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Abstract

In this paper we derive a priori and a posteriori error estimates for cell centered finite volume ap-
proximations of non-linear conservation laws on polygonal bounded domains. Numerical experiments
show the applicability of the a posteriori result for the derivation of local adaptive solution strategies.
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1 Introduction

Let © be an open convex polygonal bounded domain in R¢, d = 2,3, endowed with the Euclidean norm
|- | and let T € R*. We consider the following initial boundary value problem for non-linear scalar
conservation laws:

¢t +V-F(z,t,c) = 0in Q2 x(0,T), (1)

¢,0) = ¢ in, 2)

c(z,t) = ¢(t,z)in 00 x (0,T). (3)

The flux in equation (1) is given by the function F € C*( x (0,T) x R;R?); the functions ¢y € L=(R)

and ¢ € L> (00 x (0,T)) are respectively the initial and boundary data of the problem (1)—(3).

The finite volume methods are known to be well-suited for the discretization of conservation laws. A
basic account for this claim is the fact that, by construction, they respect the conservation principle which
constitutes the root of equation (1). Indeed, the evolution of the discrete unknown cg in each control
volume K is given by the equation

K| it = K| o + A Y Qr @)
ocEOK

in which we denote abusively by 0K the set of faces of K and where |K| is the volume of K. Equation (4)
is the expression of the fact that the discrete evolution of ¢k is governed by the values of the discrete
fluxes Q7 across the boundary of K in the time interval [t",#"+1]. It is the choice of this numerical fluxes
Q" that determine the finite volume method. In what follows, we will specifically consider three-point
finite volume schemes with monotone fluxes (see (13)—(17)). This category of schemes encloses all relevant
first order three-point finite volume schemes.

Since both (1) and (4) are evolution equations, the main features of the analysis of conservation laws,
and of their approximations by the finite volume method already appear in the context of the Cauchy
problem, i.e. © = R? and no boundary conditions have to be taken into account. The order of accuracy
of the finite volume method for the Cauchy problem is one of these well-known features: the first given
a priori error estimate is the (sharp) h'/2 (h being the size of the mesh) estimate of Kuznetsov [Kuz76]
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in the 1D case. This estimate remains valid on structured meshes in R? while, for finite volume schemes
on unstructured meshes, the lack of an uniform BV estimate on the numerical solution leads to an error
estimate of reduced order h'/* [KNR95, BCV95, CCL95a, EGHO00]. Still, in the context of the Cauchy
problem, refined error estimates have been given (and their sharpness analyzed) according to the genuine
non-linearity of the flux, to the structure of the entropy solution to (1)-(2), or to the nature of the waves
in the solution. We refer to the discussion and compilation made by T. Tang on that profuse subject
[Tan01].

For practical applications a posteriori error estimates are even more important than just convergence
rates. Such estimates allow to extract error indicator information that can be used in order to derive
efficient self adaptive strategies for the finite volume schemes. A posteriori error estimates for finite volume
approximations to the Cauchy problem were first derived by Tadmor [Tad91] in one space dimension,
and by Cockburn and Gau [CG95] in the multi dimensional case. A localized estimate for general flux
functions and the derivation of self adaptive schemes was given in [KOO00]. Further results for finite
volume approximations to the Cauchy problem were obtained in [GM00, KO03, KKP02], while finite
element approximations to the Cauchy problem were studied in [JS95, SH95, HMSW99, HH02]. We
emphasize that up to now no a posteriori results are available for approximations of the initial boundary
value problem (1)—(3).

Although the study of the finite volume method applied to the Cauchy problem (1), (2) has led to
the understanding of most of the mechanisms which govern the accuracy of this numerical method of
approximation, the initial-boundary value problem (1)—(3) has its own interest (for the simple and major
reason that the domains under consideration in practical applications can be bounded domains), and its
approximation by finite volume schemes deserves an analysis. With that purpose in mind, notice that a
new and characteristic feature of the approximation of the initial-boundary value problem (1)—(3) by a
finite volume scheme is the possible creation of a numerical boundary layer. This numerical boundary
layer is a sub-product of the numerical diffusion effects induced by the scheme. Of course, its presence
is also related to the way in which the boundary data are implemented in the scheme. Let us specify
this point. We consider here and in the following the implementation of boundary data via ”ghosts
control volumes”. This is a way to compute the numerical fluxes at the boundary of the domain inspired
by the design of the fluxes inside the domain. Indeed, if o is an edge of a control volume K but also
one of the edges of the control volume L then the numerical flux Q% (¢f. (4)) is given as a function
of the discrete unknowns ¢} and ¢ by the formula Q7 = G?(c%,c}) where, among other properties,
the function G7 is non-decreasing with respect to its first argument and non-increasing with respect to
the second. If o, edge of a control volume K, is now located at the boundary of the domain {2, then a
ghost control volume L such that L ¢ R? \ Q and 0 = K N L is introduced and the computation of the
numerical flux at the boundary Q7 relies on a numerical flux function G? (non-decreasing with respect to
its first argument and non-increasing with respect to the second) via the formula Q7 = G2(cl, c¢}) where
the value ¢7 is a discretization (typically the mean value) of the boundary datum ¢ on [t",t"*1) x 0.
This method of computation of the numerical fluxes at the boundary of the domain is classical and
ensures the convergence of the finite volume scheme to the entropy solution of the problem (1)—(3)
[Sze91, BCV95, CCL95a, Vov02]. Let us also stress that the proposed finite volume discretization is
of rather importance for practical applications (see the discussion on the implementation of numerical
boundary conditions in the approximation of two-phase flow problems in [EGV03]). Before coming back
to our considerations on numerical boundary layers, and on their influence on the speed of convergence
of the finite volume method, let us observe that, when systems of conservation laws are considered, the
computation of the numerical fluxes at the boundary of the domain by the method of ghost control
volumes may be not accurate. Other methods, like reflecting, or absorbing boundary conditions are in
use, and, when used, the method of ghost control volumes is associated to the Godunov method for the
computation of the flux. In this context, the Godunov method is indeed considered to give the reliable
choice of numerical flux functions at the boundary.

The study of the numerical boundary layer has been performed by C. Chainais-Hillairet and E. Grenier
[CHGO1], in the 1D case and for modified Lax-Friedrichs schemes on cartesian grids in the multi-D case.
Such an analysis gives a precise description of the numerical solution and, as a consequence, the speed of
convergence of this solution to the entropy solution of the problem (1)—(3). In the non-characteristic case
with smooth exact solutions, this speed of convergence is proved to be of order h in the L>(0,T; L*())
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norm, where h is the size of the mesh.

Unfortunately, the techniques of numerical boundary layer analysis seem difficult to be set when no
selected direction of (discrete) derivation exists, as is the case when finite volume schemes on unstructured
meshes are used. For such schemes one can therefore think to adapt the technique developed by Kuznetsov
[Kuz76] for the analysis of the Cauchy problem in the framework of the initial boundary value problem
to get error estimates, with the drawback that this tool is not accurate at all to take into account the
special phenomena at the boundary of the domain. In the specific situation F(z,t,¢) = u(z,t) f(c) with
f monotone, this drawback can be overcome, for the reason that the inflow and outflow parts of the
boundary are determined a priori by the given velocity field u. In [Vig97], Vignal gives an a priori error
estimate of order h'/* for the initial boundary value problem. However, to our knowledge, for general
fluxes F, and general schemes on possibly unstructured meshes, no results or techniques of error estimates
which account for the influence of the boundary condition have been delivered. In order to fill in this gap,
we adapt the technique of Kuznetsov [Kuz76] to the proof of uniqueness of the entropy solution given
by F. Otto [Ott96, MNRR96], and prove that the error can be estimated by an a posteriori error bound
which is at least of order h'/® for meshes with mesh size h. (see Propositions 5.1, 5.2). The order, h'/6,
of our a priori error estimate has also to be discussed. Our comments are postponed to Remark 5.9.

Since the finite volume methods introduce some numerical diffusion effects in the approximation of the
entropy solution to the problem (1)—(3), they are often related to the approximation by the vanishing
viscosity method with, say, a viscosity of (small) order e. In [IV03, DIV03] are developed the tools (notion
of kinetic solution for the initial boundary value problem) and given the proof of an error estimate of
order £'/3.

The article is structured as follows. In Section 2 are given and recalled some properties of the entropy
solution to the problem (1)—(3). In Section 3 are defined the finite volume schemes under consideration;
some of their properties are explained in Section 4 while in Section 5 are proved the error estimates
which are the center of our study. Finally, in Section 6, we give numerical experiments to illustrate our
analysis. We complete the presentation with the proof of a BV estimate on the entropy solution on
convex polygonal bounded domains in Appendix A.

2 Properties and regularity of the exact solution

Problem (1)-(3) for general flux F, and in the context of entropy solutions has first been analyzed by
C. Bardos, A.-Y. LeRoux and J.-C. Nédélec [BLN79] in the BV framework. The notion of entropy
solution given by the three authors has been extended, in the L setting, by F. Otto [Ott96, MNRR96].
We present and use this last definition, by using the following semi Kruzhkov entropy-entropy flux pairs
[Ser96, Car99].

Notation 2.1 (Semi Kruzhkov entropy-entropy flux pairs). Let aTb (resp. alb) denote the
mazimum (resp. the minimum) of a and b, set st = sTO, s~ = (—s)* and denote by sgn,(s) the
derivative of the function st (resp. s~ ) with the value 0 at s = 0. We denote by ®*(s, k) the entropy
fluz associated to the entropy (s — k)T, that is to say

&% (z,t,5,k) = sgny (s — k)(F(z,t,5) — F(z,t,K)).
We will often drop the dependence of ®* over the variables x and t and shorten the notation to ®*(s, k).
Notation 2.2. We denote by C,, and Cy; € R some lower and upper bounds for the data:
Cn<c¢y,e<Cy a.e.,
set C = max(|Cpl,|Cu|) and let L be a fized real satisfying

L > max{|F.(z,t,c)|; (z,t,¢) € A% (0,T) x [Cpn, Crs]}- (5)



Definition 2.3 (Entropy solution). A function ¢ € L*(2 x (0,T)) is called an entropy weak solution
of (1)-(8), if it satisfies the following entropy inequalities: for all & € [Cyy, Car], for all p € CP°(R*xRY)
with ¢ > 0,

/ (c — k)T + ®E(c, k) - Vo + / (co — K)Fp(-,0) + L (¢ — k)T >0. (6)
Qx(0,T) Q 80%(0,T)

The space L™ is preserved by equation (1), as well as the space BV, and we have the following theorem.

