or more arrange into lines without resorting
to long-range signaling or hierarchical organization. Another striking feature is the
variability of the trail patterns, which may range from densely woven networks to
a few large trails. This flexibility may result from the ability of the individuals to
adapt their activity to variable external conditions such as food availability, tem-
perature, terrain conditions, the presence of predators, etc. Trail plasticity derives
from internal and external factors: for example it may vary according to the species
of ant under consideration or depends on the properties of the soil. Our goal is to
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provide a model that accounts for these two general facts: spontaneous formation
of trails, and variability of the trail pattern.

At the mathematical level, several types of ant displacement and pheromone
deposition models have been introduced. A first series of works deal with ant
displacement on a pre-existing pheromone trail and focus on the role of the antennas
in the trail sensing mechanism [6, 7, 11]. Spatially one-dimensional models do not
specifically address the question of trail build-up either, since motion occurs on a
one-dimensional predefined trail. One-dimensional cellular automata models have
been used to determine the fundamental diagram of pheromone-regulated traffic
and to study the spontaneous break-up of bi-directional traffic in one preferred
direction [22, 24].

The decision-making mechanisms which lead to the selection of a particular
branch when several routes are available have been modeled by considering Ordinary
Differential Equations (ODE’s) for the global ant and pheromone densities on each
trail [2,12,19,28]. These models do not account for the spontaneous formation of the
trails. In [14], the spatial distribution of trails is ignored in a similar way. However,
it introduces the concept of a space-averaged statistical distribution of trails, which
reveals to be very effective. In the present work, we have borrowed from [14] the
idea of considering trails as particles in the same fashion as ants, and of dealing with
them through the definition of a trail distribution function. However, by contrast
to [14], we keep track of both the spatial and directional distribution of these trails.

In general, two dimensional models consider that ant motion occurs on a fixed
lattice. Two classes of ant models have been considered: Cellular Automata models
[15, 17, 34], and Monte-Carlo models [2, 12, 29, 30, 32]. In the first class of models,
no site can be occupied by more than one ant, while in the second class, ants are
modeled as particles subject to a biased random walk on the lattice. In [33], the
authors introduce some mean-field approximation of the previous models: a time-
continuous Master equation formalism is used to determine the evolution of the
ant density on each edge. In all these models, the jump probabilities are modified
by the presence of pheromones. The pheromones can be located on the nodes
[29, 30, 32], but the trail reinforcement mechanism seems more efficient if they are
located on the edges [2, 12, 15, 17, 34]. To enhance the trail formation mechanisms,
some authors [30,32] introduce two sorts of pheromones, an exploration pheromone
which is deposited during foraging and a recruit pheromone which is laid down by
ants who have found food and try to recruit congeners to exploit it. In [29], it
is demonstrated that trail formation is enhanced by introducing some saturation
of the ant sensitivity to pheromones at high pheromone concentrations. Inspired
by the observation that pheromone deposition on edges seems to be more efficient
in producing self-organized trails, we suppose that laid down pheromones give rise
to trails (i.e. directed quantities) rather than substance concentration (i.e. scalar
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quantities).
All these previously cited two-dimensional models assume a pre-existing lattice

structure. One questions which is seldom addressed is whether this pre-existing
lattice may influence the formation of the trails. For instance, it is well-known
that lattice Boltzmann models with too few velocities have incorrect behavior. One
may wonder if similar effects could be encountered with spatially discrete ant trail
formation models. For this reason, in the present work, we will depart from a lattice-
like spatial organization and treat the motion of the ants in the two-dimensional
continuous space.

In this work, we propose a time and space continuous Individual-Based Model
for self-organized trail formation. In this model, self-propelled particles interact by
laying down pheromone trails that indicate both the position and direction of the
trails. Ants adapt their course by following trails deposited by others, therefore
reinforcing existing trails while evaporation of pheromones allows weaker trails to
disappear. The ant dynamics is time-discrete and is a succession of free flights
and velocity jumps occuring at time intervals ∆t. Velocity jumps occur with an
exponential probability. Two kinds of velocity jumps are considered: purely random
jumps which translate the ability of ants to explore a new environment, and trail-
recruitment jumps. In order to perform the latter, ants look for trails in a disk
around themselves, pick up one of these trails with uniform probability and adopt
the direction of the chosen trail.

This model bears analogies with chemotaxis models. Chemotaxis is the name
given to remote attraction interaction through chemical signaling in colonies of bac-
teria. Mathematical modeling of chemotaxis has been largely studied. Macroscopic
models were first introduced by Keller and Segel in the form of a set of parabolic
equations [23]. These equations can be obtained as macroscopic limits of kinetic
models [16, 18, 21, 25, 26]. Kinetic models describe the evolution of the population
density in position-velocity space. In [31] a direct derivation of the Keller-Segel
model from a stochastic many-particle model is given. The common feature of
most chemotaxis models is the appearance of blow-up, which corresponds to the
fast aggregation of individuals at a specific point in space (see e.g. [4, 8]). By con-
trast, in the present paper, the dynamics gives rise to the spontaneous organization
of lane-like spatial patterns, much alike to the observed behavior of ants. The rea-
son for this different morphogenetic behavior is the directed nature of the mediator
of the interaction.

The model also bears analogies with the kinetic model of cell migration de-
veloped in [27]. In this model, cells move in a medium consisting of interwoven
extra-cellular fibers in the direction of one, randomly chosen fiber direction. As
they move, cells specifically destroy the extracellular fibers which are transverse
to their motion. The induced trail reinforcement mechanism produces a network.
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There are two differences with the trail formation mechanism that we present here.
The first one is that the dynamics starts from a prescribed set of motion directions
and gradually reduces this set, while our algorithms builds up the set of available
directions gradually and new directions are created through random velocity jumps.
The second difference is the role of trail evaporation in our algorithm, which has no
equivalent in the cell motion model. Indeed, trail evaporation is a major ingredient
for network plasticity.

In the last part of the present work, we derive a kinetic formulation of the
proposed ant trail formation model in the spirit of [27]. Then, the fluid limit of this
kinetic model is considered. We show that the resulting fluid model can exhibit
trail formation only if some concentration mechanism is involved, while numerical
simulations indicate that trail formation may occur without such a mechanism.
Therefore, the appearance of trails is enhanced when the model provides more
information about the ant velocity distribution function.

The outline of this paper is as follows. In section 2, we provide the model descrip-
tion. Section 3 is devoted to the analysis of the numerical simulations. We establish
a methodology for the detection of trail patterns from a simulation outcome, and an-
alyze the dependency of the observed features on the model parameters. In section
4, we formally establish a set of kinetic equations that describes the dynamics and
we investigate their fluid limit. A conclusion in section 5 draws some perspectives
of this work.

