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to turducken (turduckens, turduckening, turduckened, turduckened) [math.]: To stuff a black hole. We
analyze and apply an alternative to black hole excision based on smoothing the interior of black holes with
arbitrary initial data, and solving the vacuum Einstein evolution equations everywhere. By deriving the
constraint propagation system for our hyperbolic formulation of the BSSN evolution system we rigorously
prove that the constraints propagate causally and so any constraint violations introduced inside the black
holes cannot affect the exterior spacetime. We present evolutions of Cook-Pfeiffer binary black hole initial
configurations showing that these techniques appear to work robustly for generic data. We also present
evidence from spherically symmetric evolutions that for the gauge conditions used the same stationary
end-state is approached irrespective of the choice of initial data and smoothing procedure.
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I. INTRODUCTION

Currently, there are essentially two different ways of
dealing with singularities in the numerical evolution of
orbiting black holes. One technique is black hole excision
[1,2], where the interior of each black hole is removed from
the computational domain by an inner boundary. The other
is the so called ‘‘moving punctures’’ technique [3,4], where
the initial asymptotically flat regions inside each black hole
are represented by ‘‘puncture points’’. Long, multiorbit
binary black hole simulations have been achieved over
the last few years using both excision [5,6] and moving
punctures (see [7] and references therein).

The puncture technique does not make use of the black
hole excision idea, at least not in the classical sense of
placing an inner boundary inside each black hole. Instead,
the fields that initially describe the puncture points are
allowed to evolve freely in the (topologically trivial) com-
putational domain and the subtleties of black hole excision
are replaced by the subtleties involved in approximating
the singularities in the equations at the puncture points.
The particular appeal of the ‘‘moving punctures’’ tech-
nique compared to black hole excision is that it appears
to be simpler to achieve a stable discretization near the
puncture points than at an excision boundary; however,
there appears to be an implicit limitation of the method in
that it is in principle tied to the use of puncture data.
Recently, light has been shed on the geometric picture
behind moving punctures [8–10].

In this paper we discuss a technique for evolving black
holes which shares the simplicity of moving punctures but
is not restricted to puncture-type initial data and does not
need any regularization of the equations near special

points. The method also relies on the intuitive idea behind
black hole excision that ‘‘no physical information can
escape from the interior of a black hole’’, but proceeds in
a different way. In particular, it does not require placing an
inner boundary per black hole in order to remove the
interiors. The computational domain in this technique is
trivial (from a topological point of view) and the discreti-
zation therefore remains simple.

The basic idea is the following: if no physical informa-
tion can leave the interior of the black hole, why not just
change the interior to one’s advantage? The spirit of this
idea is not new, and has been advocated for a long time in
several forms, most notably by Bona and collaborators
[11–13] and by Misner [14]. In particular, in [13], a
‘‘free black evolution’’ approach was advocated, where
the interior of each black hole is smoothed with arbitrary
data and the vacuum Einstein evolution equations are
solved everywhere. In general the smoothing process gen-
erates constraint violations. Thus, a key ingredient of this
approach is to guarantee that the form of the equations does
not allow for constraint violations to propagate to the out-
side. This is highly nontrivial. In fact, it is well known that
depending on the form of the Einstein equations used,
gauge and constraint modes can propagate with arbitrary
(including superluminal) speeds and, in particular, con-
straint violations can leak from the interior of black holes
to the outside. Though we use a different formulation of the
equations (a version of BSSN as opposed to the Z4 system
[13]), this ‘‘free black hole evolution’’ approach is exactly
the one that we analyze and apply in this paper. Even
though in several aspects this is different from the ‘‘stuffed
black hole proposal’’ [11], we will refer to our particular
implementation as the relativistic turducken [15].
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II. NO CONSTRAINT LEAKING IN THE
TURDUCKENING: AN ANALYTICAL PROOF