Theorem 2.4 (Existence, uniqueness, regularity).
Let cg € L®(Q), ¢ € L®(0Q x (0,T)). Suppose that F € C1(Q x (0,T) x R) and div,F(z,t,c) = 0 for
all (z,t,¢) € Q x (0,T) x R. Then there exists a unique entropy weak solution ¢ € L>®(Q x (0,T)) of the
problem (1)-(83) which is bounded by the data as follows

lle(®)]| Lo (@x(0,r)) < max{||co||Le(q),|[cl|z>=(a0x(0,1))} -

If furthermore, c¢ € BV (Q), and ¢ € BV(99Q x (0,T)), then ¢ € BV(Q x (0,T)) and there exists a
constant Cgy > 0 which depends on the data and on Q only such that

llellBv(@x (1)) < Chyv- X

Proof. We refer to [BLN79, Ott96, MNRR96, Vov(2] for the results of existence and uniqueness of the
entropy solution. In [BLN79] is given a BV estimate on the entropy solution, which requires 2 to be C2.
The BV estimate in the case where () is a polygonal bounded domain is a new result and we give the
rather involved and technical proof in Appendix A. O

Remark 2.5 (BLN). Under the hypotheses of Theorem 2.4, let ¢ be the entropy solution of the prob-
lem (1)-(3). Suppose that c € BV (Qx (0,T)) and denote by yc the trace of the function ¢ on Q2 x (0,T).
Then:

1. ¢ satisfies the following entropy inequalities: for all k € [Cp, Cu]:

/ (c — k)EOyp + ®F(c, k) Vi + / (co — k)T (-, 0) — / ®*(ve, k) - np > 0. (8)
QxR* Q 8% (0,T)

for all p € C*(R* x RY) with ¢ > 0.

2. Moreover, the so-called BLN condition [BLN79] is satisfied by ¢ on the boundary of the domain: for
a.e. (z,t) € 0N x (0,T), for all k in the interval with extremities vc(x,t) and ¢(x,t):

®*(ve,6) -n>0. 9)

3. The inequality (8), together with (9), implies (6). Indeed, if (x,t) € 0Q x (0,T) and if k < ¢(z,t)
then (9) gives
=@~ (ye(z,t),k) -0 <0 =L(E(,t) — k)~

while, if k > ¢(z,t) then (9) gives @ (vye,¢) -n >0 and

=% (ve(a, 1), k) -0 < (@7 (ye,€) = @ (ve, K)) -0 < L((2,1) — k)

4. In fact, it is possible to prove [MNRRI6, Vov02] that for every function w which is measurable and
bounded a.e. on 0Q x (0,T), one has

—®E(ye(x,t), w(w, b)) -n < L(E(z,t) — w(z, t)T (10)

for a.e. (z,t) € 00 x (0,T).



3 Notations, assumptions and the definition of the scheme

In this section we will fix the notations and assumptions and define the finite volume scheme for solving

(1)-3)-
Assumption 3.1. The data of problem (1)—(3) are supposed to satisfy the following conditions:

co € L®NBV(RY, e L®NBV(dQ x (0,T)),
F € CYQx(0,T)xR), div,F(z,t,c) =0 Y(z,t,c) € 2 x (0,T) x R. (11)

The initial and boundary data are supposed to belong to the space LN BV. This makes sense if one has
in mind practical applications in which these data are physical or biological quantities. The hypotheses of
regularity and divergence-free on the flux F are also in coherence with the possible physical or biological
underlying model for equation (1). The divergence free condition in (11) may be removed, and source
terms may be considered in equation (1) as well.

Let us now give the description of the meshes and schemes used to solve (1)—(3). Let J := {to, ...,tn} be a
partition of [0, 7] and At™ := t"*! —¢" be the step size of J. For each n € {0,..., N}let T = {T}|j € I}
be a regular triangulation of €). The joint edge of T; and 7; will be denoted by Sj;.

The set of internal edges S, and the oriented set of internal edges £, are assimilated to the sets of the
corresponding indexes and are respectively defined as

Sive = {(,1) € Iy, x I} }| Sy is an interior edge of T}, &R = {(j,1) € Sinel § > 1}

As mentioned in the introduction, we use the concept of ghost cells to compute the flux at the boundary.
We therefore introduce the notations related to the use of this method. Let the index set I, be such that
I, NI = 0 and such that for each edge S C 99 there exists a unique pair of indices (j,1) € I%, x I,
with 80T; NS = S. In this situation we denote Sj; := S. Accordingly, the set of edges located on the
boundary of Q is denoted by

St = 1{(,1) € Iy, x 12| Sj is an exterior edge of 7"}.

We also denote by Al := min;cr» diam (7}) the size of the mesh at time ¢". The mesh 7™ satisfies the
following structural hypothesis:

Assumption 3.2. There exists a real o > 0 such that for all hj := diam (T}), j € I:
ah! < |Tl,  aldTy < K (12)

In order to design the finite volume approximation, we first define the class of monotone numerical fluxes
in use.

Definition 3.3 (Numerical fluxes). The numerical fluzes are functions 951 € C(R* R), each for any

(j,1) € 8™ and t, € R*, satisfying the following conditions (respectively: monotony, convervativity,
regularity, consistency).

Yv € [C,Cul,  gji(v,-) is monotone non-increasing on [Cy,, Cpr],

Yw € [Cp, Cu],  gji(-;w) is monotone non-decreasing on [Cp,, Cu], (13)
Vo, w € [CmacM] av(ja l) € Si?lta g]T'Ll(an) = _glnj(wav)a (14)
Yw,v,w',v" € [Cm,Cum], |95i(v,w) — g5 (v, w")| < L|Sj|(Jw — w'| + v —2']), (15)
and
g+t
g7 (w, w) / / (z,t,w) - n; dr dt, (16)
]l At i J

where nj; denotes the outer unit normal to S; with respect to Tj.
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Definition 3.4 (Finite volume scheme). Set

Tt
cj = |T |/ Co, -7 €] lntv ¢ = At |Sjl| . / .’17 t dx dt (j,l) S

The discrete evolution of the approzimate value c; of c in the cell T; is governed by the equation

At
A= S > ghlch e, j eI, (17)
T IEN())

for alln € {0, ..., N}, where N(j) denotes the index set of the neighboring cells of T; including the ghost
indices across the boundaries of the domain €.

Given the discrete values ¢, we denote by cp the approzimate solution cp : €2 X (0,T) —» R defined by

en(z,t) :=cf if weT;, t"<t<t™h (18)

The stability of the explicit scheme (17) is ensured under the following CFL condition.
Assumption 3.5 (CFL - condition). We assume the following CFL-condition, for a given £ € (0,1):

(1 —§a’hp;
At < min,
v c

4 Properties of the discrete solution

As the entropy solution of problem (1)—(3), the discrete solution is L stable. On the contrary, the
validity of BV estimates on ¢, is still an open question (in the case where unstructured meshes are
considered): only “weak BV estimates” are known. These two aspects of the behavior of the discrete
solution are detailed in the following two lemmas (see [Vov02] for a proof).

Lemma 4.1 (L - stability). Let c;, be the discrete solution (17) and let the Assumptions 3.1, 3.2 and
3.5 be fulfilled. Then the function ¢y, satisfy the following L™ estimates:

llen|| L (@xjo,71) < max{||co||Le=(a), I[€]|L=(aax(0,1))}

and
Cm <cf <Cuy, for all (Tj,17) € T" x J.

Lemma 4.2 (Weak BV estimate). Let ¢, be the discrete solution (17) and let the Assumptions 3.1,
3.2 and 3.5 be fulfilled. Then there exists C' > 0 only depending on Q,co,¢, L, T, and £ such that

n n n n n C
D D, A(, max (gi(b,0)=gibb) +  max  (giba) = giaa) < (19)
tneJ(Gl)eern, ! !
and
c
YD ITllG T =l < —= (20)
treJjeln ! vh

Entropy inequality satisfied by the approximate solution

In Section 2 we recalled that problem (1) has a unique weak solution conforming to the entropy inequality
(6). In this subsection we will show that the approximate solution ¢; fulfills an analog inequality, including
a small error term. To compare discrete to continuous equations, let us introduce the following forms ET
and E}:



Definition 4.3. The discrete function cp, being defined by (3.4) and k € R, we set
n+1
- k)T = (c} — k)
+
Ey (ch, K, p) := ZZ A /t / (z,t) dz dt

tneJjeln
/ z,t) Zgﬂ c; Tk, ¢ Tk)—g5 (K, k) dzdt,
T lEN(3)

Et(cp, K, p) := / (ch(z,t) — k) Opp(z,t) dr dt
QxR+t

gt

t"EJJEI"| .7| "

+ / &t (cp(z,t), k) - Vo(,t) dr dt
QxR+
+ [ (@) = 0 eln,0) do+ (elat) — )" d(a) at,
Q 89x(0,T)
for any p € C*(Q x [0,T)).

The discrete (and local) entropy inequality given in Lemma 4.4 is the main account for the approximate
continuous entropy inequality detailed in Lemma 4.5.