2 An Individual-Based-Model of ant behavior

based on directed pheromone deposition

We consider N “ants” in a flat (2-dimensional) domain: each ant is described by its
position xi ∈ R2 and the direction of its motion ωi. The vector ωi is supposed to
be of unit-length, i.e. ωi ∈ S1, where S1 denotes the unit circle. We also consider
pieces of trails described by pairs (yp, ωp) where yp ∈ R2 is the trail piece position
and ωp is a unit vector describing the trail direction (see figure 1). In the case
of ants, the marking of the trail is realized by a chemical marker, namely a trail
pheromone. We assume that the ants can distinguishably perceive the direction
of the trail of this chemical marker and that they are able to follow, not the line
of steepest gradient, like in chemotaxis, but the direction of this trail. Note that
in the case of walkers or sheep in an outdoor terrain, the marking of the trail is
realized by the modification of the terrain consecutive to the passage of the walkers,
such as flattened grass. For wild white bears, this modification is realized by the
trail left in the snow by the animals. In the sequel, we concentrate on the modeling
of ant trail formation, and we will indistinguishably refer to these pieces of trails
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as ’trails’ or ’trail pheromones’, or simply, ’pheromones’. The set of pheromones
varies with time, since new pheromones are created by the deposition process and
pheromones disappear after some time in order to model the evaporation process.
We will denote by P(t) the set of pheromones at time t.

The simulated ants follow a random walk process. During free flights, Ant
i moves in direction ωi at a constant speed c, i.e. is subject to the differential
equation:

ẋi = cωi, ω̇i = 0, (2.1)

where the dots stand for time derivatives. This free motion is randomly interrupted
by velocity jumps. When Ant i undergoes a velocity jump at time t, its velocity
direction before the jump ωi(t−0) is suddenly changed into a different one ωi(t+0).
The jump times are drawn according to Poisson distributions. In practice, a time
discrete algorithm is used, with time steps ∆t. With such a discretization, a Poisson
process of frequency λ is represented by an event occuring with probability 1−e−λ∆t

over this time step. There are two kinds of jumps: random velocity jumps and trail
recruitment jumps.

Random velocity jumps. In this case, ωi(t+0) differs from ωi(t−0) by a random angle

ε, i.e. ̂(ωi(t − 0), ωi(t + 0)) = ε, where ε is drawn out of a Gaussian distribution
p(ε) with zero mean and variance σ2, periodized over [0, 2π], i.e.

p(ε) dε =
∑

n∈Z

1

(2πσ2)1/2
exp

(

−
(ε + 2nπ)2

2σ2

)

dε, ε ∈ [0, 2π].

The frequency of the Poisson process is constant in time and denoted by λr.

Trail recruitment jump. In this case, ωi(t+0), is picked up with uniform probability
among the directions ωp of the trail pheromones located in the ball BR(xi(t)) of
radius R centered at xi(t) (see figure 1). BR(xi(t)) is the ant detection region and
R its detection radius. More precisely, defining the set

Si(t) = {p ∈ P(t) , |xp − xi(t)| ≤ R},

Ant i chooses an index p in Si(t) with uniform probability and sets

ωi(t + 0) = ωp. (2.2)

A variant of this mechanism involves a nematic interaction (i.e. the deposited trails
have no specific orientation). In this case, the new direction is defined by

ωi(t + 0) = ±ωp, such that ̂(ωi(t + 0), ωp) is acute. (2.3)

The nematic interaction makes more biological sense, since it seems difficult to
envision a mechanism which would allow the ants to detect the orientation of a given
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(xi, ωi)

R

(xp, ωp)

Figure 1: Ants follow a random walk process. Each ant is moving on a straight line
until it undergoes a random velocity jump (left) or a trail recruitment jump (right).
In this picture, a trail pheromone is located in the disk centered at the ant location
when the jump occurs, and of given radius R.

trail. The use of a uniform probability to select the interacting pheromone can be
questioned. For instance, the choice of the trail pheromone p could be dependent on

the angle ̂(ωi(t), ωp) like considered in [33], but in the present work we will discard
this effect. Ants may also preferably choose the largest trails indicated by a large
concentration of pheromones in one given direction. This ’preferential choice’ will
be discussed in connection to the kinetic and fluid models in section 4 but discarded
in the numerical simulations of the Individual-Based Model.

The frequency of the Poisson process is given by λpMi(t) where Mi(t) is the
number of pheromones in the detection region of Ant i: Mi(t) = Card(Si(t)),
and λp is the trail recruitment frequency per unit pheromone. The dependency
of the jump frequency upon the number of detected pheromones accounts for the
observed increase of the alignment probability with the pheromone density. Of
course, nonlinear functions of the pheromone density could be chosen as well. For
instance, some saturation of the detection capability occurs at large pheromone
densities, such as investigated in [29]. This effect will also be discarded here. We
also discard any consideration of the detection mechanism, such as discussed e.g.
in [6, 7, 11].

During their walk, ants leave trail pheromones at a certain deposition rate νd.
If at time t, ant i deposits a pheromone, a new pheromone particle is created at
position xi(t) with the direction ωi(t). Hence, we postulate that:

At deposition times t, a pheromone p is created with (xp, ωp) = (xi(t), ωi(t)).

Pheromones have a life-time Tp and remain immobile during their lifetime. In this
work, pheromone diffusion is neglected. Pheromone deposition and evaporation
times are modeled by Poisson processes: each ant has a probability νd per unit of
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time to lay down a pheromone and each pheromone has a probability 1/Tp per unit
of time to disappear.

Pheromone deposition mediates the interactions between the ants. This inter-
action is nonlocal in both space and time (because the ant which has deposited a
pheromone may have moved away quite far before another ant interacts with it).
Random velocity jumps and trail recruitment jumps have opposite effects. Random
velocity jumps generate diffusion at large scales whereas trail recruitment jumps
tend to produce concentrations of the ants trajectories on the pheromone trails.
Therefore, the pheromone-meditated interaction induces correlations of the ants
motions and these correlations result in trail formation.

