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Within linearized perturbation theory, black holes decay to their final stationary state through
the well-known spectrum of quasinormal modes. Here we numerically study whether nonlineari-
ties change this picture. For that purpose we study the ringdown frequencies of gauge-invariant
second-order gravitational perturbations induced by self-coupling of linearized perturbations of
Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of
first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We
consider first-order even-parity (` = 2,m = ±2) perturbations and odd-parity (` = 2,m = 0) ones,
and all the multipoles that they generate through self-coupling. For all of them and all the initial
data sets considered we find that —in contrast to previous predictions in the literature— the numer-
ical decay frequencies of second-order perturbations are the same ones of linearized theory, and we
explain the observed behavior. This would indicate, in particular, that when modeling or searching
for ringdown gravitational waves, appropriately including the standard quasinormal modes already
takes into account nonlinear effects.

PACS numbers: 04.25.dk, 04.40.Dg, 04.30.Db, 95.30.Sf

I. OUTLOOK AND MOTIVATION

Black hole no-hair theorems [1, 2] state that within
Einstein’s theory the end point of any system with
enough gravitational energy to form a black hole is re-
markably simple: it is uniquely characterized by one
member of the Kerr family1 [3], which is described by
only two parameters: the spin and mass of the final black
hole.

As a consequence, the details by which different sys-
tems decay to such endpoints have been of interest for
many decades. Pioneering studies were done by a number
of authors in the early seventies, starting with studies of
linearized perturbations of non-rotating (Schwarzschild)
black holes (e.g., [4–6]). Press realized that there is al-
ways an intermediate stage where the ringdown is dom-
inated by a set of oscillating and exponentially decaying
solutions, quasinormal modes (QNMs), whose spectrum
depends only on the mass of the black hole and the multi-
pole index ` of the initial perturbation [7]. This regime is
followed by a power-law ‘tail’ decay due to backscattering
[8].

In the case of gravitational perturbations of non-
rotating black holes the relevant equations from which
QNMs can be inferred are the Regge-Wheeler [9] and

1 Charge is expected not to play a significant role in most astro-
physical scenarios.

Zerilli [10, 11] ones. For rotating black holes the corre-
sponding one (though based on a curvature formalism, as
opposed to a metric one) is the Teukolsky equation [12].
Their QNMs were first studied by Teukolsky and Press
[13]. See [14, 15] for comprehensive reviews on the rich
area of QNMs.

The QNM with the lowest frequency is called the fun-
damental one. Since the subsequent ones (overtones) de-
cay much faster, the ringdown of Kerr black holes in lin-
earized theory is in practice described by a few oscillating
modes which decay exponentially in time, till they reach
the tail regime. It is interesting to note that the tail
decay problem for rotating black holes is still not com-
pletely understood [16–20].

From an observational point of view this universal ring-
down spectrum is of great power: one can use a sin-
gle QNM detection to infer the mass and spin of the
black hole source, assuming General Relativity to be cor-
rect. Alternatively, through a two-mode detection one
can test General Relativity and/or the assumption that a
black hole is the source of the measured signal [21]. The
main idea is that the QNM frequencies of both detec-
tions have to be consistent with respect to their inferred
masses/spins.

The LISA mission is expected to measure gravitational
waves in the low-frequency spectrum: (10−5 − 10−1)
Hz, such as those emitted in the collision of supermas-
sive binary black holes (SMBBHs) [22]. Flanagan and
Hughes [23] showed that, quite generically, the signal to
noise ratio for these sources in the inspiral regime should
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be comparable to that one in the ringdown. Therefore,
detection of SMBBHs by LISA through the measurement
of QNMs seems to be feasible. Assuming a lower cutoff
of (10−4 − 10−5) Hz and requiring that the QNM signal
lives long enough to travel once through LISA’s propa-
gation arms places a constraint on the mass range of the
SMBBH candidates: a few 105M� to (108 − 109)M�.

A step beyond detection analysis is that one of pa-
rameter estimation. In Ref. [22, 24] it was found that
through a single QNM detection LISA would be able to
accurately infer the mass and spin of supermassive black
holes: for black holes with massM & 105M� the errors in
mass and spin would be smaller than one part in 102, and
smaller than one part in 105 for the more optimistic case
M & 5 × 105M�

2. These predicted accuracies depend
on the ringdown efficiency εrd, defined as the fraction
of mass radiated in ringdown waves. In these references
very conservative values were used: εrd ∼ 0.1%−3%. For
example, it has been found in numerical simulations of
two equal-mass, non-spinning black holes starting from
quasi-circular motion that around εrd ∼ 2%− 3% of the
total mass is radiated in the ringdown regime [25]. The
inclusion of different masses and/or spin increases this
value (see, for example, [26]).