Lemma 4.4 (Discrete entropy inequality). Let cp be the discrete solution defined in 3.4 and let
Assumptions 3.1, 8.2 and 3.5 be fulfilled. Then we have

Ejf (ch, K, ) > 0. (21)

Proof. The discrete entropy inequality (21) follows from the monotonicity properties of the numerical
fluxes. See, e.g. [Vov02]. a

Lemma 4.5 (Continuous entropy estimate). Let ¢, be the discrete solution defined in Definition 3.4
and let the Assumptions 3.1, 3.2 and 3.5 be fulfilled. Then we have

g+t

E*t(ch,k,0) > Z Z |c"Jrl "|/ / lpe(z,t)| dz dt—/|ch(x,0) — co(z)|p(z,0) dz
Q

tneJjeln

=3 > 2 o nae (9510,0) = g5 (0, D) s Vel + Lt

<a<b<c
tn €T (1) EER,

=3 ) 2 max (g5i(b,a) - gfi(a,a)){uf;, Vel + i)

. cf <a<b<c}
tr €I (j1)EED,

= > LA+ IR D W Vel + ledl)

tn €I (i) EER,

L (e — ) * oz, O)dy(@) dt— Y Y Lla+c;—20m) T, Vell22)

a0 x(0,T) tneJ(jl)esn
where the Radon measures puy, vj;, vy are defined as

(Mj,9) = hy + A // //
I A TS Jim -

gy + 3z —7),s+ 3t —s)) d¥ dy ds dz dt,

oy = s
I A S

gE+99(y—&), 7+ 9(s—171)) dI9 dy dt d¢ dr,

ext

gt

gntt

V5.9) = T' // / (v + 3z —7),t) dd dvy dz dt.
Til Jen J

Here, we have introduced the discrete boundary datum ¢, defined by Tp|s,, x[tn gn+1) = c]' for (j,1) € Sgx-
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Proof. From Lemma 4.4 follows
E+(ch7 K, (10) 2 E+(Ch7 K, 90) - EI—:—(C’M K, (p)

Hence, we aim at deriving a lower estimate for E+(ch, k, p) — E (ch, &, ¢). In order to do so, we split the
addend on the right hand side into two terms, corresponding to the time derivative and the convection
part. This yields

Et(ch,k,9) — Ef (cn, k,¢) = (Tio — T1) + (Tao — T2),

/ z,t) dx dt,
T;

where the terms 17,719, T>, T2 are defined by

!

tntt

treJjeln
Ty = / (cn(z,t) — "5)+6t90(377t):+/ (co(z) — K)T (2, 0) dx,
QxR+ Q
t"+
no= =SS e Y @ TR TR - gt ),
tregjern It T 1EN(5)
Ty = / (F(z,t,cp(z,t)Tk) — F(z,t,K))Vo(z,t) dx dt
QxR+

~+
—/ 78) (en, e R)p(a, £) dr(a) db.
00 x(0,T)

From (11) and (16) follows

- _ZZ / (z,t) Z{gﬂcTﬁc,Tm) gji (K, K)),

tnereIn| ]| " IEN(5)
—(951(c} Tk, TK) — gfi (K, k) }

gt

The discrete function ¢, is piecewise constant in space and time. We thus decompose T5¢ into sums and
integrate by parts locally.
tnedj EI"/

—/ 78; (en,7 R)p(a, 1) dr(2) dt.
a0 x(0,T)

gntt

/ (@, t,¢; Tk) = F(z,t,K)) - njip(z,t) dy(z) dt

Next, the summation in T5g, and T is rearranged in accordance to the following Lemma.

Lemma 4.6. Let A be a function IIpewn{n} x S® — R. Then

DD A= Y ARHAR+ Y, Y A%

tneJFjEIMIEN(H) treJ(jlyeEn, tneJ(j,l)eEST,

This reordering of the summations in 75 and Thg on the edges leads to the decomposition 75 = T2int —{—Tf"t
and Toy = Ta8t + T3t Then the method used to estimate the term |T3pt — T5"t|, as well as the term
|T10 — T1|, is, step by step, the method used in the proof of Theorem 4 in [CH99a] or Theorem 4.1 in



[EGGHO98]. We refer to these articles for an integral proof of the following results:

gl

To-Ti| < 33|t - "|// lou(,1)| dx dt+/|ch(x,0)—co(x)|go(:c,0) dx,

tneJjelr

T =T < Y0 Y L3+ I D@ Vel + o)
tred(j,l)eEn,

+>0 > 2 max  (gfi(b,a) — gi(b, b)) Vel + [e])

ey <a<b<c}
treJ(jl)eEn, g

+y > 2 max  (gh(ba) - ghi(a,a))(ufl, Vel + o),

cp<a<b<c?
tred(j,l)e€n, J

where p7; and v} are defined in the statement of the lemma.
A lower estimate on the boundary terms T§3* — T remains to be proved. We have

TSt = — Z

treJ(jl)esn,, | J| tn

tntt

/ (2, ) (91 (I Thy T ) — (s ),

_(gjl(cj Tk, Cj 1K) — gjl("v'a &)}

mo= Y >

/ (z,t,¢; Tk) — F(z,t,k)) - njp(z,t) dy(z) dt
treJ(4,1)eST,

+£ (¢ — r)to(z,t) dy(z) dt.
a0 x(0,T)
First, observe that, by (16), we have

-2 2

treJ(j,1)eS™,, | ]| "

- Z Z / / .fL' t7CjTH) - F(.’L’,t, 'i)) . n]lSD? dW(m) dt

€T (G1)ESD,

gntt

/ (z,t) (95 (c} Th, c} Tr) — gfi(k, k) dx dt,

where 7 := - |ft,, fT @(x,t) dx dt, and hence

Text Text Z Z i

tn€J(j,1) €S, 1751 Jen

/tn+

+L (¢ — k)T p(z,t) dy(z) dt
a0 x(0,T)

. ext ext ext ext
= U+ U + U + U,

/ (@ (5 TR, TR) = g, )

/ (2,1, Tk) = F(z,1,5)) - n((z, t) — o) dy(z) dt
t"eJ(] l)eS"



where
gntt

ext
Ut .

DY

tn€J(j,1) €S, 7] Jl "

-2 2

tneJ(j,1)eSn,, 1Si1l Jll tr

=Y Y [ / (e tesTH) = Fla, ) (ol 0) ~ ) ()

tneJ(jl)eSn,,

= Y

tneJ(j,l)eSn | ]l| tn

ext

+L @n — k)T (e, t) dy(z) dt,
a0 x(0,T)

U = L (¢ —r)to(z,t) dy(z) dt — L (en — k) o(z,t) dy(z) dt.
89x(0,T) 89%(0,T)

/ (2,8)(g(cI T, P T) — g1y (5, )

gt

/ (2, (g (P T, P TH) — g4 (5, )

gttt

/ (2,8) (g (I T, P T) — g1y (5, )

Recall that the discrete boundary datum ¢y is defined by Culg;,x[en ¢n+1) := ¢ for (j,1) € Sgy which
yields
t’"-+

(en — k)T o(z,t) dy(x) dt = / (2, t) (e} Tk — K)
/BQX(O,T) Z Z |Jl| tn !

tneJ(j)ESn,,

and
tn+t

= Y Y

Sl ). / (x t)(gjl(c Tk, TK) — gﬂ(m k) + L(c] Tk — K)).
tmeI(lESE, Tt
Since g7; is non-decreasing with respect to its first variable and by (15) we have

951 (ci Th, ' TK) — g51(K, K) > gy (K, TK) > —L(c Tk — K) .

Therefore, we have US** > 0. Besides, using the 1-Lipschitz continuity of the function ¢ — (¢ — k)™ and
the £-Lipschitz continuity of the numerical fluxes we derive the following estimates:

Uext Z —Z Z EC[ Vl]7|v90|>

treJ(4,1)eST,
Ut > = D Ll = Cw)(Tj Ve,
treJ(j,1)eSn,
Ut > —£ (@ — )T p(x,t) dy(z) dt.
a0 x(0,T)
This concludes the proof of Lemma 4.5. [l

5 Error estimates

Proposition 5.1 (A posteriori estimate). Let ¢, be the discrete solution defined in Definition 3./
and c the entropy solution of (1)—(3). Furthermore let the Assumptions 3.1, 3.2 and 3.5 be fulfilled. Then
we have

llen = cllz1@x(0,1)) < mlen), (23)
with
n(cn) = 2T(Ny+1) min [?70 + 77+ (e + ne) Kir + 0 K (r +1q) + Ko(2 + L)] :
rrag€RT T rq
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Here 19, m¢,m: and 7 are defined by

- / len(z,0) — co(a)] dz.

o= 3 Y ITACET e,
tneJjeln
e = >0 Y [2ha+ AP)A( max  (gh(b,a) = g(b,b))

“ . n cp <a<b<c}
tred(jlyeEn,

o B e (971 (b, a) — gji(a,a)))
FL( |+ o) (g + A2 AL hy

+3° > Llej + e —2Cm)hi At hy,
treJ(j,l)esSn

ext

7 o= / [en, —¢ldvy(z) dt
a0 x(0,T)

and the constants K1, K| are defined by (31). We have set
Ky :=2dLC(1+ ||w'0||L1(R) + |00|BV + |E|BV + K{ +Cgy + Cq)(1 + T|Q|) . (24)

Proposition 5.2 (A priori estimate). Let cp be the discrete solution defined in Definition 3.4 and c
the entropy solution of (1)-(3). Furthermore let the Assumptions 3.1, 3.2 and 3.5 be fulfilled. Then we
have for uniform meshes of mesh size h the following a priori error estimate

llen — cllz1 @@x(0,1) < nlcn) < KRS (25)
Here K denotes a generic constant independent of the mesh size.

The proof of the error estimates relies on the technique of the doubling of variables [Kru70, Kuz76]. The
basic elements of this technique (approximation of the unit, choice of the test function and the so-called
“dual forms”) are the object of the following three definitions.

Definition 5.3 (Approximation of the unit).
Let wo € CP(R,R) be such that

supp (’U)()) Cc [Oa 1]5 wo > 0, fR U)O(IL‘) dz=1.
For r and rq > 1, we define the approzimation of the unit w by V(x,t) = (%, z4,t) € R? x (0,7,
w(Z,xq,t) = rwo(rey) -+ -wo(reg—1) X rqwo(rqzq) X rwe(rt).

