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Abstract 
 
We review here recent developments in nonequilibrium thermodynamics and their applications to rheology. 
In particular we review the application of the dissipative Hamiltonian formalism to incompressible, 
homogeneous and isothermal flows of flexible polymer systems.  We show not only the advantages that 
have been brought up by the nonequilibrium thermodynamics approach but also exactly where the actual 
contributions are in combination from a variety of specific modeling examples ranging from simple, one 
conformation models to most recent coupled multivariable examples.  In all cases, special attention is paid 
to convey the physical significance of the models through a close association to a more detailed 
microscopic interpretation.   
 

1. Introduction 
 
In the last 20 years significant progress has been accomplished in establishing a firmer theoretical basis for 
the description of dynamics in dissipative media [Kauffman, 1984; Morrison, 1984; Grmela, 1984] upon 
which transport phenomena and, in particular, rheology can be founded.  The new formalisms that have 
emerged can be described collectively as dissipative Hamiltonian or generalized non-equilibrium (or 
irreversible) thermodynamics approach as they can be viewed either as extending the traditional 
Hamiltonian dynamics of conservative (reversible) systems (see, for example, [Arnold, 1978; Abraham and 
Marsden, 1978; Marsden and Ratiu, 1994]) by adding dissipation, or (equivalently) as generalizing the 
more traditional irreversible thermodynamics descriptions (based primarily to the Onsager [1931a; 1931b] 
and Onsager-Casimir [Casimir, 1945] relations---see, for example, [Prigogine, 1955; de Groot and Mazur, 
1962]) adding further structure to the velocity-internal variables connection describing convective (in 
general, reversible) phenomena---i.e. generalizing the material derivative.  Either way, the new formalism 
leads to a beautiful separation of the dynamic equations into a reversible and an irreversible component: 

 
rev irr

dx dx dx
dt dt dt

   = +   
   

 (1) 

where x represents any variable of the system (like mass, momentum, entropy densities, as well as internal 
variables) and the subscript rev, irr denotes reversible, irreversible phenomena, respectively.  It is in the 
structure present in the forms describing those reversible and irreversible changes that the advantage of 
using nonequilibrium thermodynamics-consistent expressions lies. 
 

The new descriptions incorporate explicitly both reversible (manifested primarily as convective) and 
irreversible phenomena, as opposed to previous attempts that focused on special limiting cases such as 
Hamiltonian dynamics (reversible phenomena [Arnold, 1978; Abraham and Marsden, 1978]), or 
irreversible thermodynamics (irreversible phenomena [Onsager, 1931a,b; Progogine, 1955; DeGroot and 
Mazur, 1962]).  Thus, all the structure developed in these formulations can be carried over in the new, 
while, simultaneously allowing for a wealth of new phenomena to be investigated in a systematic way.  
Another innovation as opposed to previous attempts to generalize nonequilibrium thermodynamics is that, 
in general, in the new approaches equal emphasis is placed in the underlying physics as well as in the 
mathematical formalization (the latter, for example, was the main emphasis of several previous modeling 
efforts, such as, for example, the axiomatic foundation of continuum mechanics [Truesdell and Toupin, 
1960; Coleman and Noll, 1963; Truesdell and Noll, 1965]).  Indeed in the dissipative Hamiltonian 
approach special emphasis is placed in the underlying physics and the desirability to provide results of 
relevance to the engineering practitioner and therefore to bridge the theory with practice.  As such, the new 
approach in its relatively short time of development has already spread over several levels of description 
covering anywhere from the atomistic/molecular [Mavrantzas and Öttinger, 2002], through the   
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microscopic [Öttinger and Grmela, 1997; Edwards et al., 1998; Öttinger and Beris, 1999, Öttinger, 1999; 
Fang et al., 2000; Öttinger, 2000a], to the macroscopic [Grmela, 1988; Grmela, 1989; Jou et al., 1988; 
Jongschaap, 1990; Beris and Edwards, 1994; Öttinger and Grmela, 1997; Jou et al., 1999] level.  More 
importantly, these different descriptions are not seen as independent modeling applications but rather as 
simply representations of the dynamics at different length and time scales, with interesting interconnections 
and consistency relations---“coarsening” effects, such as formally achieved, for example, by the general 
projection operator formalism [Öttinger, 1998a].  To demonstrate the universality of the approach, the 
theory has even been cast recently at the quantum level of description [Öttinger, 2000b] as well as in a 
relativistic form [Öttinger, 1998b; 1998c] and it has been applied even to cosmology [Ilg and Öttinger, 
2000].  Last, but not least, several monographs have appeared where the details of the various modern 
nonequilibrium thermodynamics approaches and several of their applications have been exposed [Beris and 
Edwards, 1994; Jou et al., 1996; Jou et al., 2001; Öttinger 2002]---see also the special issue of the Journal 
of Non-Newtonian Fluid Mechanics on this subject [Jongschaap and Öttinger, 2001]. 
 

