
Bracket Formulation of Nonequilibrium Thermodynamics for Interacting Systems 
 
Antony N. Beris  
Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA 
e-mail: beris@che.udel.edu 
 
and 
 
Hans Christian Öttinger 
Institut fur Polymere, ETH-Hönggerberg, Wolfgang-Pauli-Str. 10, CH-8093, Zürich, 
Switzerland 
e-mail: hco@mat.ethz.ch 
 
Submitted to the Journal of Non-Newtonian Fluid Mechanics for inclusion to the Special 
Issue on the 4th Int. Workshop of NonEquilibrium Thermodynamics and Fluid Flow 
 
Abstract 
 
In this work we show how to naturally modify the expressions for the total time 
derivatives of functionals of the field variables in complex systems, expressed originally 
using generalized brackets in the bracket formulation of nonequilibrium thermodynamics 
for non-interacting systems, in order to account for the interactions of the systems with 
the environment.  After a short description of the problem, the approach is illustrated in a 
simple example involving the flow of a non-isothermal incompressible viscous fluid in a 
fixed domain.  The resulting surface terms in the final expression can then be used to 
fully identify the fluxes describing the surface interactions of the system with the 
environment.  In this way, it is shown that the generalized bracket formalism as described 
before, i.e. in terms of bracket equations applicable only for non-interacting (isolated) 
systems, is nevertheless complete.  Although those original bracket equations cannot be 
directly used to describe the evolution equations for functionals defined for complex 
interacting systems, those can be derived in a straightforward fashion from the governing 
dynamic equations of the field variables that have themselves been derived from the 
original generalized bracket equations.  The final equations are then automatically 
compatible with thermodynamics and duly comply with both the first and the second law 
of thermodynamics. Additional long range interactions can also be taken into account 
naturally though a modification of the system’s Hamiltonian.  This work parallels and 
extends to open systems involving constrained variables recent work [Öttinger, Phys. 
Rev. E 73:036126 (2006)] that also addresses the treatment of surface excess variables. 
 
Introduction 
 
During the last 20 years considerable effort has been placed in developing a systematic 
framework for the generation of the equations governing the dynamics of continuum 
media---see [1-11] and references therein.  This entails the consistent extension of 
equilibrium thermodynamics under nonequilibrium conditions.  Following the pioneering 
work by Truesdell and coworkers in the axiomatic foundation of continuum mechanics 
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[12], the new approaches emphasize more the physical content (namely, 
thermodynamics) and the existing interconnections between various formalisms applied 
at different scales of length and time, thus offering a systematic way for multiscale 
analysis [10-11].   
 
The use of thermodynamics enters at different levels.  First of all, equilibrium 
thermodynamics suggests the minimum variables for an adequate description of the 
continuum system:  those are the ones that are required for the description of the 
equilibrium thermodynamic system, like the density, entropy, etc.  Of course, in addition 
of those, one needs more variables in order to describe departures from equilibrium, at a 
minimum, the velocity (or, equivalently, the momentum density) and on many occasions, 
other variables necessary to describe the nonequilibrium structure of the system, like the 
conformation tensor, c, for polymer dynamics. 
 
Second, thermodynamics imposes strict relations for the evolution of key extensive 
thermodynamic quantities, like the total energy of the system, H, (which is customarily 
called the Hamiltonian) and the total entropy of the system, S.  Namely, the first law of 
thermodynamics can be written for an open system as 

 d ,
d
H Q W
t
= −  (1) 

where Q is the rate of heat transfer from the environment to the system, and W the rate of 
work performed by the system to the environment.  On the other hand, the second law of 
thermodynamics can be described by the inequality  
  (2) 0 ,S ≥
where is the total rate of entropy production within the system and its environment; this 
automatically also implies that the local rate of entropy production also has to be a non-
negative quantity. Eqs. (1-2) impose stringent conditions on the dynamics that need to be 
satisfied in any models. 