Definition 5.4 (Choice of the test function).
Let 9 : R?x R" 5 RY and A : R? — [0,1] denote some smooth non-negative functions that will be
specified later. We suppose supp(¢)) C R? x [0,T). We set:

e(z,t) = p(x,t,y, 5) := Py, s)Ay)w(z — y,t — ). (26)

Remark 5.5. Notice that, if a € {x1,...,24-1,t}, say a =t for ezample, then yw(x,t) = rwo(rzy)---

wo(rea_1) X rawo(raxq) x r2wh(rt) and, since [ r?|lwy(rt)| dt=r | |wi(o)|do and [ rwe(ro)do =1,
R R

we have

Va € {z1,...,Tda-1,t}, / Ou|w(z,t)| dr dt < r/ |wg (o) |do
RIxXRT R
and / Dol (z, )] da dt < rq / lwh(o)|dor (27)
RIxXRT R

11



We will make a mechanical use of these estimates in the following proofs and also use frequently and
without specification the inequality

/ / B> )AW) dy ds < I [l = (retrcm)- (28)
QJRt

Definition 5.6 (The form E* and the dual forms E** and E+*) Let ¢ be the entropy solution of
(1)-(3), and cp, the discrete solution defined by (18). We define ET(cp,c,9\) by

E+(chacaw)‘) = / E+(Ch,C(y,8),(p(',',y,8)) dy ds. (29)
QxR+t
where o(z,t,y,s) is defined by (26) and, corresponding to the forms E* and E*, we set:

(o) = R 0up(0) dy dst+ [ B7(l,). ) - Viply. ) dy

B (5, 0, ) = /

QxRt

+ / (co(y) — %)~ B(y,0) dy — / 5 (1ey, 8), 5) - 0y, )3, 8)dv(y) ds,
Q 0% (0,T)

E+*(Ch’c,¢)\) ::/ E+*(Ch($,t),c,¢) dz dta
QxRT

with ¢(y,s) = ¢(+,+,y,s). Here we denote by ~yc the trace of ¢ on the boundary 0 x (0,T), a function
which is well-defined (measurable and bounded a.e.) since ¢ € BV N L*®°(Q x (0,T)) (see Theorem 2.4).

The proof of the Propositions 5.1 and 5.2 falls into three parts. In the first part, we derive estimates on
the quantity E* (cp,c, W) + ET*(cp, c,9A). In the second part, we analyze and give estimates on terms
related to the behavior of ¢ and ¢p, on the boundaries {t = 0} and 99 x (0,T") to deduce, in the third
part, the estimates (23) and (25).

5.1 First step

Lemma 5.7. Let ¢y, be the discrete solution defined by (18) and let ¢ be the entropy solution of (1)—(3).
Then, under the assumptions 3.1, 3.2 and 3.5, we have

E+(ch7 c, ’Qb)‘) + E+* (ch7 ¢ %b)\) > _||¢)‘||L°"(Rde+) (T’O + 0 [Kﬂ"]
0. [Kir + Ki(r +74)] +7) (30)

where 1y, M, Me, 7 are defined in Proposition 5.1.

Sketch of the proof. By the definition of entropy solution, and by (8), we have ET*(k,c,1) > 0 for all
k € [Cpn,Cu] and, hence, E1*(cp,c,1) > 0. The lower estimate of E*(cp,c, ) relies on

1. the approximate entropy inequality described in Lemma 4.5,

2. estimates on the L> norm of the function (z,t) — o(z,t,y,s) dy ds defined by (26).
QxR+t

These last estimates make use of estimates on the L' norm of the approximation of the unit w which are
given by

/ wlx—y,t—s)dxdt < 1, V(z,t) e R x R,

RIXRt

/ [Vw(z —y,t—s)| dxdt < (r+r9K,, V¥(z,t)eR*xR",
RIXR*t

/ |Osw(z —y,t —s)| dxdt < rK;, VY(z,t)e R*xR"
RIxXRT

12



where K, K| are defined by:

K ::/thwo(m dt, K= /R Vwo (1) - - wo (a)| dx. (31)

5.2 Second step

The relation of symmetry (s —o)* = (0 —s)~, applied with s = ¢; and ¢ = ¢, together with the identities
(O + 05)w(z —y,t —s) =0and (V, + Vy)w(x —y,t — s) = 0 leads to

E+(Ch,c (P +E+ Ch,C 90)
_ +
= /Q><R+/Q><R+ [ _fgf 2@ ct()y, (;)’ s;gs-)\éi)(zp)\) w(r —y,t —s) dx dt dy ds.  (32)

+ /me/g(ca(m) — ¢y, 5))Te(x,0,y,5) dx dt dy (33)
_ / / &~ (ve(y, s), cn(z, t))p(z, t,y,s) dx dt dy(y) ds. (34)
QxR* JoQx(0,T)

Our aim is to estimate the term (32). In view of Lemma 5.7, this requires estimates on the terms (33)
and (34), respectively related to the behavior of the discrete and the entropy solution at initial time and
at the boundary of the domain.

The term (33) is small with respect to 1/r+1/r4 because ¢(y,0+) = ¢o(y) (the initial trace of the entropy
solution coincide everywhere with the initial datum) [CH99a, EGGH98]. This is no longer true on the
boundary of the domain 9 x (0, T"). The trace of the entropy solution may be distinct from the boundary
datum on a part of the boundary. Therefore, in order to estimate the term (34) we have to use a specific
technique. For that purpose, we introduce some functions of localization in order to give an accurate
parameterization of the boundary. The supports of such functions are in particular chosen in order to
isolate flat parts of the boundary of Q (parts of the boundary of Q which are included in an hyperplane
of R?, recall that Q is a convex polygonal open subset of IR?):

Definition 5.8 (Localization). Let A be a function with values in [0,1] such that supp(\) N ON is
included in an hyperplane of RY, and such that the orthogonal projection of supp(A)NQ on this hyperplane
is included in supp(A\)NON. Upon rotating and relabeling the azes (via the action of an orthogonal matriz
A€ O4(R)), we can suppose

supp(A) N Q C ]R‘_i|r and supp(A) NdQ c R* ' x {0} = R%* (35)
where RE = {z = (T,2q4) € R?, z4 > 0}.

Up to now, we set A to represent this very function of localization in the following definition of the
mapping
p: (wataya S) — d}(y) s))‘(y)w(w - yat - S)'

Besides, we will suppose that r < rq4, and that r, r4 are large enough to ensure that (35) still holds when
K = supp(]) is replaced by its neighborhood

Vira(Kx) = {a: e RY, dist(z, K)) < \/W}

To estimate the term (33), we set

(y,S) = / QD(.’L',O,y,—O')dO',

13



and K = up(x) to be, respectively, the test-function and the parameter in the entropy inequality (6) (with
negative semi-entropy) satisfied by ¢, and integrate the result with respect to z € Q. This yields

/ / (co(@) — cly, ) oz, 0,y,5) dx dt dy < Ry + Ry + Rs
OxRTJQ

where

Ry

/Q/QxR+q)+(CO($)7C(y78)) - Vy (/_O: o(z,0,y, —U)do‘) dy ds dx,
R = /Q/Q(Co(w) = o))"y, 9)AW)d(z - y) dy dx,

Rs ;C/Q /39><R+ (co(z) —¢(y,s))t /:S p(z,0,y, —0)dody(y) ds dx.

o0

Here @ denotes the approximation of the unit x — rwo(rzy) - - - rwo(xg—1)rqwe(xq)-
Since V, <f::o o(z,0,y, —U)do’) =-V, (f::o o(z,0,y, —a)da), we have

R = —/Q/QXR+<I>+(CO(;U),c(y,s)) -V (/_8 cp(a:,O,y,—a)do) dy ds dx.

—0o0

Besides, for z € 00NV, (K)), y € QN Ky, we have, by (35), (z —y)q < 0 and, since supp(wo) C [0,1],
p(x,0,y,—0o) = 0. In particular, by integrating by parts with respect to  we have

/Q/mew(co(y),c(y,s)) Vs (/_Oo o(z,0,y, —a)da> dy ds dx =0

and

—s8

Beo= [ @) - ¥ o) - Vs ( / «p(w,o,y,—a)da) dy ds dx.

—00

Since |(@*(co(y), c(y, 5)) — &*(co(x), ey, 5)))| < Lleo(y) — co(@)| < Llcolpy |z — yl, we have

Ru < LlalavllVAlm s | [ o= aliVeite - pl ay ax ([ [~ run(-royds as)

The inequality

—s 1 1
/ / rwo(—ro)do ds = 1/ owg(o)do < 1/ wo(0)do = 1 (36)
Rt J—oco ™ Jo ™ Jo r
gives
- 1
R, < £|CO|BV||¢)\||L°°(Rd><R+) o Q|JU —y||Vzi(z —y)| dy dx; .
Furthermore, we have, by (27)
//|x Y| Vaib(z — )| dy dx = / / 12|V (2)| dz dx
ala QJz-0
< |Q|/ l2||Vd(z)| dz < |Q|K; (d— 1+ TL) , sincer <rg. (37)
R? d
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Eventually, we have

R,

IN

, 1 1
Clolv I (= DA oy (5 + )

IN

1
Kol [ All oo (maxm+) (38)

where the constant Ky is defined by (24).

1
Similar computations [CH99a, EGGH9S8] lead to the estimates R», Rs < Ko||pA] L (RAXRY) and we
have

1
/ / (co(®) = c(8)) (@, 0,4, 8) dx dt dy < 3Ko|[$A]| e (rtrcr) (39)
QxRt+tJ/Q r

We now prove the following estimate on (34):

Lom=[ [ @ (el calant) -nu)pla, by, s) dx de day) ds
QxR* JoQx(0,T)
1 _
< Kol |9l pee raxmyy (1 + 27‘)5 + YAl oo (rexm+) (M0 + 1 + 1 +7) . (40)

The identity (¢ — k)~ = (¢cTw — k)~ + (¢ — kK Tw)~ holds for every ¢, k,w € R. As a counterpart, the
corresponding entropy fluxes satisfy the relation

S (c,k) =¥ (cTw, k) + 27 (¢, Kk Lw)
and, for a.e. (z,t,y,s) € 2 x (0,T) x 9Q x (0,T), we have

—(ﬁ_(vc(y,s),ch(x,t)) : n(y) = —Q_(vc(y,s)TE(y,s),ch(x,t)) ) n(y)
_(I)_(’YC(:% 3)7 Ch(SU, t)J-E(ya 3)) ) Il(y) :

By (10), we have
—(I)_(’)’C(y, S),Ch(.'E,t)J_E(y,S)) : Il(y) < ‘C(E(yﬂg) - Ch($7t)J—E(y7S))_ =0

and therefore I'y < J with

Ty = — / / 5~ (7ely, 5)Te(y, s), en(e, 1)) - n(y)pa, (2,3, 5) dx db dy(y) ds.
QxR* JoQx(0,T)

From the relation of symmetry @~ (a,b) = ®*(b,a) follows
_ T
J/\ = - / / / o+ (ch (.’L‘, t)a 'YC(ga S)TE(ZIL S)) : n(y)A(y)(p(':C: t,y, 5) dx dtdy ds. (41)
RixRy Jo JR!
We now make use of the approximate entropy inequality (22) satisfied by c; to get an estimate on .J.