In [22, 24] it was also found that at least a second de-
tection of either mass or spin should be possible for LISA.
Resolving both spin and angular momentum (or, equiva-
lently, both frequency and damping times associated with
the QNM oscillation of this second mode) might require
a very large critical signal to noise ratio, which might in
turn need the second mode to radiate a significant por-
tion of the emitted gravitational wave when compared to
the first one. Whether this is feasible or not can only
be established by giving precise predictions of the ampli-
tudes for secondary candidates.

Underlying in all these analyses is the implicit assump-
tion that quasinormal modes and their spectrum of asso-
ciated frequencies accurately describe the (intermediate)
stage of the ringdown to a final Kerr stationary state.
Which is certainly the case in linearized theory, but at the
same time there is evidence that effects of self-interaction
in gravitational waves might be observable with the ex-
pected sensitivity of LISA [27].

Similarly, quasinormal modes also play an important
role in the semi-analytical modeling of intermediate mass
black holes (IMBH), such as in the Effective One Body
approach [28, 29], where the gravitational wave as mod-
eled within this formalism is stitched to a ringdown one
consisting of QNMs by enforcing continuity of the wave
and its derivatives and using the values of quasinormal
frequencies as expected from linearized theory [30–32]. In
this context, it is worth recalling that in close-limit stud-

2 Only cases with M & 105M� are considered in [22, 22, 24] be-
cause otherwise the QNM signal would be short lived enough
that special detection techniques might be needed.

ies of binary black holes it was found that corrections
from second-order perturbations were in some cases sig-
nificant [33]. For IMBHs, which could have total masses
in the range of ∼ 100M�−104M�, it is especially impor-
tant to accurately model the merger and ringdown since
they should fall in the frequency band of earth based
gravitational wave detectors. Although the existence of
IMBHs is still debatable, they could provide an interest-
ing source for Advanced LIGO and VIRGO if they are
present in dense globular clusters [34] (see also [35]). Re-
cent observational evidence of an IMBH can be found in
[36–39].

The previous discussions motivate us to study how
nonlinear perturbations of black holes decay in time: do
they do so just as in linearized theory or with a different
spectrum of frequencies? We carry out our study through
numerical simulations of first and second-order gauge-
invariant gravitational perturbations of Schwarzschild
black holes. We find that for all practical purposes,
and to high numerical accuracy, the complex decay fre-
quencies of second-order perturbations are the standard
quasinormal ones from linearized theory –in contrast to
previous predictions in the literature [40–42]– and we ex-
plain why this appears to be the case. Essentially, in all
our simulations we find that mode-mode couplings ex-
cite nonlinearities in the early stages of the perturbations
before the quasinormal regime for the linearized pertur-
bations kicks in. By the time the latter happens, those
couplings have decreased to negligible values and the ex-
cited nonlinearities essentially propagate as in linearized
theory; and, in particular, they decay with the standard
QNM frequencies.

The structure of the paper is as follows. Section II re-
views the basics of Regge-Wheeler-Zerilli equations and
quasinormal modes, and Sec. III the main features of the
gauge-invariant approach here used for second-order per-
turbations. Section IV describes our numerical approach
and setup for solving the first and second-order Regge-
Wheeler and Zerilli equations, and Sec. V presents and
discusses our main results.

II. FIRST-ORDER PERTURBATIONS OF
SCHWARZSCHILD AND QUASINORMAL

MODES

Metric gravitational perturbations can be expanded in
tensor spherical harmonics. At the linear level modes
with different angular structure decouple from each other
if the background spacetime is spherically symmetric, as
is the case for the Schwarzschild metric. In addition,
for each multipole, perturbations of Schwarzschild can
be further split into two sectors with different parities,
which also decouple from each other in linearized theory.

For each multipole, each of these sectors is completely
described by a master function which depends on time
and radius. The Regge-Wheeler function contains all
the relevant information of the axial or odd-parity sec-
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tor, whereas the Zerilli one encodes the polar or even
degrees of freedom. These functions satisfy master evo-
lution equations,

� {1}Φm` − VRW
{1}Φm` = 0 , (1)

� {1}Ψm
` − VZ

{1}Ψm
` = 0 , (2)

where {1}Ψm
` and {1}Φm` denote, respectively, the first-

order Zerilli and Regge-Wheeler functions for a given
(`,m) mode. The potentials that appear in these equa-
tions are given by

VZ ≡
`(`+ 1)
r2

− 6M
r3

r2λ(λ+ 2) + 3M(r −M)
(rλ+ 3M)2

, (3)

VRW ≡
`(`+ 1)
r2

− 6M
r3

(4)

and are, in particular, independent of the azimuthal
index m. In these expressions λ ≡ 1

2 (` − 1)(` + 2),
M is the mass of the Schwarzschild black hole back-
ground, r its areal radius, and � is the two-dimensional
D’Alambertian operator corresponding to the time and
radial sector of the background.