The exact version of the BSSN system we use is given
by Eqs. (3)–(7), (21)–(23) in [16] where we set the pa-
rameter m to one and the source terms S, Ŝij and Si to zero.
Furthermore, the lapse � and the shift �i are evolved
according to the 1� log slicing condition @̂0� � �2�K
and the ‘‘hyperbolic Gamma driver’’ [17] like conditions
@̂0�i � 3Bi=4, @̂0Bi � @̂0

~�i � Bi=2, respectively, where
@̂0 � @t � �

j@j. The term @̂0
~�i in the last equation is set

equal to the right-hand side of the evolution equations for
the ~�i symbols. As noted in [16] the use of @̂0 (as opposed
to @t) in the above equations simplifies the analysis of the
hyperbolic structure of the equations. Later, it was also
found to be important in practice for long-term binary
evolutions [18]. In addition, using @̂0 for the lapse implies
that the slicing obtained is independent of the choice of
shift vector [9].

The well-posedness of the resulting Cauchy problem
was analyzed in [16]. A sufficient condition for well-
posedness is strong hyperbolicity of the evolution equa-
tions. (See [19,20] for definitions that apply to second
order systems.) In our case, the equations are strongly
hyperbolic if and only if the lapse � and the conformal
factor � are smooth functions satisfying �> 0, j�j<1
and h :� 2�� e4� � 0. The last condition is typically
violated, at least on some two-surface. This is so because
in general, �! 1 and �! 0 and therefore h! 1 as one
approaches the main asymptotically flat end, while near
black holes � is small and � is large and positive (for the
coordinate conditions used here typically � � 0:3 at the
horizon, and �! 0 and �! 1 at any punctures) so that
h < 0 near a horizon. Therefore, the function h must be
zero somewhere in between. On the other hand, if the
regions where h � 0 are, for example, sets of zero-measure
in the computational domain there is hope that the violation
of the condition h � 0 still allows for a well posed Cauchy
problem. The numerical simulations in Sec. IV below show
no apparent sign of numerical instability.

The characteristic speeds (with respect to normal
observers) for our evolution equations are the following
[16]: 0, �1, ��1, ��2, ��3, where �1 �

���������
2=�

p
, �2 ����

3
p
e2�=2�, �3 � e2�=�. It is possible to give a precise

meaning to the different characteristic fields and speeds in
the high-frequency limit [21,22]. In that limit, fields prop-
agating with speeds �1, �2 and �3 correspond to gauge
modes, while the fields corresponding to gravitational
radiation and constraint-violating modes have speeds �1
and 0,�1 respectively. As we will see below, the constraint
propagation system possesses the characteristic speeds 0
and �1.

The BSSN system is subject to the Hamiltonian and
momentum constraints H � 0 and Mi � 0 plus three extra
constraints associated with the introduction of the ~�i sym-
bol as independent variables, namely Ci� :� ~�i � @j ~�ij �

0, where ~�ij refers to the inverse of the conformal metric.
In order to obtain a solution to Einstein’s vacuum field
equations, these constraints have to be satisfied. We now
show that it is sufficient to solve them on an initial Cauchy
surface in the region exterior to the black holes. The
constraint propagation system then guarantees1 that these
constraints hold at every time future to the initial surface
and at every point outside the black hole regions, indepen-
dent of any constraint violation in the interior of the black
holes. We show this below by deriving the constraint
propagation system and casting it into first order symmet-
ric hyperbolic form. We then show that the characteristic
speeds (as measured by normal observers) have magni-
tudes zero and one. This implies that the constraints propa-
gate causally.