S

 
The bracket formulation 
 
To achieve further contributions, it is necessary to make additional assumptions regarding 
the structure of the dynamic equations.  Various nonequilibrium thermodynamic 
extensions have been developed over the last twenty years.  The very first one, 
originating from the pioneering work of Morrison [2] and Grmela [3], is based on an 
extension of the Poisson bracket to accommodate dissipation and irreversibility.  The 
Poisson bracket is a mathematical quantity that it is alternatively used for the expression 
of conservative, Hamiltonian dynamics [7].  It is defined for both discrete and continuum 
systems.  For example, for a particle moving within a given potential field, , the 
Poisson bracket {

( )V x
},F G corresponding to two arbitrary functions of the particle’s position, 

, and the particle’s momentum, p , and , is given as [7,8] x ( , )F x p ( , )G x p

 { }, F G G FF G .∂ ∂ ∂ ∂
≡ ⋅ − ⋅
∂ ∂ ∂ ∂x p x p

 (3) 
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This definition of the Poisson bracket exhibits all its generic properties:  namely that is is 
bilinear and antisymmetric with respect to and , and that is satisfies the Jacobi 
equality  

F G

 { }{ } { }{ } { }{ }, , , , , , 0F G H G H F H F G ,+ + =  (4) 
for any three arbitrary functions , and .  The key property of the Poisson bracket 
is that it can be used in an alternative formulation of the particle dynamics.  This is 
generated by the following general equation, valid for any arbitrary function :  

F G H

F

 {d ,
dt
F F H= },  (5) 

where is the total energy, Hamiltonian, of the system, which for a particle in a 
potential field is simply the sum of its kinetic and potential energies: 

H

 1 ( ) ,(2 )H m= +2p xV  (6) 

where is the mass of the particle.  Indeed, it can be easily shown that the traditional 
Hamiltonian equations for particle dynamics can be recovered simply by substituting into 
the master equation, Eq. (5) , the expression for the particle’s Hamiltonian provided by 
Eq. (6), and by requiring that the final result is, for all functions 

m

( , )F F= x p , the same as 
that obtained by evaluating the left hand side of Eq. (5) using differentiation by parts: 

 d .
d t
F F F
t t

∂ ∂ ∂ ∂
= ⋅ + ⋅
∂ ∂ ∂ ∂

x p
x p

 (7) 

 
The very interesting fact is that the Poisson structure can also be extended to describe the 
conservative Hamiltonian dynamics of continua.  This extension is accomplished simply 
by switching from a set of low dimensionality vectors (for example, x , and  in the 
example above) to a set of continuum field variables (such as the mass density ) in 
describing the state of the system.  Correspondingly, the arbitrary functions, , G and 

are replaced by functionals of those field variables whereas the partial derivatives of 
the functions, entering the definition of the Poisson bracket---see Eq. (7)---are to be 
replaced by Volterra (or functional) derivatives [8](for functionals represented as simple 
integrals involving functions of unconstrained variables these are simply the partial 
derivatives of these functions).  It is possible to show then that suitable expressions for 
the Poisson bracket exist (which now is expressed as a bilinear functional) so that the 
dynamics can still be described using the master equation, Eq. (5) and the corresponding 
Hamiltonian (also a functional!) of the system.  Examples include the Euler equations for 
ideal fluids [8], the Maxwell-Vlasov equations in plasma dynamics [13] etc.   

p
( )ρ x

F
H

 
The Poisson bracket for an ideal (Euler) incompressible fluid in the absence of any 
interactions with the environment has first been developed by Arnold [14]---see also [8] 
for a history of its development and a detailed analysis:  
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{ }, d

dV

dV

dV

F H H FF H

F H H Fs s
s s

H F F H

H F F Hs
s s

δ δ δ δ
δ δ δ δ

δ δ δ δ
δ δ δ δ

δ δ δ δ
δ δ δ δ

δ δ δ δ
δ δ δ δ

Ω

Ω

Ω

Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞+ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣

⎡ ⎤⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞+ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

∫

∫

∫

M M
M M M M

M M

M
M M M M

M M

∇ −∇

∇ −∇

∇ − ∇

∇ − ∇

V

⎦ . (8) 

 
Note that albeit both expressions above are formally equivalent for a non-interacting 
system (being different by a surface integral which is identically zero) it is the second one 
that can be shown to be consistent with Jacobi identity without the need of any leftover 
boundary terms [15]. 
 
 
The main limitation of the original Poisson bracket formalism is its restriction to 
conservative systems.  What Kaufman [1],  Morrison [2] and Grmela [3] did was to add 
an extra term to the Poisson bracket so that one can apply the extended equations to 
describe dissipative dynamics as well.  Following that original work, several 
reformulations have been made [5,8-11].  The one that we will use here is the one 
generator bracket formalism [8], basically because of its inherent simplicity.   
 