The trail recruitment process together with pheromone evaporation result in net-
work plasticity. To illustrate this mechanism, let us consider the following simplified
situation. Suppose an ant reaches a “crossroads” of trails, meaning a spot where
pheromones point in two different directions denoted by 1 and 2. Suppose there are
n1 pheromones in one direction and n2 in the other one. The probability for the
ant to choose to orient in direction i; i = 1, 2, is equal to the ratio ni

n1+n2

. When
the ant turns to its new direction, it may release a pheromone which will serve to
reinforce this branch. Eventually, one under-selected branch of the crossroads will
vanish due to evaporation of the pheromones. Note that the choice of the surviving
branch depends on random fluctuations of this process: therefore, the outcome of
this situation is non-deterministic and even an initially strongly populated branch
has a non-zero probability to vanish away.

3 Simulations and results

3.1 Choice of the modeling and numerical parameters

We use experimentally determined parameter values as often as possible. Since
parameters are species-dependent, we focus on the species ’Lasius Niger’.

In our model, the motion of a single ant is described by three quantities: the
speed c, the frequency of random velocity jumps λr and their amplitude σ. These
three parameters have been estimated in different studies [3, 9] which give us a
range of possible values. We choose rather low estimations of λr and σ (see Table
1) since in real experiments the estimation of these coefficients counts both for
random jumps and recruitment by trails. The deposition rate of pheromones νd

and their life time Tp have also been measured experimentally for ’Lasius Niger’ [1].
After leaving a food source, an ant drops on the average .5 pheromone per second.
This experimental value gives us an upper bound for νd because it corresponds to
an estimation of νd in a very specific situation where the ant activity level is high.
In our simulations, we use νd = .2 s−1. Since in our model, all the ants lay down
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Parameters Value
L Box size 100 cm
N Number of ants 200
c Ant speed 2 cm/s
λr Random jump frequency 2 s−1

σ Random jump standard deviation .1
νd Pheromone deposition rate .2 s−1

Tp Pheromone lifetime 100 s
R Detection radius 1 cm
λp Trail recruitment frequency 0-3 s−1

Table 1: Table of the parameters used in the simulations.

pheromones, we also take a low estimation of the pheromone lifetime (Tp = 100 s)
otherwise the domain becomes saturated with pheromones.

By contrast, the interaction between ants and pheromones has not been quan-
tified experimentally. For this reason, we do not have experimental values for the
pheromone detection radius R and the alignment probability per unit of time λp.
In our simulations, we fix the radius of perception R equal to 1 cm (corresponding
roughly to 2 body lengths). The alignment probability λp remains a free param-
eter in our model. By changing the value of λp, we can tune the influence of the
pheromone-mediated interaction between the ants. A low value of λp corresponds
to a weak interaction, whereas, for large values of λp, the ant velocities become
controlled by the pheromone directions. In our simulations, λp varies from 0 to
3 s−1.

For simplicity, all simulations are carried out in a square domain of size L =
100 cm with periodic boundary conditions. For the initial condition, 200 ants are
randomly distributed in the domain. Their velocity ωi is chosen uniformly on the
circle S1. The ant-pheromone interaction is always taken nematic unless otherwise
stated.

We can estimate the average number of pheromones 〈M〉 at equilibrium, when
the average is taken over realizations. The evolution of 〈M〉(t) is given by the
following differential equation:

d〈M〉(t)

dt
= νdN −

1

Tp
〈M〉(t),

where N is the number of ants, νd and Tp are (resp.) the deposition rate and
pheromone lifetime. Thus, at equilibrium (i.e. d〈M〉/dt = 0), the average number
of pheromones is given by νd Tp N . For our choice of parameters (Table 1), this
corresponds to 4000 pheromones.
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3.2 Detection of trails

3.2.1 Evidence of trail formation

The typical outcomes of the model are shown in figure 2. After an initial transient,
we observe the formation of a network of trails. This network is not static, as we
observe in the two graphics: the network at time t = 2000 s is significantly different
from the network observed at time t = 1000 s. Here, the goal is to provide statistical
descriptors of this trail formation phenomenon and to analyze it.
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Ants and pheromones at t = 1000 s
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Ants and pheromones at t = 2000 s

Figure 2: A typical output of the model at two different times. The ants are
represented in blue and the pheromones in green. We clearly observe the formation
of trails. Parameters of the simulation: λp = 2s−1, ∆t = .05 (see also Table 1).

3.2.2 Definition of a trail

To quantify the amount of particles that are organized into trails at a given time,
we consider the collection of all particles, that is to say, the union of the sets of
ants and of pheromones. Indeed collecting the pheromones allows us to trace back
the recent history of the individuals. To define a trail, we fix two parameters: a
distance rmax and an angle θmax. We say that particle Pi = (xi, ωi) (Pi being either
an ant or a pheromone) is linked to particle Pj = (xj , ωj) if the distance between
the two particles is less than rmax and the angle between ωi and ωj is either less
than θmax or greater than π − θmax. In other words, we define a relationship (see
figure 3):

Pi ∼ Pj if and only if |xi − xj | < rmax and sin(ωj − ωi) < sin θmax. (3.1)
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Using this relationship, particles can be sorted into different trails: we say that
P and Q belong to the same trail if there exists particles P1, . . . , Pk (a path) such
that P ∼ P1, P1 ∼ P2, . . ., Pk ∼ Q. Thus, a trail is defined as the connected
components of the particles under the relationship (3.1). A trail is approximately
a slowly turning lane of particles.

As a first example, in figure 4, we display the partitioning into trails of the
previous simulations (figure 2) at time t = 2000 s with rmax = 2 cm and θmax = 45◦.
For these values, the largest trail (drawn in red in figure 4) consists of 2670 particles
and the second largest (drawn in orange in figure 4) is made of 254 particles.

3.2.3 Statistics of the trails

We expect that trail formation results in the development of a small number of
large trails, while unorganized states are characterized by a large number of small
trails, most of them being reduced to single elements. Therefore, trail formation
can be detected by observing the trail sizes. With this aim, we denote by Si(t) the
size of the trail to which particle i belongs at time t. Let N (t) be the total number
of particles, i.e. N (t) = N + P(t) where N is the number of ants and P(t) is the
number of pheromones at time t. We form

pt(S) =
Card({i | Si(t) = S})

N (t)
, S ∈ N.

pt(S) is the probability that a particle belongs to a trail of size S at time t. An
unorganized state is therefore characterized by a quickly decaying pt(S) as a function
of S while a state where the particles are highly organized into trails displays a
bimodal pt(S) with high values for large values of S. To display the distribution of
pt(S) is easy: it is nothing but the histogram of the trail sizes Si, collected from
several independent simulations with identical parameters.