Using the Bianchi identities, imposing the evolution
equations and introducing the additional constraint varia-
bles Zij � �@iCk��~�kj, the constraint propagation system
can be rewritten as a first order system of the form

 @̂ 0C � ��A�u�i@iC� B�u�C	; (1)

where C are the constraint variables, u �
��;�; ~�ij; K; ~Aij; ~�

i� are the main variables, and A1, A2,
A3 and B are matrix-valued functions of u. Decomposing
Zij � Ẑ�ij� � Z�ij	 � �ijZ=3 into its trace-free symmetric
part Ẑ�ij�, its antisymmetric part Z�ij	, and its trace Z �
�ijZij with respect to the physical three-metric �ij, and
representing C in terms of the variables C � �Ci�; S1 :�

2mH� Z; S2 :� H � 2�Z;Mj; Ẑ�ij�; Z�ij	�, the principal
symbol A�n� � A�u�ini is given by

 A �n�C � �0; 0; njMj;
1
3njS2 �

1
2n
iẐ�ij�

� 1
2n
iZ�ij	; 2�n�iMj��

TF; 2n�iMj	�; (2)

where ni 
 �ijnj and ni is normalized such that nini � 1.
This system is symmetric hyperbolic, and its characteristic
speeds (with respect to normal observers) are 0 and �1. A
symmetrizer is given by the quadratic form

 CTHC � ~�ijC
i
�C

j
� � S

2
1 �

1
3S

2
2 � �

ijMiMj

� 1
4�

ik�jlẐ�ij�Ẑ�kl� �
1
4�

ik�jlZ�ij	Z�kl	: (3)

The symmetrizer, along with the fact that there are no
superluminal characteristic speeds, allow us to obtain an
energy estimate for the constraint variables C and to show
that no constraint violations from the interior of a black
hole can propagate to the outside. The explicit estimate
will be presented elsewhere along with more details of the
results presented in this paper.

1However, constraint violations can still be introduced by
improper outer boundary conditions.
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III. SINGLE BLACK HOLE EVOLUTIONS AND
THE END STATE

In this section we present insights obtained by applying
the turducken technique to a single spherically symmetric
black hole. For these studies we use both the three-
dimensional (3D) code described in Sec. IV, as well as
the one-dimensional (1D) BSSN code discussed in [23].
Both codes use a formulation of the BSSN equations that is
strongly hyperbolic everywhere except in regions of the
computational domain that are likely sets of measure zero,
and have causal constraint propagation.

For a single black hole we use turduckened Kerr-Schild
(KS) initial data. Without turduckening, a KS slice hits the
singularity. We first define the spacetime metric g�� �
��� � 2H‘�‘� in terms of Cartesian coordinates x, y, z,
where ��� is the Minkowski metric, H � M=�r and ‘� �
�1; x; y; z�=�r. Here, �r is defined in terms of coordinate
radius r � �x2 � y2 � z2�1=2 by �r � �rp � 	p�1=p. The
contravariant metric g�� is obtained from g�� by raising
indices with ���. In Cartesian coordinates the initial
metric is defined by the spatial components of g�� and
the initial extrinsic curvature is defined by the usual ex-
pression Kij � �� _gij � �

k@kgij � 2gk�i@j��
k�=2�, where

� � 1=
����������
�gtt

p
and �i � �git=gtt. The initial data for the

1D code is obtained by transforming the Cartesian data to
spherical coordinates.

For r� 	 we find �r � r and the initial data coincides
with a KS slice of a nonrotating black hole. For r close to
the origin, the data are smooth and regular as long as 	 �

0. This form of turduckening is not ideal since it leads to
constraint violations that extend beyond the horizon r �
2M. Typical values used in our simulations are 	 � 0:1M
and p � 4. These values lead to initial violations of the
Hamiltonian constraint of �104=M2 at r � 0 and
�10�5=M2 at r � 2M.

Experiments in 1D show that after an evolution time of
50M, the Hamiltonian constraint violation throughout the
computational domain drops to a level�10�5=M2. Similar
results hold for the other constraints. By t � 50M the data
have become nearly stationary; the final state in the t! 1
limit coincides with a portion of the stationary 1� log
slice of Schwarzschild. This is the same end state obtained
with puncture evolution [8,9]. The key ingredient respon-
sible for these remarkable behaviors is the Gamma-driver
shift condition. With this condition the shift grows large in
the interior region to counteract the grid stretching that
would otherwise occur as the lapse collapses. As a result
the time flow vector field tips outside the physical light
cone (toward increasing r) and the grid points near r � 0
are quickly driven out of causal contact with the constraint-
violating portion of the initial data. With the constraints
(nearly) satisfied everywhere in the computational domain,
the numerical data represents a slice of Schwarzschild that
extends from region I of the Kruskal diagram, crosses the
black hole horizon, and terminates at a resolution-

dependent location inside the black hole. The 1� log
slicing condition then guides the slice to a stationary state.