The complete spectrum of QNMs can be numerically
obtained by analyzing Eqs. (1,2) in the frequency do-
main. Computing in this way the amplitudes of QNMs
for any given initial data is not so straightforward,
though. Bearing in mind our motivation of studying the
behavior of second-order perturbations, we instead solve
Eqs. (1,2) in the time-domain. That is, we prescribe (a
variety of) initial data, evolve them and analyze the solu-
tions at different observer locations as functions of time.

The early behavior of the solution depends on the type
of initial data, followed by the QNM ringdown of the
black hole. In Fig. 1 we show a typical solution of the
Zerilli equation, for a fixed observer at r = 51.8M as a
function of time. The initial data for this particular case
consist of a Gaussian profile to the initial time deriva-
tive of the Zerilli function, centered at r = 20M with a
width σ = 4M , and the initial value of the Zerilli func-
tion itself is set to zero. [This corresponds to what we call
time-derivative initial data in the following sections, see
Eqs. (12,13)]. To measure the complex QNM frequency
we perform a numerical fit to a function of the form

f(t) = Aeat sin [b(t− t0)] , (5)

where the parameters to be fitted are A, a, b and t0 and
the choice of the starting time for the QNM regime is
chosen as that one which optimizes the fit, as introduced
and explained in Ref. [43]. The quasinormal frequency
is therefore given as ω = a + bi. The expected value
for the fundamental QNM for an ` = 2 perturbation is
0.37367 − 0.08896i [15], while our fit for this simulation
yields 0.37077− 0.08826i.

10-8

10-6

10-4

10-2

100

102

 0  50  100  150  200  250  300

ze
ril

li 
fu

nc
tio

n

t/M

 

{1}Ψ  l=2, m=2

Figure 1: Solution to the first-order Zerilli equation at ob-
server location r = 51.8M .

III. SECOND-ORDER GAUGE-INVARIANT
PERTURBATIONS OF SCHWARZSCHILD

We study second-order gravitational perturbations of
Schwarzschild black holes using a gauge-invariant for-
malism for arbitrary first and second-order perturbations
[44]. The key feature of this formalism is being able to
consider perturbations with arbitrary angular multipole
structure, and has been possible mostly due to the devel-
opment of a suitable theoretical framework [45, 46] and
to the advance of very efficient symbolic algebra tools for
tensor-type calculations [47, 48].

Next we very briefly summarize those results of the
formalism presented in [44] which are relevant for the
current work; see that reference for more details.

Due to the intrinsic nonlinearities of General Rela-
tivity, any non-trivial solutions of Eqs. (1,2) generate
second-order contributions which are solutions of Zerilli
and Regge-Wheeler-type equations with source terms,

� {2}Φm` − VRW
{2}Φm` = {2}SΦ , (6)

� {2}Ψm
` − VZ

{2}Ψm
` = {2}SΨ . (7)

The sources {2}SΨ and {2}SΦ depend quadratically on
the lower-order perturbations and their time and space
derivatives from both first-order sectors. That is, in gen-
eral the coupling of even (odd) parity modes generates
odd (even) parity second-order modes; see Appendix A
for a detailed description of the selection rules for this
mode coupling.

Second-order Regge-Wheeler-Zerilli (RWZ) type func-
tions are not unique: one can add to them any quadratic
combination of the first-order ones and they will still be
gauge invariant and will still satisfy equations of the form
(6,7) with different sources. For this reason, asking what
are the ringdown frequencies of second-order RWZ func-
tions is not an unambiguous question; as opposed to, say,
asking what are the ringdown frequencies of the emitted
gravitational power. It turns out, however, that, as dis-
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cussed in [44] and made explicit below, since the second-
order quantities, like {2}Ψ, {2}Φ, {2}SΨ and {2}SΦ, that
we use correspond to the ones labeled as regularized in
Ref. [44], there is a simple relationship between emit-
ted power and the RWZ functions. Under such choice of
second-order RWZ functions it is therefore unambiguous
and physically motivated to ask what are their ringdown
frequencies.

Reference [44] deals with the most general case for
these sources and computation of the radiated energy.
Here we quantitatively explore the ringdown frequencies

for some particular cases. Namely, we study first-order
(` = |m| = 2) even-parity and (` = 2,m = 0) odd-parity
perturbations and the modes that they generate through
self-coupling. That is, for simplicity we do not consider
the coupling between the mentioned even and odd-parity
first-order modes. We do not explicitly list the sources
{2}SΨ and {2}SΦ for the cases here considered because
they are rather lengthy and complicated expressions, but
they are available from the authors upon request. The
generated modes and the radiated energy carried by them
are described next and summarized in Table I.