As an illustration, we provide the distribution pt(S) for the set parameters used
to generate Figs. 2 and 4, (i.e. λp = 2 s−1, rmax = 2 cm and θmax = 45◦), with
1000 realizations. We clearly observe in Fig. 5 (left) that the distribution pt(S) is
bimodal: a first maximum is observed near the minimal value of S, i.e. S = 1, and
a second maximum is observed near the values S ≈ 2500. This indicates that a
particle (i.e. an ant or a pheromone) belongs to either a small-size trail (S < 100) or
to a large-size trail (S ≈ 2500). As a control sample for our statistical measurement,
we run the same simulations but cutting off the ant-pheromone interaction (i.e.
λp = 0) and proceed to the same analysis. In Fig. 5 (right), we observe that
without the influence of the pheromones (blue histogram) the probability pt(s) is
only concentrated near the value S = 1 and decays very fast to almost vanish for
S > 500.
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Figure 3: In this example, Ants 1, 2 and 3 are linked together: they form a trail.
Ant 4 is not linked to Ant 2 since their directions are too different.
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Two trails at t = 2000 s

Figure 4: The two largest trails (drawn in red and orange) for the simulation de-
picted in figure 2 at time t = 2000 s. Parameters for the estimation of the trails:
rmax = 2 cm and θmax = 45◦.
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Figure 5: (Left) Histogram of the trail sizes S estimated from 1000 realizations.
(Right) Histograms of S with and without trail-pheromone interaction (λp = 2 and
λp = 0 resp.). The parameters for this simulation are the same as in Figs. 2 and 4.

3.3 Trail size

As observed in figure 5, ant-pheromone interactions lead to the formation of trails
which are evidenced by the transformation of the shape of the distribution pt(S).
To perform a systematic parametric analysis of the trail formation phenomenon, we
use the mean 〈S〉 of the distribution S:

〈S〉 =
∑

S∈N

S pt(S).

The quantity 〈S〉 quantifies the level of organization of the system into trails. In-
deed, large values of 〈S〉 indicate a high level of organization into trails while smaller
values of 〈S〉 are the signature of a disordered system. For example, in Fig. 5, we
have 〈S〉 = 1333.7 when the ant-pheromone interaction is on with interaction
frequency λp = 2. By contrast, its value falls down to 〈S〉 = 76.8 when the ant-
pheromone interaction is turned off (i.e. λp = 0) and the system is in a fully
disordered state.

Our first use of the mean trail size 〈S〉 is to show that it stabilizes to a fixed value
after an initial transient. Fig 6 shows the mean trail size 〈S〉(t) for one simulation
(dashed line) and averaged over 1000 different simulations (solid line). It appears
that, after some transient, 〈S〉(t) presents a lot of fluctuations about an averaged
value. If the simulation is reproduced a large number of times and the mean trail
size 〈S〉(t) is averaged over all these realizations, the convergence towards a constant
value becomes apparent.

Therefore, statistical analysis of the trail patterns using the mean trail size
〈S〉 become significant only once this constant value has been reached. In the
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forthcoming sections, analysis will be performed for simulation times equal to 2000
s, which is significantly larger than the time needed for the stabilization of 〈S〉
(about 800 s).

0
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average (1000 runs)

one simulation

trailsiz
e〈S〉

Figure 6: Mean trail size 〈S〉 as a function of time for one simulation (dashed line)
and averaged over 1000 different simulations (solid line).

3.4 Evidence of a phase transition

In Fig. 7, we display 〈S〉 as a function of λp. For each value of λp, we estimate 〈S〉
by averaging it over 1000 independent simulations. We observe an abrupt increase
of 〈S〉 when λp varies from 0 to 1 which means that a sharp transition from an
unorganized system to a system organized into trails arises. For larger values of λp,
the influence of the ant-pheromone interaction saturates and 〈S〉 reaches a plateau
at the approximate value 〈S〉 ≈ 1300.

The transition from disorder to trails also depends on the other parameters of
the model. For example, if we increase the noise by increasing the random jump
frequency λr, the corresponding value of 〈S〉 decreases. In order to restore the
previous value of 〈S〉 the ant-pheromone interaction frequency λp must be increased
simultaneously. In Fig. 8, we plot 〈S〉 as a function of both the random jump
frequency λr and the ant-pheromone interaction frequency λp. We estimate 〈S〉 by
averaging it over 100 realizations for each value of the pair (λp, λr). We still observe
a fast transition from an unorganized state (〈S〉 < 100) to a state organized into
trails (〈S〉 ≥ 1000) when λp increases. However, as the noise λr increases, this
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transition becomes smoother. Moreover, the plateau reached by 〈S〉 when λp is
large is still comprised between 1300 and 1500 for all values of λr, but reaching this
plateau for large values of λr requires larger value of λp.

At the value λr = 0, the transition from disorder (〈S〉 ≤ 100) to trail-like
organization (〈S〉 ≥ 1000) is the fastest. However, the plateau reached by 〈S〉 when
λp is large is significantly lower than for larger values of λr (〈S〉 ≈ 1000 instead of
1300). This could be attributed to the fact that, without random jumps, the level of
diffusion is too low, the ants do not mix enough, and trails have little opportunities
to merge.

On the other hand, we can look for another explanation of this paradoxical
lower value of 〈S〉 when λr is very small. Indeed, we notice that, in this case, the
formed trails are much narrower than for larger values of λr. Fig. 9 (left) shows
a simulation result using a quite small random jump frequency of λr = .2. We
observe that the trails are narrower and more straight than those obtained with
the larger value λr = 2 (figure 2). We can quantify statistically this feature by
changing the parameters of trail detection rmax and θmax. We reduce the maximum
distance (rmax = 1.5 cm) and the maximum angle (θmax = 35◦). With these smaller
values, two particles are less likely to be connected. Then we proceed to the same
analysis as in figure 8, by estimating the mean size of the trails 〈S〉 as a function
of λr and λp, averaged over 100 realizations. As we observe in figure 9 (right), the
mean size of the trails 〈S〉 is much larger for smaller values of λr and we recover the
same behavior as that observed for larger values of λr. This discussion illustrates
the difficulty of working with an estimator which depends on arbitrary choices of
scales (here the space and angular threshold of trail detection). A discussion of the
dependence of the trail width upon the biological parameters is developed in the
next section.

3.5 Trail width

A way to highlight the dependence of the trail width upon the model parameters is
to compute a two-particle correlation distribution. Let a particle (ant or pheromone)
i be located at position xi and velocity ωi. Denote by ω⊥

i the orthogonal vector to
ωi in the direct orientation. For all particles j 6= i, we form the vector

Xij =

(

(xj − xi) · ω⊥
i

(xj − xi) · ωi

)

.