Choose k := y¢T¢(g,s), and the test function (z,t) — ¢*(z,t) in (22), where

+o00

©*(z,t) := M) (7,0,s)rwe(r(zy —y1)) - - - wo(r(Tg—1 — Ya—1)) (/ rdwo(rda)da> rwo(r(t — s)).

d

Integrate the result with respect to (¢, s). This yields

/ E+ (Cha ’)’CTE(:!], 8)7 (p*)dy ds > F
RiXR_'.
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where the right hand side F' can be estimated from below by
F 2 —|lM|poo (raxm+) (Mo + e [Kar] +me [Kar + Ki(r + ra)] +7)

exactly as in the proof of Lemma 5.7, leading to

[, B enreTel. oo ds > 0Nl o ( + K]
RiXR+

+ne [Kar + K (r +74)] +ﬁ). (42)
On the other hand, we have
/ E*(ch,ve(y, 8) Te(y, s), p*)dy ds = A1 + As + Az + Ay (43)
RiXR+
where
A = / / (ch, —yeTe(y,s))Toip* dx dtdy ds,
Re-1 XR+ R+ ><R+
Ay = / / &t ((cp,veTe(y,s)) - V* dx dtdy ds,
Rd_l XR+ R‘_i(_ ><R+
4 = [ (cola) = 1eTelg )¢ (0, 2,5,7) dxdy ds,
RI-1xR; JRZ

Ay = L‘/ / (e(z,0) — ycTe(y, s)) T ¢*(t,T,0,s,7)dx dtdy ds.
Rd_IXR+ Rd_IXR+

Since supp(wg) C [0,1], we have A3 = 0. Besides, the terms A;, A, are small with respect to 1/rg.
Indeed, we have

(o] oS} 1 1 1
/ / rqwo(rqo)dodzy = —/ owp(o)do < —, (44)
0 Jag Td Jo rd
and, by (27), (28),
r T
41| < QC||w6||L1(R)T|Q|||¢)‘||Lm(Rde+)a < K0||¢)‘||L°°(Rde+)a- (45)
Besides, we have (¢(Z,t) — ycTe(7,s))" < (¢(z,t) —¢(,s))", and, therefore,
1 1
|[A4] < |5|BVT|Q|||¢/\||L°°(R‘1><R+); < K0||¢/\||L°°(Rd><R+);- (46)

We now intend to compare —A, to Jy. Since 9,,0*(x,t,7,8) = A(y)p(z,t,9,s) and since n(y) =
0,...,0,-1)" € R%, we have, by (41),

Ay + Ty = / / &t ((cp,vcTe(y,s)) - Vo* dx dtdy ds
Rd_IXR+ Ri XR+
where Vo* = (8,9, . ..,0.,_,¢% 00T € R%. By (44), we have

= r r
A2 + Ja| < 2£C(d = Dlwo o2 @ TIQY Ml (e sy 1 < Kol Az (R xRy - (47)

From (42), (43), (45), (46), (47) follows (40).
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5.3 Third step

Set ¥(s,y) = ¥(s) = %X(O,T) (s). Then 0 < ¢ <1 and, collecting (30), (32)—(34), (39) and (40), we
Ch(w t) = c(y,8)) " Ay)

have
/QX(OT)/QX(OT) —I—CI)Jr (cn(z,t),c(y,s)) - VyA

4 r
> e (2004 K] e [Kor + K+ ra] + 1)+ Ko (5 427 ))

w(z —y,t —s) dx dt dy ds

where ) is defined in 5.8. Since 0 < A < 1, we have in particular

/QX(O T) /QX(O T)

> (20w Kl e[ + Kl ra] £+ Ko (420 ) (49

Ch(w t) —c(y, 5)) " A(y)

w(z —y,t—s) dx dt dy ds
Fa (en(e, 1), cly,5)) - VA

We gather those local estimates (48) to get a global estimate. Denote by (A;)i=1,....n, the faces of {2 and
by n; the outward unit normal to  along A;. Let B! be the subset of all z € Q such that dist(z, 4;) < &
and dist(z, A;) < dist(z, A;) if i # j; define GT to be the largest cylinder generated by n; included in Bf,
and set AT = B \ G], Q7 = Q\ (U,n, A7) and b = ]19;/2 * Pi/a-

An estimate as (48) remains true if A = A\¢g where )\ is a localization function with support included in
Q. Then no boundary conditions have to be taken into account, and the term (34) can be considered to
be zero. Now, we can write b™ = . _ o,N; Ai for such a function Ag and for functions (X;)1,~, satisfying
the hypotheses of Definition 5.8. Therefore we have

/ / (cn(z,t) — c(y,8))Tw(z —y,t — ) dx dt dy ds
ax(0,T) Jax(0,T) T

> 0 +d—(Np+1) (2(770 + g [K1r]) + ne [Kar + K{(r +rq)] +7) + Ko (; + 2:—d)> (49)

where
—1
0 = / / chxt)—c(y, ( Z A) (r —y,t —s) dx dt dy ds,
ax(,1) Jaxor) T =0,
b2 = / / Ten(z,t), c(y, s) ( Z )\) (z —y,t —s) dx dt dy ds.
x(0,T) Jax(o, T) i—0.N;

We have [\ Qz| < €2 where C, is a constant which depends only on Q and ||[V;||r~ < 7 so that, for
<1,

Ko

K
|6,] < ZCT|Q|— <=, &< 2£CT|Q|— <=2,

Besides, by the BV estimate (7), we have
Lo () ey wle vt~ 5) dx dt dy ds ~ [~ )l o
Qx(0,T) JQ2x(0,T)
= [ (o) ey, (enlant) el 1)) wla — yt— s) dx de dy ds
2x(0,T) JOx(0,T)

—/ / le(y, 8) — ez, t)|w(z —y,t — s) dx dt dy ds
Qx(0,T) Jox(0,T)

1 1
-CpvT|Q|= > —-Ko—,
r r

v

v
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and, consequently,

1 _
Il(eh — )T [L1(ax0,1)) < 2TK0; + 2T (N + 1) [770 +7+ (e + ne) Kar + 0K (r + 74)

2 r
o2+ 2)].
r Td
We let ¥ — 400 in this last result and then minimize the right hand-side with respect to r and r4 to get
the a posteriori error estimate

[|(en — c)+||L1(QX(0,T)) < 2T(Ny+1) min+ [770 + 7+ (e + ne) Kir + 1K1 (r +714)

rra€R
2
+K0<— + 11)] .
T Td

The a priori error estimate now follows with the estimates on 19,7, 7¢,7. (see [CH99a, EGGH98)), i.e.
Mo +7+m +ne < Kh'/2,

and choosing, for example,

- ((Tlt +ne) K1 + nCK{)—1/3 N (Ko r)1/2
T KO ) d -— —UCK{ .

O

Remark 5.9 (Non—optimal order of convergence). The error estimates in Propositions 5.1, and 5.2
are non-optimal compared to the convergence rate h'/* that can be proved for finite volume approzimations
of the Cauchy problem (cf. [CH99a]). The non-optimality of our result comes from the estimate on the
boundary term (40). Let us mention that in the special situation where F(z,t,c) = u(x,t)f(c), and f is
monotone, this estimate can be improved, and the order h'/* is recovered (see also [Vig97]). However,
the improvement in this special situation makes excessive use of the a priori knowledge of inflow, and
outflow boundaries and gives no hint to improve our general result.

6 Adaptive algorithm and numerical experiments

In this subsection we will derive an adaptive algorithm from our theoretical a posteriori result in Propo-
sition 5.1, and we will give some numerical experiments in order to demonstrate the applicability of
the resulting adaptive solution scheme. In addition, we will demonstrate that the creation of artificial
boundary layers depends on the choice of the numerical flux function.

6.1 Adaptive algorithm

The adaptive solution algorithm is derived by localizing the global error estimator n of Proposition 5.1
into local error indicators 7;}. Here n denotes the time step and k the triangle number of the underlying
mesh. An equal distribution strategy of the local indicators leads us to the space adaptive algorithm.
The adaptive time step is implicitly given through the CFL condition. As the derivation of the adaptive
algorithm is a direct generalization of the algorithm on unbounded domains we refer to [KO00], and
[Ohl01a, OhlO1b] for further details.

6.2 First example: Linear transport problem

As a first example we choose a linear problem where the inflow and outflow regions are known a priori.
The example is chosen for instance as it comes with a known exact solution. Thus, we can compare the
L'—error between the exact and the approximate solution with the error estimator n defined in Proposition
5.1.
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Figure 1: Color shading of the exact solution of the linear problem at t = w/4,7/2, and ¢t = 2.

Number of L'-error Order of L'-error Order of
triangles || Upwind flux | L'-error || Lax-Friedrichs flux | L!-error
4096 || 9.244172E-02 2.496511E-01
16384 || 6.307752E-02 0.551 1.845089E-01 0.436
65536 || 4.460084E-02 0.500 1.342645E-01 0.459
262144 || 3.174344E-02 0.491 9.676411E-02 0.473
1048576 || 2.252004E-02 0.495 6.918218E-02 0.484

Table 1: Comparison of the L!-error and the convergence rate for upwind and Lax-Friedrichs flux on
uniform meshes.

We look at the following initial boundary value problem in Q := (0,1) x (0,1):

¢t +V-(ue) = 0inQx(0,7),
e(0) = 0inQ,
c(z,t) = €(t,x)in 0Q x (0, 7).