First order Second order

Multipoles Parity Multipoles Parity

(` = 2 = |m|) even (` = 4 = m),(` = 4,m = 0),(` = 2,m = 0) even

(` = 2,m = 0) odd (` = 4,m = 0),(` = 2,m = 0) even

Table I: First-order modes considered and second-order ones generated by self-coupling.

A. CASE A: even-parity ` = |m| = 2 perturbations
and generated modes

As discussed in Appendix A, the self-coupling between
these modes generates second-order (` = 4,m = ±4)
even-parity (polar) ones, whereas the coupling between
them (m = 2 with m = −2) gives rise to second-order
(` = 4,m = 0), (` = 2,m = 0) and (` = 0,m = 0)
even-parity (polar) modes, and (` = 3,m = 0) and (` =
1,m = 0) odd-parity (axial) ones. Since this paper only
deals with different radiative aspects of the system, we
can ignore modes with ` < 2.

Furthermore, we assume that the Zerilli functions
{1}Ψ±2

2 that describe the first-order (l = 2,m = ±2)
modes are real

{1}Ψ±2
2 ∈ R . (8)

This means that both modes are described by the

same function, since generically the relation ( {1}Ψm
l )∗ =

(−1)m {1}Ψ−m
l holds, and, in essence, the system reduces

to a problem of self-coupling. The second-order even-
parity (polar) modes inherit this property, in such a way
that we only need three functions to describe them:

{ {2}Ψ0
2,

{2}Ψ0
4,

{2}Ψ4
4} .

Due to the assumption (8), none of the second-order
odd-parity (axial) modes are generated. This happens
because the source for a m = 0 mode must be real.
Schematically, the generic term of the source for this ax-
ial (l = 3,m = 0) mode can be written as i {1}Ψ2

2
{1}Ψ−2

2

and it is straightforward to see that its real part vanishes
under the assumption (8).

In this particular CASE A, the radiated power asso-
ciated with the mentioned modes for a given observer
located at robs as a function of time is given by

Power(robs, t) =
dE

dt
=

ε2

12π

∣∣∂t {1}Ψ2
2

∣∣2 +
9ε4

640π

{
2
∣∣∂t {2}Ψ4

4

∣∣2 +
∣∣∂t {2}Ψ0

4

∣∣2}+
ε4

96π

∣∣∂t {2}Ψ0
2

∣∣2 +O
(
ε5
)
, (9)

where ε is the perturbative parameter and all the expres-
sions on the right-hand side are evaluated, naturally, at
(robs, t). In principle this equation is valid only at null
infinity but, as it is usually the case in computations, we
evaluate it at a finite radius.

B. CASE B: odd-parity (` = 2,m = 0) perturbations
and generated modes

In principle, following the selection rules, the odd par-
ity (` = 2,m = 0) mode would generate by self-coupling
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the second-order (` = 0,m = 0), (` = 2,m = 0)
and (` = 4,m = 0) even-parity modes, as well as the
(` = 1,m = 0) and (` = 3,m = 0) odd-parity ones. How-
ever, in this axisymmetric case (m = 0 for all modes),
the Clebsch-Gordan-like coefficients that appear in the
sources {2}SΦ and {2}SΨ vanish for those second-order
modes with an odd harmonic label ` (see Appendix A).

Hence, none of the second-order odd-parity modes are ex-
cited and, up to this order, we are left with two radiative
second-order modes,

{ {2}Ψ0
4,

{2}Ψ0
2} .

The radiated power is then given by

Power(robs, t) =
3ε2

32π

∣∣∂t {1}Φ0
2

∣∣2 +
3ε4

32π

{
3
20

∣∣∂t {2}Ψ0
4

∣∣2 +
1
9

∣∣∂t {2}Ψ0
2

∣∣2}+O(ε5). (10)

IV. NUMERICAL APPROACH FOR SOLVING
THE MASTER EQUATIONS

We now describe in some detail our numerical approach
for evolving the first and second-order RWZ equations,
since in the past difficulties have been reported with the
high-order derivatives in the sources of these equations.

We numerically solve the first and second-order equa-
tions using a pseudo-spectral collocation method. The
spatial derivatives are computed using Chebyshev poly-
nomials and Gauss-Lobatto (GL) collocation points, and
the system is evolved in time using a standard fourth-
order Runge-Kutta scheme. We use a small enough
timestep for the time integration so that the solution
converges exponentially with the number of collocation
points (see below). The accuracy of all the simulations
presented in this paper are at the level of double precision
round-off.