According to the single generator generalized bracket formalism, the extended master 
equation involves in addition to the Poisson bracket, another bracket, (written as[ ]  
for two arbitrary functionals and G ), called the dissipation bracket: 

,F G
F

 { } [d , ,
d
F F H F H
t
= + ],  (9) 

where is again the Hamiltonian.  The dissipation bracket is also a functional of and 
, but, with different properties.  It is linear only with respect to the first argument ( ) 

but, in general, non-linear in the second ( ). Moreover, its linearization with respect to 
H exhibits upon exchange of and the same  symmetry/anti-symmetry as shown by 
the corresponding field variables in terms of their dependence on time (this follows the 
Onsager/Casimir relations based on the concept of microscopic reversibility and 
represents the consequence of incorporating linear irreversible thermodynamics as a 
subcase of the much more general generalized bracket formalism [8]).  Finally, in order 
to preserve the first and second laws of thermodynamics, Eqs. (1) and (2), the dissipation 
bracket for a non-interacting with the environment system is required to have the 
following properties: 

H F
H F

H
F H

 [ ] [ ], 0; ,H H S H 0.= ≥  (10) 
 
The dissipation bracket corresponding to an incompressible viscous (Newtonian) 
homogeneous and isotropic fluid can be shown to be [8]:  
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[ ], :
2

dV

:
21

T T

T

F F H HF H

k F H
T s s

H H H H
F

T s

µ δ δ δ δ
δ δ δ δ

δ δ
δ δ

µ δ δ δ δ
δ δ δ δδ

δ

Ω

Ω

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦+

∫

∫

M M M M

M M M M

∇ ∇ ∇ ∇

∇ ∇

∇ ∇ ∇ ∇

dV

dV

T

k H H
T s s

δ δ
δ δ

Ω

⎡ ⎤⎡ ⎤⎛ ⎞⎢ ⎥⎢ ⎥⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦
⎢ ⎥

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥+ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎣ ⎦

∫
∇ ∇

, (11) 

where µ and are the system’s Newtonian shear viscosity and thermal conductivity, 
respectively. 

k

 
The major usefulness in practical applications of the generalized Poisson bracket 
formalism has been so far its usage as a guidance for the development of 
thermodynamically consistent models for the governing equations of the dynamics of 
complex systems [8,16].  To perform that role, after the selection of the proper 
expressions for the Poisson and dissipation brackets, (and in parallel to the procedure 
illustrated for the particle dynamics example above) one simply compares the result of 
the application of the generalized master equation, Eq. (9) above, to that obtained after a 
direct time differentiation of the functional expression.  For that purpose, one uses the 
standard expressions for the bracket and dissipation functionals, defined for non-
interacting systems [8,16]. 
 
The evolution equations for functionals 
 
However, recently new applications have emerged where a more direct usage of the 
generalized bracket equations as the governing equations for arbitrary functionals is 
shown [17].  For that to be possible, more general expressions for the governing 
equations are necessary to be used, also applicable for interacting systems.  It is the 
purpose of this work to show how these expressions can be systematically derived.  We 
do that in an illustrative example albeit the approach used here can also apply to more 
general settings in a similar fashion.     
 
The general idea is simple.  The main advantage of the original expressions proposed for 
the brackets is their symmetry, made possible through the use of integration by parts, 
allowed (in the sense of not giving rise of any additional surface contributions) given the 
constraint of no interactions of the system with the environment.  This results in an 
evaluation (by comparison to the direct differentiation result) of the field dynamics 
[8,16]. In the general case, in the presence of interactions, it is the field dynamics (but not 
necessarily the symmetries of the bracket equations) that it is preserved.  Therefore, the 
starting point for the master equation for the dynamics of an arbitrary functional needs to 
be the expression that one gets upon substitution of the field dynamics in the general 
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dynamic equation that one gets upon straightforward time differentiation of the functional 
expression.  This is illustrated in a simple but comprehensive example below. 
 
To illustrate how to adapt the generalized bracket formalism to accommodate the 
system’s interactions with the environment we examine here a simple example 
application, the flow of a homogeneous viscous Newtonian incompressible fluid in a 
fixed domain, of volume  and surface boundary Ω ∂Ω .  Both temperature and velocity 
effects are taken into account, as well as those of an external, constant, gravitational field, 
g , but no other non-local effects are taken into account---for a more general, 
compressible case, please see the Appendix.  The starting point are the governing 
equations for the two nontrivial field variables needed to describe the state of that system 
(the other trivial one is the mass density, ρ , which for an incompressible system is 
constant) namely the velocity (or, equivalently, momentum density, v ρ=M v )  and the 
entropy density .  The corresponding Hamiltonian is  s

 ( )
2

dV
2
MH ρ
ρΩ

⎛
= − ⋅ +⎜

⎝ ⎠
∫ g R e s

⎞
⎟ , (12) 

i.e., the sum of kinetic, potential (gravitational here) and internal energies, where g is the 
gravitational acceleration, R the position vector and ( )e s the internal energy density 
which for an ideal incompressible fluid is only a function of the entropy density, s.   
 