Then c(z, t) is constant along the streamlines of the prescribed velocity field u(z1,z2) := (z2, —z1) ", and
therefore only depends on the initial data, and on the boundary values at the inflow boundary. In our
example we set

1, if z € {0} x (0.4,0.8),
0, else.

c(t,z) == {

The exact solution (see Figure 1) of this problem is

. i
o(tz) = { (1), ;flszrcsm(‘z‘) t <0, and |z| € (0.4,0.8),

In our first numerical experiment we compare the generation of an artificial boundary layer at the outflow
boundary for two different numerical flux functions. As Figure 2 clearly shows, an artificial boundary
layer is created by using the Lax-Friedrich flux, while no artificial layer is produced with full upwinding
(e.g. Engquist-Osher, or Godunov flux). For a detailed study of this boundary layer behavior in one space
dimension we refer to [CHGO1]. In addition we remark that in the case of systems of conservation laws
it might be necessary to choose a Godunov flux at the boundary in order to get a proper discretization
of the boundary conditions. In the scalar case the creation of an artificial boundary layer does not
influence the convergence rate of the scheme. For instance, in our example, both methods converge with
an experimental order of convergence of h'/? where h denotes the uniform mesh size. Nevertheless, the
absolute error for the upwind method is much smaller than in the Lax-Friedrichs case (see Table 1).

The influence of the choice of the numerical flux function on the adaptive solution algorithm is shown
in Figure 3. While in both cases the interior layers are resolved by the adaptive algorithm, the grid is
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Figure 2: Comparison of the boundary layer behavior at the outflow boundary for the full upwind flux
(left), and the Lax-Friedrichs flux (right).

Number of i Order of n Order of
triangles || Upwind flux i Lax-Friedrichs flux 7
4096 | 0.4140817 0.7457754
16384 || 0.3256964 0.346 0.6108820 0.288
65536 || 0.2594602 0.328 0.4922482 0.312
262144 || 0.2070642 0.325 0.3922287 0.328
1048576 || 0.1645522 0.332 0.3102630 0.338

Table 2: Comparison of the error estimator n and its convergence rate for upwind and Lax-Friedrichs
flux on uniform meshes.

additionally refined in the artificial boundary layer in the case of the Lax-Friedrichs flux. This leads to
some extra numerical cost which might lead to an inefficient adaptive numerical scheme.

In Table 2 we give the values of the error estimator 7 of Proposition 5.1. The numerical order of
convergence of the estimator is h'/? for both choices of the numerical flux (see Table 2). Our theoretical
investigation would lead to the same order of convergence, if we would be able to prove that the numerical
solution is uniformly bounded in BV. Up to now such a bound is only available in one space dimension
or for finite volume schemes on structured rectangular grids. In the general case we are only able to
show that the BV norm of the approximate solution blows up like h~'/2 which leads to the convergence
rate h'/® instead of h'/3. In this sense, the numerical experiments coincides with our theoretical a priori
error bound of the error estimator 7. As the L'-error itself converges with a rate h'/2, it is obvious that
our error analysis does not give the optimal rate. Nevertheless, we stress that there was no proof of any
convergence rate in the general case of bounded domains before.

In a last experiment we analyze the performance of the adaptive scheme versus the same scheme on a
mesh with uniform mesh size. Therefore, in Figure 4 we plot the L! error versus run time for uniform and
adaptive computations using the upwind flux. The comparison shows that the adaptive scheme performs
much better than the method on uniform grids. In addition, we stress that the adaptive algorithm
requires far less storage than the uniform one. For instance, in the finest computations, the maximal
number of mesh cells in the adaptive case was about 350.000, while 4.200.000 mesh cells were used in the
uniform computation.
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Figure 3: Adaptive solution of the linear problem at ¢t = w/4,7/2, and t = 2. A color shading of the
solution together with the adaptive grid is plotted for the full upwind flux (top), and the Lax-Friedrichs
flux (bottom).

6.3 Second example: Burgers’ problem

Next we consider an essential one dimensional problem that we formulate and solve in a two dimensional
framework. We look at the following initial boundary value problem in € := (0,2) x (0, 1):

a+V-(1/22,007 = 0inQx(0,7),
¢(,0) = 0inQ
c(z,t) = ©(t,z) in 00 x (0,T).

We choose T = 2.0, and ¢(t, ) is given as

_ 1 ifte (0,05 U(1,1.5
o(t, z) :{ -1 ( else). ( :

For this problem, the exact solution is given as follows:

If ¢t € (0,0.5):

o)
—~~
\'FF

8
~—

Il

1, if0<z <0.5¢,
0, else .

If t € (0.5,1.0):

T if0<a <t—05,

0.5’
oft, z) = , ift—0.5 <z <0.5¢,
)0, if 0.5t <z <2.0-0.5(t—0.5),
-1, else .
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Figure 4: L' error versus run time for uniform and adaptive computations for the linear problem.

1

Figure 5: Adaptive solution of the Burgers’ problem at ¢ = 2.0. Color shading of the solution (left),
profile on a horizontal cut through the domain (middle) and adaptive grid (right).

If ¢t € (1.0,1.5):

1, if 0 <z, < (t—0.5)— \/05(t—0.5),

2L if (£ —0.5) — 1/0.5(t— 0.5) < @1 <E—05,

105"
c(t,z) =14 0, if VI—05< a1 <2—0.5(f—0.5),
1, if2-05(—05) <z <3—t,
—2=2 else .
It ¢ € (1.5,2.0):
(B, if0<z <t—1.5,
1, ift—15<u <t—05—/05(—05),
o if t— 05— /05(t—0.5) < 31 < \/05(t—05),

t—0.
0, if 1/0.5(t —0.5) <z <2 —/0.5(t—1),
-2 if2-/05(t—1) <z <3-t+./05(t—-1),

-1, else .

\

We chose this test problem in order to demonstrate the behavior of the error estimator and the resulting
numerical scheme in the case where the inflow and outflow boundaries change in time, dependent on the
boundary values and the solution. Figure 5 shows the adaptive numerical solution and computational
grid for ¢ = 2.0 for a moderately prescribed error tolerance. We see that the grid is refined in the shock
regions and also moderately in the regions of the rarefaction waves, while a very coarse resolution is
needed in the regions of constant states.

Figure 6 demonstrates the adaptive refinement around ¢ = 1. For ¢ slightly smaller than one, no heavy
refinement is needed near the boundaries which is automatically reflected by the error estimator. Att =1
the boundary values change, and immediately the boundary zones are heavily refined. This example shows

22



Figure 6: Adaptive solution of the Burgers’ problem at ¢ = 0.997 (left), and ¢ = 1.016 (right). Color
shading of the solution (top), profile on a horizontal cut through the domain (middle) and adaptive grid
(bottom).

that the adaptive algorithm is capable to detect the sources of errors coming from the approximation of
the boundary values automatically.

Finally, we compare the adaptive and uniform algorithms in a error versus run time plot (see Figure
7). Although the algorithm on uniform grids converges with a rate of h in the case of the Burgers’
problem, and the error estimator 7 still converges like h!/3, the adaptive algorithm performs better than
the uniform one, and requires far less storage.

A BYV estimate of the exact solution on convex domains

Under certain regularity hypotheses on the data and on the boundary of 2, the BV estimate (7) has been
proved by Bardos, LeRoux and Nédélec [BLNT79] (see also [MNRR96]). They obtain the estimate from a
uniform BV estimate on viscous approximations u® of Problem (1)-(3), £ being the viscosity parameter.
In our considerations €2 is only a polygonal open bounded set, which makes it difficult to adapt the
technique developed in [BLN79] (the solution u® of the viscous approximation of Problem (1)-(3) is not
regular enough in that case). In order to prove the BV estimate (7) in our situation, we will follow the
approach of Chainais-Hillairet [CH99b] for unbounded domains. Thus, we construct a sequence of finite
volume approximations to (1)-(3) on structured meshes and drive a uniform bound on the BV semi-norm.
Technical difficulties arise from the fact that we consider a cartesian grid on a polygonal open set which
is possibly not rectangular. For simplicity of our presentation we will suppose that the flux function F is
constant with respect to (z,t), i.e. F(z,t,u) = F(u).

23



0.1 F— —
uniform &
adaptiv ---%---
X B
RN a
g
3
=
)
=}
0.01 a A
¥
I I I I
1 10 100 1000

CPU-time in seconds

Figure 7: L! error versus run time for the Burgers’ problem.

Notation for a structured mesh approximation of 2
Let (e;)1,4 be an orthonormal basis of R?, and O € R? a fixed origin. Then (O, ey, ...,eq) is an affine
basis of R? viewed as an affine space. Given h > 0, we define the structured mesh 75 (IR?) as
Ta(R?) := {Tj| Tj := (jrh, (j1 + D) X ... x (jah, (ja + 1)h), j € 27},
and set

771:771(9) = {TEE(RdﬂTCQ} ) ﬁh:UTEThT'

Define ), as the interior of Qj,. Furthermore, the time step At is defined as At := %, where N = N(h)
is given, and we denote J := {tg,t1,...,tn} where ¢, := nAt. Using the multi index notation we define
the set of neighboring cells to a cell T; by N(j) := {T; € To(R¥)|l = j + e;,i = 1,...,d} and denote the
face between two neighboring cells by S;; := T; N T;. Furthermore set

€= {Su AT, Tie€T), 06 :={Sj# 0T € T, Ti € Tu(RY\ Ta}.

In the next step we introduce some notation that allows us to link the exterior faces S € 9€ to its orthog-
onal projection P(S) on the closest part of 9. Let us therefore denote A4, ..., A, the distinct faces of Q2
which generate the hyperplanes Hy, ..., H,. For S € 0 define Zg = {i € {1,...,n}| dist(S, 4;) <2 Dgsh}
where Dy := v/29-1 is the diameter of the unit cube in R?. Let P; denote the orthogonal projection on
H;, and define G; as the cylinder generated by 4;: G; = P; '(A4;). We define the set of faces associated
with the boundary part A; as

o&; == {S S 65| Is = {l} and S C G,} ,
and the remaining boundary faces as
0 := 08 \ UL, 0E;.
Finite volume approximation on 7, x J

For the finite volume approximation on 7, x J we first define the discrete initial and boundary values as

1
C? = W/T Co , VTJGE, (50)
J i
1 e
P S a(z,8) dy(z) dt, VS; € 0, 51
Y= xR L. /p,.(sm (2, 1) dy(2) ’ (51)
& = 0,, VSje€ak.. (52)
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Then for all t"*! € J, and all T € T, the values c;‘“ are defined as

At e, T €Ty
grimg -5 Y (e - me). a={ & i (53
IEN() !
where we use a flux splitting approach with monotone fluxes Fji(c) :== 3(=F(c) - nj + Lc), £ denoting

the Lipschitz constant of F. The numerical approximation cj of the entropy solution c¢ is given by

e if (z,t) € Ty x [t "), T; € Tp,
— J ) J ’ > £ )
on(®,1) { 0 otherwise. (54)
Although the value given in (52) is arbitrary, the error in the implementation of the finite volume method
induced by such a process does not affect the convergence of the scheme because the number of interfaces
S “close” to a corner of 9 is at most of order h/|S| where |S| = h¢ ! is the Lebesgue measure of S. We
specify this point in the following lemma.