GL collocation points are not equally spaced; instead,
they cluster near the edges of the computational domain
(equally spaced points would not give exponential con-
vergence). For that reason it is standard to use a multi-
domain approach. Here we subdivide our radial domain
in (non-overlapping) blocks of length 10M each, commu-
nicated through a penalty technique. At the interface
each incoming characteristic mode u+ is penalized ac-
cording to (see [49] and references therein)

u̇+ = (. . .)− αN2δ

rblock
(u+ − v+)

where v+ is the value of the same mode at the interface
point using the neighboring block, rblock is the size of
the corresponding block (10M in these simulations), α
is the associated characteristic speed, N the number of
collocation points on that block and δ a penalty param-
eter chosen here to be δ = 0.6. At the outer boundary
each characteristic incoming mode is similarly penalized
to zero; though this is done simply to achieve stability, in
our simulations the domain is large enough that our re-
sults are causally disconnected from the outer boundary.
The singularity of the black hole is dealt with through
excision. That is, by using Kerr-Schild coordinates for

the background spacetime and placing an inner bound-
ary inside the event horizon.

As an example, Fig. 2 shows a self-convergence test for
the first-order (` = 2 = m) Zerilli function, extracted at
r = 51.8M 3, both changing the number of collocation
points as well as the timestep. The initial data used for
such test correspond to the same one used in Fig. 1,

{1}Ψ2
2 = 0 , {1}Ψ̇2

2(t = 0, r) = e−(r−r0)2/σ2
, (11)

with σ = 4M , r0 = 20M , and the spatial domain r ∈
[1.8M, 301.8M ]. In Fig. 3 we also show the result of a
convergence test for the generated second order (` = 4 =
m) Zerilli mode. From these figures we see that using
30 collocation points per domain and a timestep ∆t =
0.001M gives a numerical error at the level of double
precision round-off; from hereon we use such resolutions
for all our simulations.

In order to compare the magnitude of the errors with
the solutions themselves, in Fig. 4 we show the ab-
solute values of the first-order {1}Ψ2

2 and second-order
{ {2}Ψ0

2,
{2}Ψ0

4,
{2}Ψ4

4} Zerilli solutions from the previous
plots at their highest resolutions, all extracted at the
same observer location.

We note in passing that for most of the ringdown the
order of magnitude of the second-order Zerilli functions
appears to be comparable to (and in one case even larger
than) the first-order one. There is no contradiction in
this, since their contribution to the radiated energy is
scaled by ε4, while the contribution of the first order Zer-
illi function is scaled by ε2, see Eq. (9).

A. Setup of numerical simulations

We could introduce non-vanishing second-order modes
via initial second-order perturbations. However, we are
interested in mode-mode coupling. Put differently, we

3 We place observers at the beginning/end of each domain:
1.8M, 11.8M, 21.8M , etc.



6

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

 0  50  100  150  200  250  300

sp
at

ia
l r

es
ol

ut
io

n 
er

ro
rs

t/M

 

N10 - N60
N15 - N60
N20 - N60
N30 - N60
N40 - N60

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

 0  50  100  150  200  250  300

te
m

po
ra

l r
es

ol
ut

io
n 

er
ro

rs

t/M

 

∆t1=0.010 - ∆t4=0.0005
∆t2=0.005 - ∆t4=0.0005
∆t3=0.001 - ∆t4=0.0005

Figure 2: Numerical errors for different spatial resolutions
using a fixed timestep ∆t = 0.01M (top), and for different
timesteps using a fixed spatial resolution of N = 60 points per
domain (bottom). Both figures show the differences between
several resolutions and the most accurate one, which is N =
60 for the top panel and ∆t4 = 0.0005M for the bottom one.
In both cases the observer is located at r = 51.8M . We
see exponential convergence and errors in the order of double
precision round-off.

are interested in the particular solution of Eqs. (7,6) (that
is, the one with vanishing initial data), since the homo-
geneous one will be exactly the same as at first order.
Therefore, in this paper we always impose vanishing ini-
tial data for all the second-order modes and concentrate
on those modes generated by first-order mode coupling.

In the following section we solve the first-order RWZ
equations with four different types of initial data, varying
both the location r0 and width σ of the initial data,

1. Time Derivative (TD)

{1}Ψ2
2(t = 0, r) = 0 , (12)

{1}Ψ̇2
2(t = 0, r) = e−(r−r0)2/σ2

. (13)
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{2}Ψ4

4 for different spatial resolutions and a fixed timestep
∆t = 0.001M . The errors are to be interpreted as in the
previous figures. For N = 30 (which are the ones used in the
rest of this paper) and higher, they are at the level of double
precision round-off.
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Figure 4: Absolute value of first and second-order Zerilli func-
tions extracted at r = 51.8M .

2. Time Symmetric (TS)

{1}Ψ2
2(t = 0, r) = Me−(r−r0)2/σ2

,
{1}Ψ̇2

2(t = 0, r) = 0 .