The distribution 2
N (N −1)

f2(X), with

f2(X) = f2(Xx, Xy) =
∑

(i,j), i6=j

δ(X − Xij),
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where δ is the Dirac delta, provides the probability that, given a first particle
(located at say x0 with orientation ω0), a second particle lies at location x0+ω⊥

0 Xx+
ω0Xy (see figure 10 (left) for an illustration of the construction of f2). Looking at
this 2-particle density, trails appear as concentrations near a line passing through
the origin and directed in the y-direction. Figure 10 (right) provides a histogram
of the two-particle density f2 for the simulation corresponding to the right picture
of fig. 2. The above mentioned concentration is clearly visible. Additionally, the
typical width of this concentration gives access to the typical width of the trails.

In order to better estimate the typical width of the trails, we plot cuts of the
two-particle density f2 along the line {y = 0} (see figure 10). In practice, these cuts
are determined by computing the following density

f̄2(r) =
∑

(i,j), i6=j, |(Xij)y |≤ξ

δ(r − |(Xij)x|).

where ξ is suitable chosen (of the order of 1 cm). Figure 11 (left) displays f̄2(r) as
a function of r for different values of the trail recruitment frequency λp and a fixed
value of the random jump frequency equal to λr = 2 s−1. It appears that f̄2 is higher
and decreases faster for larger values of λp. The decay of f̄2 can give an estimate of
the width of the trail: if we approximate the decay of f̄2 by an exponential,

f̄2(r) ≈ f0 exp
(

−
r

r0

)

for r ≈ 0,

then r0 measures the typical width of the trail. This quantity can be estimated
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using the formula:

r0 =
1

|(ln f̄2)′(0)|
. (3.2)

As we observe in Table 2, the width r0 increases as λp decreases. Therefore, in-
creasing the trail recruitment frequency increases the intensity of the particles in-
teractions and produces trails with smaller width. Figure 11 (right) displays f̄2(r)
as a function of r for different values of the random jump frequency λr and a fixed
value of the trail recruitment frequency equal to λp = 2 s−1. Here, the trail width
r0 estimated from f̄2 is larger for large values of λr (see Table 2), indicating that
the typical width of the trails increases with increasing λr, as it should.

We also observe a discontinuity at r = 0 for all the functions f̄2 (figure 11).
These jumps are easily explained by the deposit process: each time an ant drops
a pheromone, the new pheromone and the ant are located at the same position
exactly. This results in a peak of concentration of f̄2 at r = 0.

λp r0 (cm)
3 2.796
2 3.181
1 4.350

λr r0 (cm)
0 2.532
1 2.964
2 3.181
3 3.345

Table 2: Estimations of the width r0 (3.2) of the trails using f̄2 given in figure 11.
We estimate the derivative of ln f̄2(r) near 0 using the values of r between .1 and 2.

4 Kinetic and continuum descriptions

4.1 Framework

In this section, we propose meso- and macro-scopic descriptions of the previously
discussed ant dynamics. We first propose a kinetic model, i.e. a model for the
probability distributions of ants and pheromones. The derivation of this kinetic
model is formal and based on analogies with the underlying discrete dynamics. A
rigorous derivation of the kinetic model from the discrete dynamics is up to now
beyond reach. Issues such as the validity of the chaos propagation property [10],
which is the key for proving such results, may be quite difficult to solve. Then, fluid
limits of this kinetic model will be considered. We will notice that the resulting fluid
models can only exhibit the development of trails if some concentration mechanism
is added, while the numerical simulations above indicate that such a mechanism is
not needed at the level of the Individual-Based Model.
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4.2 Kinetic model

In this section, we introduce the kinetic model of the discrete ant-pheromone in-
teraction on a purely formal basis. We introduce the ant distribution function
F (x, ω, t) and the pheromone distribution function G(x, ω, t), for x ∈ R2, ω ∈ S1

and t ≥ 0. They are respectively the number density in phase-space (x, ω) of the
ants (respectively of the pheromones), i.e. the number of such particles located at
position x with orientation ω at time t. Here, we remark that the consideration of
directed pheromones requires the introduction of a pheromone density in (position,
orientation) phase-space in the same manner as for the ants.

Trail dynamics. The trail dynamics is described by the ordinary differential
equation:

∂tG(x, ω, t) = νdF (x, ω, t) − νeG(x, ω, t), (4.1)

This equation can be easily deduced from the evolution of the probability density
of the underlying stochastic Poisson process. The first term describes deposition
by the ants according to a Poisson process of frequency νd while the second term
results from the finite lifetime expectancy Tp = ν−1

e of the pheromones. Pheromones
are supposed immobile, which explains the absence of any convection or diffusion
operator in this model. Discarding pheromone diffusion is done for simplicity only
and can be easily added. It would add a term ∆xG or ∆ωG at the right-hand side
of (4.1) according to whether one considers spatial or orientational diffusion.

Ant dynamics. The evolution of the ant distribution function is ruled by the
following kinetic equation:

∂tF + c ω · ∇xF = Q(F ). (4.2)

The left-hand side describes the ant motion with constant speed c in the direction ω.
The right hand side is a Boltzmann-type operator which describes the rate of change
of the distribution function due to the velocity jump processes. Q is decomposed
into

Q = Qr + Qp,

where Qr and Qp respectively describe the random velocity jumps and the trail
recruitment jumps.

Both operators Qk(x, ω, t), k = p or r express the balance between gain and loss
due to velocity jumps, i.e. Qk(x, ω, t) = Q+

k − Q−
k . The gain term Q+

k describes
the rate of increase of F (x, ω, t) due to particles which have post-jump velocity ω
and pre-jump velocity ω′. Similarly, the loss term Q−

k describes the rate of decay
of F (x, ω, t) due to particles jumping from ω to another velocity ω′. The jump
probability Pk(ω → ω′)dω′ is the probability per unit time that a particle with



4.2 Kinetic model 21

velocity ω jumps to the neighborhood dω′ of ω′ due to jump process k. Therefore,
the expression of Qk is:

Qk(F )(x, ω, t) =
∫

S1

(

Pk(ω′ → ω)F (x, ω′, t) − Pk(ω → ω′)F (x, ω, t)
)

dω′. (4.3)

where the positive term corresponds to gain and the second term, to loss. By
symmetry, we note that

∫

S1

Qk(F )(x, ω, t) dω = 0, (4.4)

for any distribution F . This expresses that the local number density of particles is
preserved by the velocity jump process.