Following the standard practices (i.e, developing the functional evolution equation using 
the Poisson and dissipation brackets indicated by Eqs. (8) and (11) above, respectively 
and equating the result against the straightforward answer obtained through the chain rule 
of differentiation, as outlined in [8]) the following governing equations are obtained  

 ( ) (( ,
t t

ρ ρ µ ρ µ∂ ∂
= = Π − ⋅∇ + ∆ = Π ⋅ − +

∂ ∂
M v v v v vv A∇ ))  (13) 

where is the rate of strain tensor A
,T= ∇ +∇A v v      (14) 

and 

 d 1: (
d 2
s s
t T T

) ,k Tµ
= − ⋅∇ + + ∇ ⋅ ∇v A A  (15) 

where by  we denote the projection operator of any vector field to a divergence-
free field, defined in terms of a scalar field r (which coincides with the effective pressure 

( )Π w w

effp p ρ≡ − ⋅g R , where p is the hydrodynamic pressure, as far as its application to Eq. 
(13) is concerned when the appropriate boundary conditions are used for r) as 
 ( )( ) ; ; or  specified on r r r rΠ ≡ −∇ ∆ = ∇ ⋅ ⋅ −∇ ∂w w w n w Ω , (16) 

and HT
s

δ
δ

≡ is the system’s equilibrium temperature.  

 
In this case, the bracket formalism simply confirms these standard equations in transport 
processes [18] for the particular case of fixed boundaries with fixed zero velocity 
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boundary conditions, in which case the appropriate boundary conditions for the scalar 
pressure are  

 ( )( ) = =0 on p
t

ρ µ ρ µ ρ ∂
⋅Π − ⋅∇ + ∆ ≡ ⋅ − ⋅∇ + ∆ + −∇ ⋅ ∂Ω

∂
Mn v v v n v v v g n . (17) 

 
When we allow for general momentum boundary conditions at the boundary, the same 
equations apply with the only difference that now in the boundary conditions for the 
pressure one has to suitably modify the normal pressure gradient boundary value to 

reflect the local value of nM
t t

∂∂
⋅ ≡
∂ ∂
Mn which can now be, in general, different from zero. 

 
Formally, for a general functional the 

following general governing evolution equation is obtained for an Eulerian (stationary 
control volume Ω) frame of reference: 

( , , ,..., , , ,...)dV ,F f s s s
Ω

≡ ∫ M M M∇ ∇∇ ∇ ∇∇

 
: ...

d dV
d

: ...Eulerian

f f f
t t tF

t f s f s f s
s t s t s t

Ω

⎛ ∂ ∂ ∂ ∂ ∂ ∂ ⎞⎛ ⎞⋅ + + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎛ ⎞+ ⋅ + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

∫

M M M
M M M

∇ ∇∇
∇ ∇∇

∇ ∇∇
∇ ∇∇

. (18) 

The above expression can be recast into a volume and surface integral, through a straight 
forward integration by parts and application of the Gauss (divergence) theorem, leading 
to the following result 

 

( ) ( )

( ) ( )

( )

( )

...
d dV+
d

...

... ... : ...

Eulerian

f f f
tF

t f f f s
s s s t

f f f
t t

f f
s s

Ω

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
− ⋅ − ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟⎝ ⎠⎛ ⎞ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟− ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞− ⋅ + ⋅ + − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠⋅
∂ ∂

− ⋅ +
∂ ∂

∫

M
M M M

M M
M M M

n

∇ +∇∇ :
∇ ∇∇

∇ +∇∇ :
∇ ∇∇

∇
∇

∇ ∇∇ ∇∇

∇
∇ ∇∇

dA

... ... : ...s f s
t s t

∂Ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞⎛ ⎞⎜ ⎟∂ ∂ ∂⎛ ⎞⋅ + − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

∫
∇

∇∇

. (19) 
 
It is useful to recast Eq. (19) in a form that also takes into account the allowed variable 
variability, namely the divergence-free condition for the momentum.  In that case, we 
need to analyze all volume terms weighting t

∂
∂

M in the above expression.  Then, in 

terms of a “formal pressure”, fp and a divergence-free projection, both characteristic to 
the functional density f 
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( ) ( ) ( ) ( )
... ... f

f f f f f f p
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

− ⋅ − = Π − ⋅ − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠M M M M M M
∇ +∇∇ : ∇ +∇∇ :

∇ ∇∇ ∇ ∇∇
∇

,(20) 
 
we arrive formally to the following expression:  
 

( ) ( )

( ) ( )

( )

...
d dV+
d

...