3. Approximately Outgoing (OUT)

{1}Ψ2
2(t = 0, r) = Me−(r−r0)2/σ2

,
{1}Ψ̇2

2(t = 0, r) = −(1− 2M/r)∂r {1}Ψ2
2(t = 0, r).

4. Approximately Ingoing (IN)

{1}Ψ2
2(t = 0, r) = Me−(r−r0)2/σ2

,
{1}Ψ̇2

2(t = 0, r) = (1− 2M/r)∂r {1}Ψ2
2(t = 0, r).
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V. DECAY FREQUENCIES OF
SECOND-ORDER PERTURBATIONS

Ioka and Nakano have put forward the suggestion that
at second order new frequencies should appear in the
ringdown spectrum, which would be given by the sum of
different pairs of standard QNM frequencies. In particu-
lar, according to this prediction, the dominant frequency
would correspond to the double of the standard funda-
mental one from linearized theory [40, 41]. This seems
reasonable, since the sources for the second-order mas-
ter equations are quadratic in the first-order modes, so
one might well expect that frequencies get summed-up
in Fourier space. The physical picture, however, appears
to be at the same time more subtle and simpler: our nu-
merical simulations indicate that in practice second-order
perturbations decay with the standard QNM frequencies
from linearized theory.

Recall that the physical process here studied is the cou-
pling of linear modes. That is, we initialize all second-
order perturbations to zero. The second-order mas-
ter equations have sources which are, indeed, quadratic
in the first-order modes. What we observe in all our
simulations, though, is that those sources quickly ex-
cite the second-order perturbations and afterwards decay
very fast in time. As a consequence, once the second-
order modes have been excited and reached the regime
in which they oscillate with a constant complex fre-
quency (i.e. what in linearized theory corresponds to the
QNM regime), they essentially propagate with a vanish-
ing source. In other words, as first-order perturbations
do. And, in particular, they do oscillate and decay with
the same, standard, QNM frequencies from linearized
perturbation theory.

We show this behavior in some detail for the four ini-
tial data types (Sec. IV A) of CASE A perturbations
(Sec. III A), with r0 = 20M and σ = 4M . Figure 5 shows
the first-order Zerilli function and the (` = 2,m = 0)
second-order one for different initial data profiles. In all
cases the source decays much faster than the second-order
solution itself and therefore its role in determining the be-
havior of the latter by the time it enters the QNM regime
is negligible. From the same figure one can notice that
the type of initial perturbation does determine the time
by which the second-order Zerilli function enters the tail
regime; but this is not surprising, since it already hap-
pens for the first-order one.

In order to gain further insight into these observations
we display the dynamics of first and second-order Zerilli
functions and the source term {2}SΨ of Eq. (7), now for
the (` = 4,m = 0) second-order mode. Fig. 6 shows
these three quantities as functions of radius at different
times. The source term is dominant only during the first
∼ 20M , later decaying at a fast rate to several orders of
magnitude below the second-order Zerilli function.

Table II shows the fitted QNM frequencies from our
numerical data, for the different initial-data profiles of
CASE A perturbations, with r0 = 20M and σ = 4M .
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Figure 5: CASE A simulations: first-order (` = 2,m = 2)
Zerilli function and second-order (` = 2,m = 0) one, along
with the source term for the second-order master equation
[Eq. (7)], as functions of time for different initial data profiles.
The source plays a role only at very early times in exciting
the second-order modes, afterwards being much smaller than
the first and second- order solutions.
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Figure 6: CASE A simulations: snapshots of the first-order
Zerilli function and second order (` = 4,m = 0) one, along
with the source term, for ingoing initial data. The generic
behavior of the source is to rapidly decrease several orders of
magnitude below the solutions themselves. [Note: In the first
snapshot the second-order Zerilli function vanishes because it
corresponds to t = 0 and our setup of the physical problem.]

They agree quite well with those predicted by first-order
theory for each of those modes.

As described in Sec. IV, our numerical simulations are
of very high accuracy (both at first and second-order): all
the errors are at the level of double precision round-off,
∼ 10−14−10−12 (see Figs. 2,3). Therefore, we do not con-
sider lack of resolution as a possible reason for not finding
traces of the predicted new second-order QNM frequen-