Now we describe the expressions of the jump probabilities Pk. For both pro-
cesses, we postulate the existence of a detailed balance principle, which means that
the ratio of the direct and inverse collision probabilities are equal to the ratios of
the corresponding equilibrium probabilities

Pk(ω′ → ω)

Pk(ω → ω′)
=

hk(ω)

hk(ω′)
, (4.5)

where hk is the equilibrium probability of the process k (k = r or k = p). Using
(4.5), we can define:

Φk(ω′, ω) =
1

hk(ω)
Pk(ω′ → ω) = Φk(ω, ω′),

which is symmetric by exchange of ω and ω′ and write

Qk(F )(x, ω, t) =
∫

S1

Φk(ω, ω′)
(

hk(ω) F (x, ω′, t) − hk(ω′) F (x, ω, t)
)

dω′. (4.6)

From this equation, it is classically deduced that the equilibria, i.e. the solutions
of Qk(F ) = 0 are given by F (x, ω, t) = ρ(x, t)hk(ω) with arbitrary ρ. We recall the
argument here for the sake of completeness. Indeed, such F are clearly equilibria.
Reciprocally, if F is an equilibrium, then, using the symmetry of Φk leads to

0 =
∫

S1

Qk(F )
F

hk

dω

= −
1

2

∫

(S1)2

Φk(ω, ω′) hk(ω) hk(ω′)

(

F (x, ω′, t)

hk(ω′)
−

F (x, ω, t)

hk(ω)

)2

dω dω′.

The last expression is the integral of a non-negative function which therefore must
be identically zero for any choice of (ω, ω′). It follows that the only equilibria
are functions of the form ρhk with ρ only depending on (x, t). It is not clear if
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the biological processes actually do satisfy the detailed balance property but this
hypothesis simplifies the discussion. Indeed, with this assumption, the equilibria hk

and the jump probabilities Φk can be specified independently.

Trail recruitment jumps. For trail recruitment, we first need to specify the
equilibrium distribution as a function of the pheromone distribution. Several op-
tions are possible: non-local interactions, local ones, preferential choice, nematic
interactions.

1. Non-local interaction. We first introduce the sensing application:

SR(x, ω, t) =
1

πR2

∫

|x−y|<R
G(y, ω, t)dy,

where R represents the perception radius of the particle, i.e. the maximal distance
at which it can feel a deposited pheromones. The quantity SR(x, ω, t) represents
the density of pheromones pointing towards ω which can be perceived by an ant at
point x in its perception area. We also define

TR(x, t) =
∫

S1

SR(x, ω, t) dω,

the pheromone total density within the perception radius, regardless of orientation.
Then, we let the equilibrium distribution of the trail recruitment process as follows:

hp(ω) = gR(x, ω, t) :=
SR(x, ω, t)

TR(x, t)
, (4.7)

which, by construction, is a probability density. Now, The expression for the tran-
sition probability reads:

Φp(ω → ω′; x, t) = λpγ(TR(x, t))φp(ω · ω′), (4.8)

where λp is the trail-recruitment frequency and γ is a dimensionless increasing
function of T which accounts for the fact that recruitment by trails increases with
pheromone density (in the discrete particle dynamics, we have taken γ(T ) = πR2T ,
the total number of pheromones in the sensing region). The function φp(ω · ω′)
represents the angular dependence of the interaction process and is such that

1

2π

∫

S1

φp(ω · ω′) dω′ = 1. (4.9)

We assume that it is independent of the pheromone distribution for simplicity.
Inserting (4.8) into (4.6), the trail-recruitment operator is written:

Qp(F )(x, ω, t) = λpγ(TR(x, t))
∫

S1

φp(ω · ω′)(gR(ω) F (x, ω′, t)

−gR(ω′) F (x, ω, t))dω′. (4.10)
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The choice of φp which corresponds to the discrete dynamics discussed in the previ-
ous sections is φp(ω · ω′) = 1. Inserting this prescription into (4.10) and using (4.7)
leads to the simplified operator

Qp(F )(x, ω, t) = λpγ(TR(x, t))

(

ρ(x, t)
SR(x, ω, t)

TR(x, t)
− F (x, ω, t)

)

,

with
ρ(x, t) =

∫

F (x, ω, t)dω,

the local ant density at x.

2. Local interaction. This corresponds to taking the limit of the sensing radius to
zero: R → 0 which leads to

hp(ω) = g(ω) :=
G(x, ω, t)

T (x, t)
, T (x, t) =

∫

S1

G(x, ω, t) dω.

T is the local trail density. Then, the expression of the collision operator is easily
deduced from (4.10) by changing gR into g. In the case where φp = 1, we get the
expression:

Qp(F )(x, ω, t) = λpγ(T (x, t)) (ρ(x, t)g(x, ω, t) − F (x, ω, t)) .

3. Preferential choice. We can envision a mechanism by which the ants can sense
and choose the most frequently used trails. A possible way to model this preferential
choice is by postulating an equilibrium distribution of the form

hp(ω) = g
[k]
R (ω) =

gk
R(ω)

∫

S1 gk
R(ω) dω

, (4.11)

with a power k > 1. Indeed, it can be shown [5] that the maxima of g
[k]
R are larger

than those of gR and similarly, the minima are lower. Additionally, the monotony
is preserved, i.e.

gR(ω) ≤ gR(ω′) =⇒ g
[k]
R (ω) ≤ g

[k]
R (ω′), ∀(ω, ω′) ∈ (S1)2.

Therefore, taking g
[k]
R (ω) as equilibrium distribution of the ant-pheromone interac-

tion means that the ants choose the trails ω with a higher probability when the
trail density in direction ω is high and with lower probability when the trail density
is low. The expression of the collision operator is easily deduced from (4.10) by

changing gR into g
[k]
R . In the case where φp = 1, we get:

Qp(F )(x, ω, t) = λpγ(TR(x, t))
(

ρ(x, t)g
[k]
R (x, ω, t) − F (x, ω, t)

)

.
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This mechanism can also be combined with a local interaction, by replacing gR

by the local angular pheromone probability g. We note that this mechanism is
not implementable in the discrete dynamics because the operation g → g[k] is only
defined for measures g which belong to the Lebesgue space Lk(S1). However, sums
of Dirac deltas, which correspond to the measure g in the Individual-Based Model,
do not belong to this space. Therefore, a smoothing procedure must be applied
to such measures beforehand. Since, it is not possible to obtain experimental data
about the smoothing procedure and the power k, the preferential choice model has
not been used in the numerical experiments of the previous sections.