... ... : ...

Eulerian

f

f f f
tF

t f f f s
s s s t

f f fp
t t

f f
s

Ω

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
Π − ⋅ − ⋅ +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟⎝ ⎠⎛ ⎞ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟− ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞+ − ⋅ + ⋅ + − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠⋅
∂ ∂

− ⋅
∂

∫

M
M M M

M MI
M M M

n

∇ +∇∇ :
∇ ∇∇

∇ +∇∇ :
∇ ∇∇

∇
∇

∇ ∇∇ ∇∇

∇
∇ ( )

dA

... ... : ...s f s
s t s t

∂Ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞⎛ ⎞⎜ ⎟∂ ∂ ∂⎛ ⎞+ ⋅ + − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

∫
∇

∇∇ ∇∇

, (21) 
where now we can consistently identify the bulk (volume) contributions with the standard 
expressions using the functional (Volterra) derivatives:  
 

( )

( )

d dV+
d

... ... : ...

... ... : ...

Eulerian

f

F F F s
t t s t

f f fp
t t

f f s f s
s s t s t

δ δ
δ δΩ

∂ ∂⎛ ⎞ ⎛ ⎞= ⋅ +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞⎜ ⎟+ − ⋅ + ⋅ + − + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎜ ⎟⎝ ⎠⎝ ⎠⋅⎜ ⎟
⎛ ⎞⎛ ⎞⎜ ∂ ∂ ∂ ∂ ∂⎛ ⎞− ⋅ + ⋅ + − +⎜ ⎟⎜ ⎟⎜ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

∫
M

M

M MI
M M M

n

∇
∇

∇ ∇∇ ∇∇

∇
∇

∇ ∇∇ ∇∇

dA
∂Ω ⎟

⎟⎟

∫

. (22) 
This last expression can also be written in a more concise form as  

 

d dV+
d

: ...
dA

: ...

Eulerian

F F F s
t t s t

F F
t t

F s F s
s t s t

δ δ
δ δ

δ δ
δ δ
δ δ
δ δ

Ω

∂Ω

∂ ∂⎛ ⎞ ⎛ ⎞= ⋅ +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ∂ ∂ ⎞⎛ ⎞⋅ + + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎜ ⎟⋅
⎜ ⎟∂ ∂⎛ ⎞⋅ + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

∫

∫

M
M

M M
M M

n

∇
∇ ∇∇

∇
∇ ∇∇

. (23) 

Where the following definitions apply:  
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( ) ( )

( ) ( )

( )

( )

( )

...

...

...

...

...

...

f

F f f f

F f f f
s s s s

F f fp

F f f

F f f
s s s

F f
s s

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

⎛ ⎞∂ ∂ ∂
≡ Π − ⋅ −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂

≡ − ⋅ −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂

≡ + − ⋅ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞∂ ∂

≡ − ⋅ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
≡ − ⋅ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∂
≡ −

∂

M M M M

I
M M M

M M M

∇ +∇∇ :
∇ ∇∇

∇ +∇∇ :
∇ ∇∇

∇
∇ ∇ ∇∇

∇
∇∇ ∇∇ ∇∇∇

∇
∇ ∇ ∇∇

∇
∇∇ ∇∇ ( )

...

...

f
s

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞∂⎜ ⎟⋅ +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠

∇∇∇
. (24) 

 
Now, the governing equations, Eqs. (13) and (15) need to be used in replacing the time 
derivatives for the corresponding field variables within the volume integral in Eq. (24).  
When this happens and use of the Gauss theorem is made to replace all volume integral 
contributions containing complete divergence terms with the corresponding surface 
integral terms, one obtains the following form:  

 9



 

( )( )

( ) ( ) ( )

( )

2 23

d dV+
1d : ( )

2

: ...
dA

: ...