1st order 2nd order

ID ` = 2, m = 2 err % ` = 2, m = 0 err %

TD 0.37077− 0.08826i 0.8 0.37334− 0.08883i 0.1

TS 0.37353− 0.08837i 0.2 0.37335− 0.08766i 0.3

IN 0.37061− 0.08887i 0.8 0.37373− 0.08945i 0.1

OUT 0.37107− 0.08624i 1.0 0.37074− 0.08902i 0.8

2nd order

ID ` = 4, m = 0 err % ` = 4, m = 4 err %

TD 0.80916− 0.09418i 0.003 0.80916− 0.09418i 0.003

TS 0.80920− 0.09420i 0.005 0.80920− 0.09420i 0.005

IN 0.80918− 0.09416i 0 0.80918− 0.09416i 0

OUT 0.80931− 0.09425i 0.019 0.80931− 0.09425i 0.019

Table II: Measured quasinormal frequencies from our numeri-
cal simulations (CASE A). They agree with those predicted by
linearized theory, even for the second-order modes generated
due to mode-mode coupling. The predicted QNM frequencies
from standard linearized perturbation theory, as quoted in
[15], are 0.37367− 0.08896i for ` = 2 and 0.80918− 0.09416i
for ` = 4 (in linearized theory there is degeneracy with re-
spect to the azimuthal index m. The relative errors for real
and imaginary parts of the measured frequencies ω are com-
puted as |ω − ωexact|/|ωexact|.

cies in our simulations. Similarly, one might think that
those predicted frequencies are in fact present, but with a
very small amplitude. Figure 7 indicates that in practice
that does not seem to be the case: the residual of the fit
for the second-order Zerilli function [in the case shown it
is the (` = 2,m = 0) one, for TD initial data, first-order
perturbations] —defined as the function minus its fit—
does not appear at all to correspond to an oscillation
and decay with twice the standard complex fundamental
quasinormal frequency for that mode (or to an overtone).
Instead, it appears to be the residual associated with the
fact that QNMs are not complete.

For completeness, in Appendix B we provide results
of the fitted frequencies for the four initial data types of
CASE A perturbations, now varying both the location
and width of the initial data; all of them support the
same conclusion.

Finally, we briefly discuss the results of some CASE
B [odd-parity (` = 2,m = 0) first-order mode] pertur-
bations, since the conclusions are identical. As discussed
in Sec. III B and summarized in Table I, they generate
both (` = 4,m = 0) and (` = 2,m = 0) even-parity
second-order modes. The fitted frequencies from the nu-
merical solutions (for a simulation of TD linear initial
data with r0 = 20M and σ = 4M) for these second-
order modes yield, respectively, 0.37441 − 0.08921i and
0.80932 − 0.09419i, to be compared with the expected
values from perturbation theory: 0.37367 − 0.08896i for
` = 2 and 0.80918− 0.09416i for ` = 4.
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Figure 7: Residual from fitting a second-order Zerilli function
to a complex frequency mode. The fitted frequency corre-
sponds to the standard fundamental quasinormal one for that
multipole index, and the residual does not appear to contain
traces of twice that frequency (or any other).

VI. FINAL REMARKS

In this paper we have numerically evolved first and
second-order self-generated gauge-invariant gravitational
perturbations of Schwarzschild black holes with a variety
of initial data sets, studying the oscillation and decay be-
havior of nonlinear modes and, more specifically, whether
they correspond to the standard QNM frequencies or to
a different spectrum. We have found, in all cases, that
second-order modes decay through the standard QNM
frequencies, and that the picture behind this is remark-
ably simple: first-order perturbations trigger high-order
ones through source terms which afterwards rapidly de-
cay in time. Besides, by the time the solutions reach the
regime in which they oscillate and decay at a constant
rate (the QNM regime in the case of linearized perturba-
tions), the second-order modes for all practical purposes
propagate as in linearized theory.

Mode-mode coupling in the ringdown of black holes has
been previously studied through numerical simulations of
full Einstein equations [50, 51]; however, no conclusions
seem to have reached or sought for in terms of the devi-
ations in the ringdown spectrum from the linearized one
(presumably due to lack of resolution).

The fact that nonlinear aspects of Einstein’s equations
in the ringdown of black holes appear to already be cap-
tured —at least in what oscillation and decay frequencies
concerns— by linearized perturbation theory is somehow
remarkable and should be of use both for modeling black
holes in the ringdown regime as well as in data analysis
searches of gravitational waves.
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Appendix A: Mode coupling: selection rules

In this appendix we summarize, for completeness, the
selection rules for mode coupling [45, 46]. A second-order
(l,m)-mode gets a contribution from a pair of first-order
modes (l̂, m̂) and (l̄, m̄) if three conditions are obeyed.
First, the harmonic labels must be related by the usual
composition formulas

|l̂ − l̄| ≤ l ≤ l̂ + l̄, and m̂+ m̄ = m. (A1)

Second, mode coupling must conserve parity. To any har-
monic coefficient with label l, we associate a polarity sign
σ such that, under parity, the harmonic changes by a sign
σ(−1)l. Polar/even parity (axial/odd parity) harmonics
have σ = +1 (σ = −1). Then, parity conservation im-
plies the third condition:

(−1)l̄+l̂−l = σσ̄σ̂, (A2)

where σ̂ and σ̄ are the polarity signs corresponding to
the modes (l̂, m̂) and (l̄, m̄) respectively. In particular,
there is a special case in which the coupling of two modes
satisfying Eqs. (A1) and (A2) does not contribute to a
second-order mode, and the reason comes from the prop-
erties of the Clebsch-Gordan-like coefficients that appear
in the product formula for the tensor harmonics [45].
In axisymmetry (m̄ = m̂ = 0) the mentioned Clebsch-
Gordan-like coefficients vanish if l̄ + l̂ + l is odd.