4. Nematic interaction. The above described ant-pheromone interactions are polar
ones, i.e. the pheromones are supposed to have both a direction and an orientation.
However, we can easily propose a nematic interaction, for which an ant of velocity
ω chooses ω′ among the pheromone directions and their opposite in such a way that

the angle (̂ω, ω′) is acute, i.e. such that ω · ω′ > 0. For this purpose, we modify the
equilibria of the trail recruitment operator as follows:

hp(x, ω, t) = g
(sym)
R :=

SR(x, ω, t) + SR(x, −ω, t)

2TR(x, t)
,

and suppose that
φp(ω · ω′) = 0, when ω · ω′ ≤ 0. (4.12)

The expression of the collision operator is easily deduced from (4.10) by making the

change of gR into g
(sym)
R and imposing the restriction (4.12). In the case where

φp(ω · ω′) = 2H(ω · ω′),

where H is the Heaviside function (i.e. the indicator function of the positive real
line), we find

Qp(F )(x, ω, t) = λpγ(TR(x, t))

[

1

TR(x, t)

(

ρ+
ω (x, t) SR(x, ω, t)+

+ρ−
ω (x, t) SR(x, −ω, t)

)

− F (x, ω, t)

]

,

with
ρ±

ω (x, t) =
∫

F (x, ω′, t) H(±ω · ω′) dω′,

is the local density of ants pointing in a direction making respectively an acute
angle (for ρ+

ω ) or obtuse angle (for ρ−
ω ) with ω at x.

Random velocity jumps. For random velocity jumps, we assume a uniform
equilibrium

hr(ω) =
1

2π
,



4.3 Macroscopic model 25

with a given jump probability

Φr(ω, ω′) = λr φr(ω, ω′).

Here, φr satisfies the same normalization condition (4.9) as the trail recruitment
jump transition probability and λr is the random velocity jump frequency. With
(4.6), we find the expression of Qr:

Qr(F ) = λr

(

∫

φr(ω.ω′)F (x, ω′, t)
dω′

2π
− F (x, ω, t)

)

.

If φr = 1, then Qr reduces to

Qr(F ) = λr

(

ρ(x, t)

2π
− F (x, ω, t)

)

.

Summary of the kinetic model. Below, we collect all equations of the kinetic
model. We have written the model in the framework of non-local interaction, pref-
erential choice and nematic interaction. The restriction to simpler rules is easily
deduced.

∂tG(x, ω, t) = νdF (x, ω, t) − νeG(x, ω, t), (4.13)

∂tF + c ω · ∇xF = Qr(F ) + Qp(F ), (4.14)

Qp(F )(x, ω, t) = λpγ(TR(x, t))
∫

S1

φp(ω, ω′)
(

hp(ω) F (x, ω′, t)

−hp(ω′) F (x, ω, t)
)

dω′, (4.15)

Qr(F )(x, ω, t) = λr

∫

S1

φr(ω, ω′)
(

F (x, ω′, t) − F (x, ω, t)
)

dω′, (4.16)

hp(ω) = (g
(sym)
R )[k](ω), g

(sym)
R (x, ω, t) =

SR(x, ω, t) + SR(x, −ω, t)

2TR(x, t)
, (4.17)

SR(x, ω, t) =
1

πR2

∫

|x−y|<R
G(y, ω, t)dy, TR(x, t) =

∫

S1

SR(x, ω, t) dω. (4.18)

In the following section, we consider fluid limits of the present kinetic model.

4.3 Macroscopic model

Scaling. In order to study the macroscopic limit of the kinetic model (4.13)-(4.18),
we use the local interaction approximation R = 0, with non-nematic interaction and
uniform transition probabilities φr = 1, φp = 1. In this case, the model simplifies
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into

∂tG = νd F − νe G, (4.19)

∂tF + c ω · ∇xF = Qr(F ) + Qp(F ), (4.20)

Qp(F ) = λp γ(T ) [ρ h − F ] , (4.21)

Qr(F ) = λr

(

ρ

2π
− F

)

, (4.22)

h = g[k], g =
G

T
, T =

∫

S1

G dω, ρ =
∫

S1

F dω, (4.23)

where the meaning of the power [k] operation has been defined at (4.11). We now
change to dimensionless variables. We let t0, x0, ρ0, T0, be respectively units of time,
space, ant density and pheromone density and we introduce x′ = x/x0, t′ = t/t0,
ρ′ = ρ/ρ0, T ′ = T/T0, F ′ = F/ρ0, G′ = G/T0 as new variables and unknowns.
Specifically, t0 is chosen to be the macroscopic time scale (e.g. the observation time
scale). Similarly, x0 is the macroscopic length scale (e.g. the size of the experimental
arena). We impose x0 = ct0, so that the time and space derivatives in (4.20) are of
the same orders of magnitude. This scaling allows us to observe the system at the
convection scale where the convection speed of the ant density is finite.

We introduce the following dimensionless parameters:

ν̄d = νd t0, ν̄e = νe t0
T0

ρ0
, λ̄p = λp t0, λ̄r = λr t0.

We make the assumption that the macroscopic time scale t0 is very large compared
to the microscopic time scales λ−1

r and λ−1
p which are both supposed to be of the

same orders of magnitude. Indeed, during the time needed for patterns to develop,
ants make a large number of jumps of either kind. Following this assumption, we
introduce:

ε =
1

λ̄p

=
1

λpt0
≪ 1, σ =

λ̄r

λ̄p

=
λr

λp
= O(1).

Concerning the pheromone dynamics, we assume that ν̄d and ν̄e are of the same
orders of magnitude, which amounts to supposing that pheromone deposition and
evaporation balance each other. Indeed, if one of these two antagonist phenomena
predominates, then, after some transient the pheromone density will become either
too low or too large and we cannot expect any interesting patterns to emerge in
this case. We introduce

η =
1

ν̄d
=

1

νd t0
, κ =

ν̄e

ν̄d
=

νe

νd
= O(1).

In what follows, we will assume that η = O(1) i.e. that the pheromone dynamics
occurs at the macroscopic time scale.
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After rescaling, system (4.19)-(4.23) becomes (dropping the primes for the sake
of clarity):

η ∂tG
ε = F ε − κ Gε, (4.24)

ε (∂tF
ε + ω · ∇xF ε) = Q(F ε), (4.25)

with the collision operator Q = Qr + Qp given by

Q(F ) = (Qr + Qp)(F ) = (γ(T ) + σ) (µ ρ − F ), (4.26)

µ =
γ(T )h + σ

2π

γ(T ) + σ
, h = g[k], g =

G

T
, (4.27)

T =
∫

S1

G dω, ρ =
∫

S1

F dω. (4.28)

Macroscopic limit ε → 0 of the kinetic model (4.24)-(4.28). Here, we
suppose that η = O(1) i.e. we assume that the pheromone dynamics occurs at
the macroscopic scale. We show that the limit ε → 0 of (4.24)-(4.28) consists
of the following system for the ant density ρ(x, t), pheromone density T (x, t) and
pheromone distribution function g(x, ω, t):

∂tρ + ∇x ·

(

γ(T )

γ(T ) + σ
jh

)

= 0., (4.29)

η∂tT = ρ − κT, (4.30)

η∂tg =
ρ

T

(

γ(T )g[k] + σ
2π

γ(T ) + σ
− g

)

, (4.31)

with h = g[k] and where jϕ =
∫

S1 ϕ(ω) ω dω, denotes the flux of any function ϕ(ω).
Eq. (4.31) is a closed equation for g. Once g is determined and inserted into (4.29)
the evolution of the ant density ρ can be computed. The ant distribution function
f is equal to µ at any time, with µ given by (4.27).