Figure 1 shows the areal radius R versus proper distance
d (in the radial direction) for a single non–spinning black
hole, obtained from the 1D code with resolution M=200.
The data evolve to the stationary 1� log slice in spite of
the fact that the initial data violate the constraints.

Alternatively, the initial KS data can be changed only
inside a sphere of radius r0 < 2M. In 1D simulations such
initial data can lead to the formation of gauge shocks, like
those discussed in [10]. The shocks typically form just
outside the black hole, independent of the parameter r0;
this suggests that the formation of shocks is a consequence
of the gauge conditions, and not the black hole turducken-
ing. We have not seen this behavior in 3D, perhaps due to
lack of resolution.

IV. BINARY BLACK HOLE EVOLUTIONS USING
COOK-PFEIFFER DATA

We evolve quasiequilibrium binary black hole initial
data using the form of the equations described above,
implemented in CCATIE, a three-dimensional adaptive
mesh refinement code which uses the Cactus framework
[24] and the Carpet mesh refinement driver [25,26]. This
evolution code is fourth order accurate. It uses centered
finite differencing operators, except for the advection terms
which are upwinded. We use fifth order spatial and second
order temporal polynomial interpolation at mesh refine-
ment boundaries, and buffer zones as described in [25] to
ensure stability. We therefore expect our code to be third
order accurate in the limit of infinite resolution, and expect
it to show approximate fourth order convergence away
from the outer boundary and for the resolutions used
here. We use a fourth order Runge-Kutta time integrator
with a CFL factor of 0.4. We use Sommerfeld outer bound-
ary conditions for the individual components of the
evolved variables, which are not constraint preserving;
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FIG. 1 (color online). Areal radius R versus proper distance d
from the horizon. The initially turduckened KS become indis-
tinguishable from the portion d * �9 of a stationary 1� log
slice after t � 50M. The region R< 2M is the black hole
interior.
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we therefore place the outer boundaries at a large distance
from the source.

The initial data were provided by Harald Pfeiffer [27]
and are described in [28,29]. In particular we use the data
set sep07:0059a:tgz in which the binary black hole
system is expected to orbit approximately once before
merging. These data have an ADM mass MADM �
2:444 49 � 0:977 795M, where we use a scale factor M �
2:5. The black holes are centered about x � �1:4M, and
the apparent horizons have a coordinate radius rAH �
0:35M.

Our simulations use reflection symmetry about z � 0
and 
-rotation symmetry about the z axis. We choose a
simulation domain with outer boundaries at 204:8M, and
use altogether 9 successively smaller levels of mesh refine-
ment, where the finest level has an extent of 0:8M, centered
about each black hole. Our resolution is h � 3:2M on the
coarsest grid, h � 0:8M near the gravitational wave detec-
tor, and h � 0:0125M on the finest grid. We include results
from two coarser runs with coarse grid resolutions h �
4:5M and h � 4:1M, respectively.

The initial data are provided in terms of spectral expan-
sion coefficients for the ADM variables on multiple do-
mains and need to be interpolated to our grid points. The
initial data setup excises the apparent horizons but extrapo-
lates a distance of up to 0:25rAH � 0:0875M into the
horizon. The remainder of the interior of the apparent
horizons needs to be turduckened.