:

e

Eulerian

e
e

F
F

Ft s k T
s T T T
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∇ ∇∇

∇
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δ δ δ

δ δ
δ δ

δ δ
δ δ
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⎜ ⎟∂ ∂⎛ ⎞⋅ + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

∫

∫

∫

g A A
M

qn
M

M M
M M

n

∇ ∇

π

∇
∇ ∇∇

∇
∇ ∇∇

+

, (25) 
where represents the effective stress tensor, defined for an incompressible Newtonian 
fluid as 

eπ

 ,e pρ µ≡ − − +vv I Aπ  (26) 
I is the unit tensor, and is the effective heat flux for which a Fourier law is assumed to 
be applicable: 

eq

 e Ts k T≡ −q v ∇ . (27) 
 
Comparing Eq. (25) against the Poisson and dissipative bracket contributions postulated 
for a non-interacting system, Eqs. (8) and (11), respectively, we can make the following 
important observations.  First, one sees that the bulk terms correspond to the full Poisson 
bracket as given by the second one of the two expressions provided in Eq. (8), except for 
the pressure term that requires use of the Gauss theorem to transfer its contribution from 
the surface to the bulk. However, notice that in addition to those bulk terms we also have 
very specific surface contributions that are needed in order for the Poisson bracket to be 
applicable for interacting systems.  Similarly, regarding the dissipation bracket 
contributions, one sees that in addition to the bulk terms appearing in the original bracket 
provided in Eq. (11), there are now also corresponding surface terms hidden within the 
first one of the two surface integrals appearing in the right hand side of Eq. (25).  In fact, 
in the first integral we have all the new terms that now we explicitly need to include for 
interacting systems in order to restore their consistency to the bulk equations even for the 
simplest functionals.  Moreover, there are additional surface terms, represented by the 
second surface integral in Eq. (25), which contribute only when there are “formal 
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pressure” and/or gradient contributions to the functional F, in addition to time variations 
for the boundary values of the system variables, M, s.  Those terms also provide naturally 
hints for proper additional boundary conditions should the functionals depend on their 
corresponding gradient terms.  Of course, for a non-interacting system, all surface terms 
are identically zero and the expression for the time derivative of the functional F 
provided by Eq. (25) reduces to the previous one established for a non-interacting system.    
 
For the general case, the boundary normal momentum flux has a locally non-zero time 
derivative; however we still have (from macroscopic continuity) the restriction that 

 d A d A 0nM
t t∂Ω ∂Ω

∂∂
⋅ ≡
∂ ∂∫ ∫
Mn = . (28) 

Therefore, in general, the surface integral in Eq. (22)may give a nonzero correction even 
for functionals for which there is no dependence on gradients, unless the corresponding 
value of the correcting “formal pressure” field fp is specified to be constant at the open 
flow boundary.  In fact, it is in this way that one can show what this value has to be to 
regain consistency between the abstract (i.e. in terms of the Volterra derivatives) and 
analytical (i.e. in terms of the partial derivatives) expressions for the time derivative of 

the functional dF
dt

.  By continuity, we propose that this constant boundary value 

condition is the appropriate one to use in order to remove the indeterminacy even when 
the time derivative of the normal momentum surface flux is everywhere zero.  Thus, we 
fully defined the corresponding projection operator (with the only remaining trivial 
indeterminacy, that of the constant fp surface value, paralleling that of the pressure in an 
incompressible flow field). 
 
Another expression that directly follows from Eq. (25) is the one obtained through the 
application of Reynolds theorem [18] for the Lagrangian time derivative of the functional 
defined on a, generally variable, material volume 
 

[ ]

( ) ( )

d d dA
d d

1: :
2

dA

: ...

Lagrangian Eulerian

e
e

e
e

F F f
t t

F F F k FT T
T s T T s

F Ff
T s

F F
t t

F
s

δ δ δ µ δρ
δ δ δ δ

δ δ
δ δ

δ δ
δ δ
δ
δ

∂Ω

Ω

∂Ω

⎛ ⎞ ⎛ ⎞= + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞= − + ⋅ + ⋅ + + ⋅⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⋅ + ⋅ + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∂ ∂⎛ ⎞⋅ + + +⎜ ⎟∂ ∂⎝ ⎠⋅

∫

∫

∫

n v

q g A A
M M

qn v
M

M M
M M

n

π ∇ ∇ ∇ ∇

π

∇
∇ ∇∇

∇

dV+

dA
: ...s F s

t s t
δ
δ

∂Ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟∂ ∂⎛ ⎞⋅ + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

∫ ∇
∇∇

, (29) 
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Eq. (29) has an aesthetically pleasing form involving clear contributions to the time 
changes of a functional from both bulk and surface terms.  Those can be easily shown to 
be fully compatible will all standard macroscopic equations for a fully interacting system 
which can be easily derived from it through appropriate selections of the functional 

corresponding to a homogeneous system and at zero velocity field (no gradients).  For 
example, when 
F