Lemma A.1. For sufficiently small h, the set O, is finite and there exists a constant Cy which depends
Cy
pd—2"

Proof. For X C R?, and a > 0 we define the a-neighborhood of XasV,(X):={y € RY| |dist(y, X)| < a}.
Let H and G be two affine hyperplanes of R?, _and denote by HG the angle between them. We will show
in a first step that for H, G non parallel, i.e. HG # 0, it holds

on the dimension d and on Q only such that the cardinal of OE, is bounded by

Va(H) NVa(G) C V(3211 (HNG). (55)

Consider a point U € V,(H) N V,(G). Denote by Unng, Ux and Ug the orthogonal projections of U on
H NG, H and G respectively and by Ugg the orthogonal projection of Uy on G. We have

_ U — Ung|

~ sin(HG)

|Un —U| +|U = Ug| + U — Ung|
sin(HG)

diSt(U,HﬂG) = |Ung—U| < |Ung—UH|+|UH—U| +|UH—U|

<

+|UH—U|,

and we conclude to (55) by using the estimates |Ug — Ung| < |[U — Un| < a, U — Ug| < a, and
1 ™
sin(HG) ~ 2HG
1
For h < hy := —— min {dist(4;,4;), A; N A; = 0}, the intersection Vip,n(A4;) N Vip,n(A4;) is not
empty if and only if A; and A; are adjacent. If furthermore A; # A;, then 4;A; > 0, and (55) yields

Vapan(Ai) N Vapn(A5) C Ven(Ai N Aj)

where C := maxlsk?gls”{(mfﬁ + 1)4Ddh, AN A4 75 @}

Let S € 0&,. We will show that S C V¢, ,(A; N A;) for some adjacent A;, A;. This assertion is clearly
satisfied if {i,j} C Zs. If there is no such subset {i,j}, there is a i € Zg with S ¢ G;. In that case
dist(S,04;) = dist(S, 4;) < 2D4h, and hence there exists € S,y € dA; such that |z — y| < 2D4h.
Let j # i be such that y € A4; N A;. We have z € Vap,n(A4;) N Vap,n(A4;), and, since diam(S) = Dgh,
S CVap,n(4:) N V4Ddh(Aj) C Ve,n(4;:0 Aj).

As a consequence, every S € 0&, is subset of a disk A? of radius C1h if d = 2, of a cylinder A3 of radius
Cih if d = 3. The cardinal of AN T is of order h~(?=2) and every cell of T has 2d edges, this proves

Cy
#IE, < T H

In the next lemma we are going to prove some basic properties of the projection P;(S) for S € 9&;.

Lemma A.2.
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1. There exists Co > 0 which depends on d and Q only such that

Vie{l,...,n}, VS €d&, |5 < ColPiS)|. (56)

2. If S,S" € 8E;, then P;(S) N P;(S") =0 if, and only if, SNS" = 0.

Proof. 1. Let H be an affine hyperplane of R, and let P denote the orthogonal projection on H. Then
it is elementary to show that L
|P(S)| = |S|cos(HS) (57)

for all S € &£, where HS denotes the angle between H and the hyperplane < S > generated by S.

Let A; be one of the polygonal boundary faces of 2. First suppose that A; is parallel to one of the
canonical hyperplanes generated by the basis (e;)1,4. Then any elements of £ is either orthogonal or
parallel to H;. Let Sj € 0&; and suppose that Sj is orthogonal to H; (in which case |P;(S)| = 0
by (57)). As Sj € 0E;, we have T; N 0 # 0: there exists a Ay such that 7; N Ay # @ and, since
maxwesﬂ,yeﬁm — y| = Dy, we have k € Tg. Furthermore, k # i (for T; is a subset of the cylinder
generated by S and the normal ng to the hyperplane < S >, a cylinder which is parallel to A;), and this
contradicts the fact that Sy € 0&;. Consequently Sj; is parallel to H; and |P(S;)| = |Sj.

Suppose now that H; is not parallel to any of the hyperplanes generated by (e;)1,4, and define

o; = ma,x{Hi < (er)res>; JC{1,....d}, #J=d— 1} < g Then, for every S € £, we have, by

(57),
|P;(S)| > |S]|cos(a) -

Consequently, we have shown that (56) holds with Cy ' := min;<;<, cos(a;) > 0.

2. Let us prove the second part of Lemma A.2. Let Sj,S,m € 0&;. Obviously, P;(Sj;) N Pi(Spm) =
0 = SN Spm = 0. We suppose P;(Sj;) N Pi(Spm) # 0 and intend to prove that Sj; N Spm # 0. Let
x; € P;(Sj1)NP;(Spm) and let D; be the line Pi_l({xi}). Let z € D;NSji, 2" € DiNSpp. Uy = 2 = 2" we
W

Z—X;
have z = z;+t,u with ¢, = |z;— 2| > 0, and 2’ = z;+t,u with ¢, € R. In fact, t, > 0, otherwise we would
have z; € [2,2'] C Q (by convexity of Q) and this contradicts z; € A; C 9. Suppose that Sj; N Spm = 0.
Then ¢, # t, and, for example, ¢, > t,. We will show that T,, € 7 which contradicts Spm € 0&;.
Denote by H;" the open affine half-space generated by H; and u. Let Jo = {k € {1,...,d}, u-ej # 0}
and Iy = {1,...,d} \ Jo. Define (er)1,04 by er = sgn(u-ey) if k € Jo, e € {-1,1} if k € I and set
Qu = M¢_ 1(0,ex) where I(0,e;) denotes the interval (0,1) if g, = 1, (—1,0) if &4 = —1. For each
T,=p+(0,h)? e Tr(R?), there exists a unique py € hZ? such that Tp = pu + hQu (actually, p, reads
Pu= 0+ iy (e + (ex) ew)- _ _
These notations being set, we prove that for T}, with T,N{z+tu, ¢t > 0} # 0 we have T}, C H:r We work
in the affine base (ju,€1€1,...,64€q) (recall that j, is such that T = j, + Qu), and denote by (Zy)1,4
the coordinate of a point # € R%. Let y € T,N{z +tu, t > 0}, set Z, = {k € {1,...,d}, Jx € hZ}, and
T, = {x € R?, 0 < ¥ —hBk < h} where S, = [J/h] is the unique integer such that By, < [Jx/h] < Br+1.
Since y € T, we have T, = T, or T, = T, — e, for a k € Z,. Besides, y = z + tu for a positive ¢ and
Uk = (Y — ju) - €€, therefore, g = (2 — ju) - €x€r + tepu - €. In the new coordinates, we have
T; = {x € R%, 0 < %} < h} and since z € T}, the term (z — ju) - £x€; is nonnegative. By definition
of g, the term tegu - ey is also nonnegative, and, if k € Jy, it is positive. In particular, if k& € Z, N Jy,
then g > h and B > 1. This implies T, C Cy := {7 € R%, Vk € Jo, %, > 0}. If 2 € R?, we have
(x—ju) - u= EZZI Zrepe, therefore, Cy C {z € ]Rd, (x — ju) -u > 0}, and this last set is itself a subset
of H} for j, € H;' (we have T; C H;): this proves T, C H; .
Since z' € T, N {z + tu, t > 0}, this last intersection is not empty and T,, C H;". This entails T,,, C
which contradicts the hypothesis T,, € 771(]Rd) \ Tr(92). We therefore have Sj; N Spm # 0. H

are done. Thus, suppose z; # 2z and set u := . Then t — z; + tu is a parameterization of D;. We
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Proof of a uniform bound on the BV norm of ¢,

We have now two tasks. First, we show that ¢, is indeed a numerical approximation of ¢ (Lemma A.3),
and second, we establish a uniform bound on the BV norm of ¢;, (Lemma A.4).

Lemma A.3. Let ¢y be defined by (54). Assume that Assumption 3.1 holds. Then, under the CFL
condition
(-9 ,

2d- 1L’
the sequence (cp,) converges to the entropy solution c of the problem (1)—(8) in L*(2 x (0,T)).

At < £e(0,1), (58)

Sketch of the proof. Recall that, by the maximum principle, the sequence (¢y) is uniformly bounded with
respect to h in L>®(Q x (0,T)). We first make reference to [Vov02] where the following result is proved.
Given a non-negative function ¢ € C®°(R? x RT), there exists &5, := e5,(p) such that Ain}) er, =0 and

—

T
|/ (en =Ry *up + 9%(e1,1) - Vi + |- D+LY S ASE - K> e (59

h n=0 S;, €€

gt

where / (z,t) dx dt.
i = At|s,,| i
We intend to prove the followmg bound for a constant C' > 0, and &}, := &,(p) such that Ilzin}) Ep =0:
—

N
SN AYSulE - k)Tl < C (¢ — k) Epdy(z) dt + & . (60)

n=0 S;, €HE 89%(0,T)

Indeed, suppose for a moment that (60) holds. We then conclude the proof by the following arguments.
The Lebesgue measure | Qh| O(h), because 2\ Qp, C Vp,1(09). Consequently, since (¢, — k)0 +
®*(cp, k) - Vo and () — k)*¢(-,0) are uniformly bounded with respect to h in L*°(€2 x (0,T)), and
L () respectively, we have with (60):

/ ' / (ch — K)*up + B*(cn, k) - Voo + / (ch — K)*o(-,0) (61)
0 Q Q

+CL (€ — k)T pdy(x) dt > —&,
a0 x(0,T)

where }Limo &, = 0. Since () is converging to ¢o in L'(f2), the uniform bound on (c;) and (61) are
—

sufficient to get a subsequence of (c;) that converges in the non-linear weak-* sense to an entropy process
solution ¢ of problem (1)-(3). Let us note that the constant factor in front of the boundary term
fanx(o,T) (¢ — k)*@dy(x) dt in the definition of the entropy solution is required to be any bound on the
Lipschitz semi norm of F, and not the Lipschitz constant of F. By a uniqueness result, this entropy
process solution turns to be the entropy solution ¢ of problem (1)—(3), and this shows that the whole
sequence (cp) converges to ¢ in L1(Q x (0,T)). We refer to [Vov02] for details on the terminology and
the results.