Indeed, in this limit, supposing that F ε → F , we get Q(F ) = 0 from (4.25).
Therefore, from (4.26), we obtain

F = ρµ, or f = µ. (4.32)

The equation for ρ(x, t) is obtained by integrating (4.25) with respect to ω and
using (4.4). We find:

∂tρ + ∇x · jF = 0.

Remarking that jF = ρjµ and that the flux of the isotropic distribution vanishes,
we finally get from (4.27):

jµ =
γ(T )

γ(T ) + σ
jh, (4.33)
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and consequently, ρ satisfies (4.29). To compute the pheromone distribution func-
tion g, we integrate (4.24) with respect to ω and get (4.30). Then, combining (4.30)
with (4.24), we deduce that

η∂tg =
ρ

T
(f − g). (4.34)

But, with (4.32) and (4.27), we deduce that g satisfies (4.31).
Some comments are now in order. In the limit ε → 0 the ant distribution

function instantaneously relaxes to the distribution µ. This distribution reflects the
antagonist effects of trail recruitment and random velocity jumps. Indeed, µ is the
convex combination of the equilibrium distributions h and 1

2π
of the two processes

respectively. The weights, respectively equal to γ(T )/(γ(T ) + σ) and σ/(γ(T ) + σ)
show that the influence of the trail recruitment process is more pronounced at large
pheromone densities, since γ increases with T . On the other hand, if the frequency
of random jump σ is increased, the trail recruitment process is comparatively less
important.

Case k = 1: no preferential choice. If the ants do not implement a preferential
choice of the largest trails, i.e. if k = 1, eq. (4.31) simplifies into

η∂tg =
ρ

T

σ

γ(T ) + σ

(

1

2π
− g

)

. (4.35)

This is a classical relaxation equation of g towards the isotropic distribution 1
2π

.
As a consequence, in this case, there is no trail formation and the large time be-
havior of the system leads to a homogeneous steady state. This description can be
complemented by looking at the pheromone flux jg. Indeed, (4.35) leads to

η∂tjg = −
ρ

T

σ

γ(T ) + σ
jg.

As a consequence, the direction of the local pheromone flux never changes and its
intensity decays to 0 as t → ∞. Additionally, eq. (4.33) which in the case k = 1

gives jµ = γ(T )
γ(T )+σ

jg shows that the ant flux is always proportional to and smaller
than the pheromone flux. Therefore, it also converges to 0 for large times. Note that
this direction may not correspond to the maximum of the pheromone distribution
g. Therefore, the ant flux may not be aligned with any particular trail, defined as
such a maximum.

The ant distribution µ is just the convex combination of the pheromone dis-
tribution g and of the isotropic distribution. Therefore, the ant distribution is
always smoother than the pheromone distribution. The random velocity jump pro-
cess, even if very weak, seems to prevent a positive feedback between the ant and
pheromone distributions which could lead to the formation of trails. Of course,
these conclusions hold only when ε → 0, i.e. if the equilibrium of the ant jump
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operator is instantaneously reached. The fact that the simulations do indeed show
the formation of trails without any implementation of a preferential choice seems to
indicate that the fast microscopic dynamics plays an important role in the forma-
tion of trails which the macroscopic model is unable to capture. We also note that if
σ = 0, the pheromone distribution is constant in time. This is due to the fact that,
in the absence of random velocity jumps, newly created pheromones are deposited
according to a distribution which coincides exactly with the current pheromone dis-
tribution, resulting in an exact zero balance for this distribution. Therefore, even
if σ = 0, no trails can develop.

Case k > 1: existence of a preferential choice. In this case, Eq. (4.31) is a
non-local equation due to the operator g → g[k]. No analysis is available yet (to
our knowledge) for such an equation (some preliminary results can be found in [5]).
The large-time behavior of the system depends on the limit as t → ∞ of eq. (4.31).
We note that (4.31) may produce concentrations [5]. Indeed, the contribution of
the largest trails is amplified and the ant flux becomes more strongly correlated
to the direction of the largest trails. Therefore if the ants choose preferably the
largest trail, the resulting concentration dynamics may counterbalance the effect
of the random velocity jumps and a positive feedback between the ants and the
pheromones is more likely to occur. The study of this case is deferred to future
work.

Conclusion on macroscopic models. We have shown that macroscopic models
are unable to develop trail formation without some mechanism allowing to amplify
the variations of the pheromone distribution function. We have provided an example
of such a mechanism, referred to as the preferential choice and which consists for
the ants to choose the strong trails with higher probability than the weak ones.
However, the need for such an amplification mechanism is not observed on the
simulations of the microscopic model (see section 3). This difference may indicate
that the use of such macroscopic models is not fully justified for this dynamics.
In particular, the chaos property (see e.g. [10]), which is the corner stone of the
derivation of macroscopic models, may not be valid. Further rigorous mathematical
studies are needed to make this point clearer.

5 Conclusion

In this article, we have introduced an Individual-Based Model of ant-trail formation.
The ants are modeled as self-propelled particles which deposit directed pheromones
(or pieces of trails) and interact with them through alignment interaction. We have
introduced a trail detection technique which provides numerical evidence for the
formation of trail patterns, and allowed us to quantify the effects of the biological
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parameters on the pattern formation. Finally, we have proposed both kinetic and
fluid descriptions of this model and analyzed the capabilities of the fluid model to
develop trail patterns. From the biological viewpoint, the model can be further
improved. The ant and pheromone dynamics can be complexified for instance by
adding extra pheromone diffusion, anisotropy or saturation in the pheromone de-
tection mechanism, or by investigating the effect of a non-homogeneous medium.
From the mathematical viewpoint, a rigorous derivation of the kinetic and fluid
equations are still open problems.
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