F H= , we get the first law of thermodynamics for a closed but 
interacting with the environment system, with the only bulk terms surviving that 
corresponding to the action of the gravity and the two surface terms corresponding 
clearly to the rate of surface work and the heat flux, respectively:  

 
( )

( )

dH dV
d

dA
Lagrangian

e e

t
ρ

Ω

∂Ω

⎛ ⎞ = ⋅ +⎡ ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠

⋅ ⋅ + −⎡ ⎤⎣ ⎦

∫

∫

v g

n v qπ

. (30) 

 
Similarly, when we take and at the end we combine the information from 

all components, i=1,3, we can get the expression of Newton’s second law of motion for a 
closed but interacting with the environment system, with the only bulk term surviving 
that corresponding to the action of the gravity and two surface terms corresponding to the 
action of surface forces at the flow boundary by the pressure and viscous stress, 
respectively:  

dV,iF M
Ω

= ∫

 

( )
( ) [ ]

( ) ( )

d dV
dV dA

d

dV dA

e

Lagrangian

t

p

ρ
ρ ρ

ρ µ

Ω

Ω ∂Ω

Ω ∂Ω

⎛ ⎞
⎜ ⎟ = + ⋅ +⎡ ⎤⎣ ⎦⎜ ⎟⎜ ⎟
⎝ ⎠

= + ⋅ − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∫
∫ ∫

∫ ∫

v
g n vv

g n I A

π
. (31) 

 
Finally, in the case when F S= , we can easily see the non-negative coefficient 
multiplying the last term in Eq. (25), F

s
δ

δ , to be only bulk term surviving providing us 

the local rate of entropy production, consistent therefore with the second law of 
thermodynamics.  This term together with a surface integral accounting for the 
contribution of the entropy from the heat received from the boundary:  

 

dS 1 : dV
d 2

1 : dV
2

e

Lagrangian

k T T s
t T T T

k k TT T
T T T

µ

µ

Ω ∂Ω

Ω ∂Ω

⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + ⋅ + ⋅ + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞= + ⋅ + ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

∫ ∫

∫ ∫

qA A n v

A A n

∇ ∇

∇
∇ ∇

dA

dA

⎦

⎤
⎥
⎦

. (32) 

 
In fact, this consistency automatically arises when the governing field equations are 
obtained using the generalized bracket approach, thus demonstrating its usefulness, and 
completeness, in the description of the dynamics (and its interactions with the 
environment) for complex systems with internal microstructures.  This analysis therefore 
nicely complements the extensive analyses for non-interacting systems, as is to be found 
in [8] and [11] as well as the very recent analysis for open systems [15] where the 
presence of surface excess variables is also taken into account.  In fact, in relation to 
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those systems (i.e. with surface excess variables), suffice to say that the present work 
fully elucidates and identifies the mixed terms surface integrals appearing in the brackets 
in these cases with the first surface integrals, coupling the Volterra derivatives with the 
corresponding boundary fluxes, appearing in the right hand side of Eq. (25).  
 
Conclusions 
 
We have shown that the information content within the governing equations for the field 
variables, like equations (13) and (15) for this example, are complete, i.e., contain all 
necessary information to construct the corresponding evolution equations for any 
arbitrary functional of the field variables, interacting or non interacting with the 
environment.  When we have a non-interacting system, those equations are exactly 
equivalent to the original bracket equations.  When there are however interactions, the 
bracket equations are considerably different as specific flux terms need also to be taken 
into account in surface integral expressions in addition to bulk integral contributions.  
The surface integral terms allow for the proper interpretation of more complex bracket 
expressions existing, for example, in the case where surface excess variables are present.   
 
Correct usage of the full interacting system functional evolution equation also requires 
the proper definition of the Volterra derivatives, which need special care when 
constraints are to be taken into account, as for example is the case in the presence of the 
incompressibility assumption.  Special care needs also to be exercised whenever the 
functional depends explicitly on gradients of the variables.  Finally, for suitable choices 
for the functional, the corresponding functional evolution equations can directly provide 
us with all the thermodynamic and mechanical information for the system, including the 
first law of thermodynamics for open systems (when F H= ) while the selection 
F S= duly confirms consistency with the second law.  
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APPENDIX 
 
Compressible Flow of a Newtonian viscous fluid with non-local interactions. 
 