We have experimented with various methods for tur-
duckening the black hole interior, and find that the details
do not matter much in practice, as long as the spacetime
remains unchanged within the finite differencing stencil
radius of the horizon. Since there are preciously few grid
points between the excised region and the horizon, we
chose a method which leaves all given spacetime data
unchanged and fills in the excised points in a smooth
manner. (One alternative would be a blending method
which fills the excised region with arbitrary data, and

then modifies some of the nonexcised grid points to create
a smooth match.)

In particular, we solve the elliptic equation �@6=@x6 �
@6=@y6 � @6=@z6�A � 0 to fill the excised points of a
quantity A, using standard centered derivatives everywhere
and using the given nonexcised data as boundary condi-
tions where necessary. This is equivalent to providing
boundary conditions for A, and the normal derivatives
dA=dn, and d2A=dn2. The result is therefore C2 every-
where within the horizon. We solve this equation with a
standard conjugate gradient method.

We follow the evolution of these data through merger
and ringdown for about 200M. Figure 2 shows the loca-
tions, shapes, and tracks of the individual and the common
apparent horizons. A common horizon appears at about
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FIG. 2 (color online). Apparent horizons in a binary black hole
evolution of Cook-Pfeiffer data. This figure shows the tracks of
the centroids of the apparent horizons, as well as their shapes at
t � 0M, at merger (t � 37M), and at late times (t 
 200M).
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FIG. 3 (color online). Real part of the waveform Q�22, extracted
at R � 50M. The vertical lines indicate approximately when the
initial burst of spurious radiation first reaches the detector and
when the common horizon is ‘‘seen’’ by the detector. The
‘‘junk’’ radiation near t � 50M is a well-known feature from
puncture evolutions.
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FIG. 4 (color online). Difference between waveforms, scaled
for 4th order convergence. The waveform phases have been
shifted in time so that all resolutions have the same phase at
the beginning of the merger radiation burst at t � 60M. The
initial high-frequency oscillations in the error are caused by the
small amount of junk radiation near t � 50M, and similar
oscillations near t � 140M are probably caused by its reflection
at the coarsest refinement level. The noise near t � 170M
appears at a time when the waveform has already rung down.

DAVID BROWN et al. PHYSICAL REVIEW D 76, 081503(R) (2007)

RAPID COMMUNICATIONS

081503-4



t � 37M. The common horizon initially has a strong Y22

deformation which is radiated away. This is clearly shown
in the real part of the ‘ � m � 2 mode of the Zerilli
function Q�, extracted on a coordinate sphere at R �
50M and shown in Fig. 3. Figure 4 shows the results of a
convergence test, although the resolutions are too close
together to give reliable results. Both the horizon dynamics
and waveforms are very similar to those from puncture
initial data. We will present a study of this and other
systems with larger initial separations in more detail
elsewhere.

V. FINAL REMARKS

A key property needed in a ‘‘free black hole evolution’’
approach is that the constraints propagate causally. This
cannot be taken for granted, and must be proved (or tested)
for any particular formulation of the Einstein equations
used. Note that even apparently small variations in the
evolution system can change the constraint propagation
from causal to acausal.

Causal propagation of the constraints alone is not suffi-
cient. In modifying the initial data by smoothing away the
singularity, we are not guaranteeing that the evolution will
proceed to a smooth, regular end-state. That this end-state
is numerically well-behaved is the other key ingredient in
any evolution that relies on modifying the interior of the
horizon in some way. As the numerical evidence presented
here shows, evolutions in spherical symmetry do tend to a
recognizable end-state for the given set of gauge conditions

and form of the equations. It seems likely that a similar
picture will hold away from spherical symmetry.

Our work suggests that the turducken technique will
hold irrespective of how and when the data inside the
horizon are modified, thus allowing the method to be
applied without modification to the final stages of evolu-
tions performed with possibly different codes and/or meth-
ods, or to horizons formed e.g. in stellar collapse scenarios.

Most of the results of this paper were originally pre-
sented [30] by one of us (ES) at the Tenth Eastern Gravity
Meeting. Since then, and while completing this paper,
independent results complementary to those presented
here have been presented in Ref. [31].
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