This analysis can be extended to higher orders. In
particular, the parity condition implies that a collection
of k modes with harmonic labels {l1, ..., lk} and polar-
ities {σ1, ..., σk} contributes to the mode (l, σ) only if
(−1)lσ = Πk

i=1(−1)liσi.
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Appendix B: Numerical decay frequencies of second-order perturbations from time domain simulations

Ingoing Outgoing

r0 ` = 2, m = 0 ` = 4, m = 0 ` = 4, m = 4 ` = 2, m = 0 ` = 4, m = 0 ` = 4, m = 4

20 0.37373− 0.08949i 0.80918− 0.09416i 0.80918− 0.09416i 0.37074− 0.08902i 0.80931− 0.09425i 0.80931− 0.09425i

40 0.37147− 0.08833i 0.80916− 0.09417i 0.80916− 0.09417i 0.37079− 0.08891i 0.80911− 0.09409i 0.80911− 0.09409i

60 0.37141− 0.08834i 0.80915− 0.09413i 0.80915− 0.09413i 0.37093− 0.08844i 0.80911− 0.09417i 0.80911− 0.09417i

80 0.37102− 0.08839i 0.80917− 0.09415i 0.80917− 0.09415i 0.37140− 0.08816i 0.80913− 0.09413i 0.80913− 0.09413i

100 0.37101− 0.08840i 0.80888− 0.09414i 0.80872− 0.09417i 0.37148− 0.08782i 0.80914− 0.09426i 0.80914− 0.09426i

σ

2 0.37708− 0.09116i 0.80918− 0.09418i 0.80918− 0.09418i 0.37365− 0.08891i 0.80918− 0.09416i 0.80918− 0.09416i

4 0.37373− 0.08949i 0.80919− 0.09417i 0.80918− 0.09417i 0.37079− 0.08902i 0.80931− 0.09425i 0.80911− 0.09409i

8 0.37286− 0.08893i 0.80875− 0.09407i 0.80875− 0.09407i 0.36887− 0.08284i 0.80923− 0.09599i 0.80921− 0.09599i

Time Derivative Time symmetric

r0 ` = 2, m = 0 ` = 4, m = 0 ` = 4, m = 4 ` = 2, m = 0 ` = 4, m = 0 ` = 4, m = 4

20 0.37334− 0.08883i 0.80916− 0.09418i 0.80916− 0.09418i 0.37335− 0.08766i 0.80920− 0.09420i 0.80920− 0.09420i

40 0.37277− 0.08893i 0.80919− 0.09417i 0.80919− 0.09417i 0.37376− 0.08984i 0.80915− 0.09413i 0.80915− 0.09413i

60 0.37378− 0.08921i 0.80920− 0.09418i 0.80920− 0.09418i 0.37267− 0.08948i 0.80917− 0.09416i 0.80917− 0.09416i

80 0.37383− 0.08995i 0.80915− 0.09411i 0.80915− 0.09411i 0.37344− 0.08852i 0.80917− 0.09413i 0.80917− 0.09413i

100 0.37387− 0.08999i 0.80914− 0.09409i 0.80914− 0.09409i 0.37321− 0.08823i 0.80923− 0.09422i 0.80923− 0.09422i

σ

2 0.37360− 0.08906i 0.80917− 0.09417i 0.80917− 0.09417i 0.37404− 0.08972i 0.80917− 0.09416i 0.80916− 0.09416i

4 0.37334− 0.08893i 0.80916− 0.09417i 0.80916− 0.09418i 0.37335− 0.08766i 0.80920− 0.09420i 0.80920− 0.09420i

8 0.37315− 0.08935i 0.80924− 0.09342i 0.80924− 0.09334i 0.37943− 0.08760i 0.80867− 0.09424i 0.80867− 0.09423i

Table III: For ` = 2 the expected fundamental frequency from linearized theory is 0.37367− 0.08896i, while for ` = 4 frequency
it is 0.80918 − 0.09416i [15]. Shown are the fitted values from our numerical solutions to the second order Zerilli equations,
for four different sets of initial data. For each initial data configuration we vary the location r0 and width σ of the linearized
perturbations, keeping one fixed (r0 = 20M and σ = 4M , respectively) while varying the other. The fitted frequencies appear
to be insensitive to the choice of initial data and agree with the QNM frequencies from linearized perturbation theory.
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