Let us turn to the proof of (60). Denote by U}, the left hand-side of (60). We have U, = >, U; + U,
with

N N
Ui=>_ > AtSleh —r)Fel, Us=>_ > AtSul(e) — r)*¢f .
n=0 Sjlea&- n=0 Sﬂeag.
Since (€}, — n)igogbl < (el + [£]|l¢l|z, we have, by Lemma A.1, 0 < U, < Ch for a constant C
independent of h, and ilbirr%) U, =0. Fori € {l,...,n}, and S;i € 0&;, cjy is defined as the mean value of
—
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¢ over (A; N P;(Sj1)) x (t",¢"t1). Since s — (s — k)T is convex, we have by Jensen’s Inequality
gt

1
=n + - +
cr—k)T < / c(x,t) — k)T dy(x) dt.
( 5 ) Qt' 41 N PZ(S]l)| i A,-ﬂP,-(SJ-l)( ( ) ) ( )

Taking (56) into account, we get

N gnt1
U, < [ (elo,t) — )% di () dt 7.
r;)sﬂze;&- AP (S3) !

By the result 2. of Lemma A.2 and the regularity of the function ¢ we have

T
U, sc/ / (c(a,t) — ) pdy(z) dt+ &
0 A;

where £/ — 0 when h — 0. Hence, (60) follows with &, = ZE}I + U,. [l
i=1

Lemma A.4. Under the assumptions of Lemma A.8, there exists a constant Cpy > 0, which depends

on the data and on Q only such that

llenllBv@nx(0,m) < Cv - (62)

Proof. For BV data, the bounded character of the variation with respect to time of the solution of an
explicit finite volume scheme with monotone fluxes is ensured independently of the structure of the mesh
(see [CCLY5b] for example). On the contrary, the bounded character of the variation in space of the same
numerical solution remains an open question in the case where an unstructured mesh is used. This is the
reason why we used a cartesian grid to defined c,. We decompose ||c||Bv (9, x(0,T)) = BV; + BV, with

N N
BVi:=Y" > Tyt —cpl,  BVy:=)_ > Ath*'cf — . (63)

n=0T;€Ts, n=0S;€E
We refer to [CCL95b] for the proof of the estimate
BV, <C. (64)

where the constant depends on the data only, and focus on the estimate of BV.
For i € {1,..,d}, denote by &; the set of interior edges orthogonal to the direction < e; >, i.e. if S € &;,
then either [ = j + e;, or I = j — e;, and set

N d
BV, =Y AtY BV, BV":= Y hilch—cp|.
n=0 =1

3168

Note that the set of neighboring cells to a cell T} is given as N(j) = {j xe;| x € {+,—},i € {1,...,d}}.
Furthermore we have Fj j1e,(c) = Fy ke, (¢), and Fj jie,(c) = —Fjte, 1 (c) for all j, k € Z.

If there is no boundary, i.e. 75(IR%) = 75(f), then it has been proved in [CH99b] that BV;"*! < BV,
This result uses the fact that the discrete solution is translation invariant under shifts he;, i = 1,...,d,
which yields

gt =il < (1= Y Qe ) el + Y Quearitermer|he, — ey rer(65)
pELh B
At F(c;) — Fi(e) .
Q]‘l = T% 5 if Cj # Cl,and Q]l := 0 else.
J
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Note that the CFL condition (58), and the monotony of Fj; ensures that 0 < Qj, ZleN(j) Qi < 1. Let
us now study the evolution of BV," for our bounded domain Q. Therefore, we define

BV =BV"+ Y il -c}
5 jte; €OE

YN E=TA (66)

We first note that the the inequality (65) remains valid for any S; j+e; € &;. Let us adapt (65) for a given
edge Sj j+e; € OE. The values ¢ are then given by (51), and (52). In addition, for e; # e;, define
the values ¢\, ;iq 16, through

] J:I:e

'?ie, jteiteys if Sjterjteite; € E (= Sjte;jteire € OF),
Cite;,jte;te, = ]:I:el,]:l:e,:teﬂ if S]:i:ez,]:l:eiiel € 857

Cj jters else (= Sjjte, € 0E).

From the definition of the scheme, we get

At
n+l _ n n n
¢ =6 - h E : F;, J*ez( J) — Fj jre; (cj,j*el) - (67)
* € {+,-1,
te{l,...,d}
Furthermore, set
8o = At Fiie, c" Fiie, " 68
jite; = Yjite; T CJ jte; + T JjEei,jte;xe; (Cj,jie,-) — Ljtei,jteixe; (cjiei,jzl:ei:tel)' ( )

* € {+, -},
te{1,...,d}\ {i}

We then have

At

n+1 n+1 _ no__ an _ = . ny _ .. n
G T Cijte = € T Cjte T Y Fijeer(€]) = Fjrey (¢} jue,)

* € {+,—},

te{l,..,d}

At
n n n
+7 Z (szl:e,-,j:l:ei*el (cj,jiei) - Fjieiajiei*el (Cjiei ,jiei*el)) — Yjjte; -

= € {+,-},
Le{1,...,d}y\ {i}

A reordering of these terms, and using the shift invariance leads to the equivalent form to (65)
< (1 - Y Qjjee - Qj,jiei-) e} = ¢} jte:

* €{+ -1
e {1,...,d}\ {i}

n+1 _ Cn—i—l
J Jyjte;

|C + QJ'J:Fei ¢ — c?,jq:ei (69)

+ Z Q(J',J'*elL(jiei ,jiei*e,)|cjﬂ';j*el - C?:I:e,- ,j:l:e,-*el| + |5;2j:|:e,- .
e’ Sl
Now, let us examine the process of compensation of terms when we sum the right hand-side of (69) over
S;jte; € OF, and add it to the sum over Sj € &; of the right hand-side of (65). A careful examination
leads to the estimate

BV " <BV] +ntt Y
Sj.jte; EOE

(70)

| ‘;l,jie,' :

Notice that, whenever Fjie; jteixe, (€] jie;) = Fiteijteire (Cfie; jte;+e,) # 0 in (68), it amounts to a
difference Fj jie, (€} j1e;) — Fjjxe,(Cyy) for some Sgp € OE with Sj jre; N Sgn 7é (Z) Since the function

< AP +2(d— )c A with

Fj jse, is L-Lipschitz continuous, we have 3 g . coe |07

Jjte:
Ap =Y [t el =y Z €51 — Cgnl - (71)
S;1€0E S;1€0E gh € OE,
il s gh %0
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At S
By (58), we have 2(d — l)L’T < 1. Let us estimate A7. We have AR = A7 | + Z A7 ; with
i=1

Af = ) Y el A= ) Yo [l (72)

S;1€E0E, Sgn € OF, S;1€0E; Sgn € 9E,
Sj N Sgp #0 SjiNSgp #0
Since ¢, = 0 for every S, € 9&,, we have
gh g ’

A;"’. = Z Z |Egh|'

S;1€0Ea  Sgn € E \ 8o,
SjiNSgp #0

As each face Sj; may have at most 2(d — 1) neighboring faces, and by Lemma A.1 the cardinal of 0&, is
bounded by %, we have

n Cy -
A7 < 2(d = 1) F5 el oaxo.m) - (73)
Similarly, we have, for i € {1,...,n}
n _-n Cy -
[ef; —egnl < 2(d — 1) 25 el Lo (a0 x(0,1)) » (74)
h

Sﬂea&- Sgh € 9€a,
Sj1NSgp #0

and therefore A? ; < A7 .+ < 2(d — 1) 75725 |[]| o= (90 (0,7)) With

A=) S g -l (75)

Sjleaé‘,- Sgh € 9&;,
551N Sgp # 0

Since P; is contractive, we have diam(P;(S;;) N P;(Syn)) < diam(Sji, Sgn) < 2h, if Sji, Sgn € 0, Sji N
Sgn # 0. Together with the non-overlapping of the projections (property 2. of Lemma A.2) and the CFL
condition (58), this shows that

> hAL, < Clellsvaxom) (76)
tned

if ¢ € BV(4; x (0,T)). Here, and in the following, C' denotes a constant independent of h, and At.
Similarly, we have

> hAY < C |[ellpvioaxior) - (77)

treJ

Collecting the estimates, we deduce
BV, <BV;+C,Vt"e J. (78)
—O 0
Let us bound BV;: we have BV,;” < C||co||By(a) < C such that (cf (66))

BV;<C+ Y hhd-&

Jritesl -
Sjite; EOE
Since the cardinal of O is of order O(h?~") and since ¢ and ¢y are bounded, we have >5g. = c5e h*'[c) —
& 1ol < C,and BV] < C,Vt" € J. All in all, we have BV, < C. Together with (64), this completes
the proof of the lemma. U
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Proof of the BV estimate (7)

Let p € (C(92 x 0,7)))* with |p(z,t)] <1 for all (z,t) € Q@ x (0,T). Let K, and K; be some compact
subsets of Q2 and (0, T') respectively such that supp(y) C K, x K;. Let h be smaller than dist(K,,¢)/2Dy
such that K, C Q5. We have by Lemma A.4

/ cV-pdx dt
QxR*t

T
//cV-cpdxdt
o9 Jo

T T
//(c—ch)V-godxdt+/ / cenV - dx dt
0 Jo a0 Jo

< V- @llpe@xo,mlle = erllzi@xo,r) + Cav -

A\

At the limit A — 0, by Lemma A.3, we get foR+ ¢V -y dx dt < C. This is true for an arbitrary function
p € (C(N % 0,7)))* with |o(z,t)| <1 for all (z,t) € Q x (0,T). Therefore ||c||pvax(,r) < Cav- N
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