The Poisson bracket for an ideal (Euler) compressible fluid in the absence of any 
interactions with the environment is given, similar to the expression for an 
incompressible fluid, Eq. (8), as:  

 

{ }, d

dV

dV

H F F HF H

H F F H

H F F Hs
s s

δ δ δ δρ
δ δρ δ δρ

δ δ δ δ
δ δ δ δ

δ δ δ δ
δ δ δ δ

Ω

Ω

Ω

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅ ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
V

⎡ ⎤⎛ ⎞ ⎛ ⎞+ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞+ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

∫

∫

M M

M
M M M M

M M

∇ − ∇

∇ − ∇

∇ − ∇

. (33) 

 
Similarly, the dissipation bracket for a viscous compressible fluid is provided through a 
generalization of the expression for an incompressible one, given by Eq. (11), as:  
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M M

∇ ∇

∇ ∇

∇ ∇

V

, (34) 

where is the system’s Newtonian bulk (or dilatational) viscosity [18].  Finally, the 
expression for the Hamiltonian is assumed to be provided by a generalization of the one 
given before, in Eq. (12), as:  

κ

 ( )
2

, ; dV
2
MH eρ ρ
ρΩ

⎛
= − ⋅ +⎜

⎝ ⎠
∫ g R Rs

⎞
⎟ , (35) 

where, for the sake of generality, in addition to introducing a dependence on the mass 
density into the internal energy, e, of the system, we also assume here the possibility of 
non-local effects denoted through an explicit special dependence of the expression for the 
free energy density.  Such cases can arise, for example, at the adjacency of a fluid with a 
surface, as shown in [19-20].  
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Corresponding to Eqs. (33), (34) and (35), one can then get the governing PDE’s for a 
compressible fluid using the standard procedure of equating the right hand sides of the 
time evolution for a general functional as they arise a) from a straightforward application 
of the chain rule of differentiation and b) the use of Eq. (9), as explained in [8], as:  

 ( )d ,
dt
ρ ρ= −∇⋅ v  (36) 

 

 ( ) ( ) ( )
, ,

,v e
s s

e ep
t t ρ ρ

ρ
ρ ρ ρ

∂∂ ∂
≡ = − ⋅ − + ⋅ + − = ⋅ + −

∂ ∂ ∂ ∂
vM vv g g

R R
∇ ∇ ∇ σ ∇ π

∂  (37) 

and 

 ( ) ( ) ( )
2 23d 1:

d 2
s s k
t T T T

κ µµ −
= − ⋅ + + ⋅ + ⋅ ∇v A A v∇ ∇ ( ) ,T∇  (38) 

where is the viscous stress tensor vσ

( )2
3 ,v µ κ µ≡ + − ∇⋅Α vσ      (39) 

and represents the total effective stress tensor, defined here for a compressible 
Newtonian fluid as 

eπ

 ,e p vρ≡ − − +vv Iπ σ  (40) 
with p is the hydrodynamic pressure defined as 

 ( , ; .e ep s e sρ ρ
ρ ρ

)∂ ∂
≡ + −

∂ ∂
R  (41) 

These are exactly the same as the equations found in a standard reference, for example, 
[18], adapted for non-local interactions. 
 
In this case, the formal expression for the time derivative (Eulerian) of any arbitrary 
functional F, , which includes possibly non-local effects but not 

any dependence on higher derivatives, is given, through an adaptation of Eq. (23) as: 

( , , ; )dVF f sρ
Ω

≡ ∫ M R
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∇ π

∇ ∇ ∇

∇ − π ∇ ∇

)T

( ) ( )

( ) ( )

,
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dV+

:
2

dA

s

e
e e

F e

F k T T
s T T T

F F F
T s

ρ

δ ρ
δ

κ µδ µ
δ

δ δ δ
δρ δ δ

Ω

∂Ω

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎜ ⎟⎛ ⎞∂⎜ ⎟⋅ − +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎜ ⎟
⎜ ⎟−⎛ ⎞

+ ⋅ + ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎡ ⎤⎛ ⎞⋅ − ⋅ + ⋅ + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫

∫

g
M R

A A v

qn j
M

∇ ∇ ∇

∇ π
,(42) 

where ej is the effective mass flux: 
 e ρ≡j v . (43) 
 
Again, straightforward application of this equation for various functionals (i.e. 

, etc.), can give us well known equations pertaining to Thermodynamics 
and Mechanics, in parallel to the ones described above for an incompressible flow 
system. 

, ,F H M Sα=
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