All those publications discussed above represent just a small sample of the work that has appeared 
until now since the original papers of Kauffman [1984], Morrison [1984] and Grmela [1984] appeared 
where for the first time the foundation of the dissipative Hamiltonian approach was laid down.  Many more 
applications can be found among the references of those works, especially the above-mentioned 
monographs.  In the present review I will try to offer a more end user-oriented description with emphasis 
on a rather narrow field of applications (but of much interest to rheology!):  simple macroscopic 
applications to polymer rheology with the word “simple” used to describe the incompressible, 
homogeneous and isothermal assumptions, typical (but not always!) accompanying traditional rheological 
modeling---see, for example, [Tanner, 2000].  In particular, what I will like to illustrate here are the main 
benefits that a rheology-interested end user can draw, not necessarily an expert in microscopic theory and 
modeling, but rather one who wants to see how the generalized nonequilibrium thermodynamics principles 
apply into the everyday rheology practice (for example, the experimentalist interested in interpreting 
his/her results by fitting them to a model).  In other words, the question that I will like to address here is if 
we are interested in developing and using model equations to describe the rheology of a complex polymeric 
system, to what extent and in what fashion can the application of the above-mentioned new formalism of 
nonequilibrium thermodynamics help?  Hopefully, this modest introduction into the applications of 
nonequilibrium thermodynamics can provide the motivation for a deeper study of the subject leading to 
also other, more complex, applications. 
 

 One advantage of narrowing purposefully the scope of this review is that within the limit of 
macroscopic descriptions several of the newly developed nonequilibrium formalisms are in good agreement 
each other [Edwards et al., 1997] or even merge [Edwards, 1998], as is the case for the one generator 
bracket formalism [Beris and Edwards, 1994] and the two generator GENERIC formalism [Öttinger and 
Grmela, 1997].  In that limit we may therefore use interchangeably the last two formalisms, with the 
understanding that the latter is more powerful than the former as far as microscopic modeling is concerned 
[Edwards et al., 1998].  The other advantage limiting the discussion even more to simple macroscopic 
models, is that the analysis can be further simplified, thus allowing for a simpler “end-user” presentation of 
the key concepts behind the modern nonequilibrium thermodynamics theory.  The end-user modeler 
perspective means the discussion on the description of the governing equations will be tailored to be at the 
more familiar level of the set of partial differential equations typically used to describe transport 
phenomena, refraining from the use of any higher order mathematical structures (like, for example, Poisson 
brackets) which, albeit important and necessary in revealing the inner mathematical consistency of the 
approach, they are not necessarily needed for the theory’s application.  If interest arises for a more in depth 
explanation of the dissipative Hamiltonian description, or when new applications are sought for which the 
building elements of the governing equations have not yet been developed (for the generation of which a 
familiarity with a more in depth structural analysis of the formalism is desirable) one is referred to consult 
one of the monographs mentioned above where a sufficient detailed exposition is available.  In any case, 
the development over the last two decades of many applications, some of which are described here, others 
in the references supplied, has left us with sufficient thermodynamically-consistent forms so that to allow 
for a successful implementation of the theory into the engineering rheology practice without the need to 
assimilate all the details beneath the dissipative Hamiltonian theory. 
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Without doubt getting the proper form for the governing differential equations for the transport 
phenomena is the primary benefit to be drawn from nonequilibrium thermodynamics and by “proper” I 
mean consistent to the principles and constraints that the extended nonequilibrium thermodynamics 
corresponding to the dissipative Hamiltonian theory imposes.  Much of the debate over the last century or 
so, has been on the nature and validity of the nonequilibrium principles and indeed some of that carries on 
to our days [Kestin, 1993; Muschik, 1993].  However, we believe that there is already considerable number 
of successful applications to justify the acceptance, even in an ad hoc basis, of equilibrium thermodynamic 
quantities, like entropy and temperature, under (mildly) nonequilibrium conditions, as well as accepting the 
principle of a local nonnegative entropy production rate.  For example, a working framework can be 
established for the entropy based on the information at hand; see [Jaynes, 1989] for a very clear description.  
Also, there is a plethora of applications to “extended” thermodynamic systems [Sieniutycz and Salamon, 
1992] even to the ecosystem [Sertorio, 1991] and non-equilibrium thermodynamics principles have started 
been discussed in rheology monographs---see also the Appendix of [Leonov and Prokunin, 1994].   

 
In addition, the new nonequilibrium thermodynamics framework brings in the Poisson structure for the 

dynamics of the reversible processes [Grmela, 1984; Beris and Edwards, 1994; Öttinger and Grmela, 
1997].  Extensive evidence has been collected over the years of the prevalence and ubiquity of the 
Poissonian structure in all known conservative phenomena ranging from the smallest to the largest scales---
especially pertinent for the present discussion is the observation for the prevalence of Poissonian (or, 
equivalently, symplectic) structure in electromagnetism all the way from subatomic quantum 
electrodynamics to macroscopic linear optics [Guillemin and Sternberg, 1984].  In addition, there are now 
numerous validations of the dissipative Hamiltonian principles against models with good success to 
engineering practice (and the interested reader is again referred to the references mentioned in the second 
paragraph above).   

 
As a result, we believe that it is fair to say now that the well established generalized nonequilibrium 

thermodynamics principles (such as those behind one of the currently accepted formalisms, like GENERIC 
[Öttinger and Grmela, 1997] represent a collective scientific experience.  The important thing to notice 
then, based on numerous applications, is that this collective experience includes in addition to all the 
previously well established continuum mechanics principles, (such as, for example, the objectivity principle 
put forward (in rheology) by Oldroyd [1950]) additional ones that place further constraints to the accepted 
forms of the model equations.   Those constraints further refine and extend previous ones that have been 
applied to various limiting cases, such as, as mentioned above, Hamiltonian mechanics and irreversible 
thermodynamics.  

 
The two key elements on which the application of the dissipative Hamiltonian formulation is based are 

the Poissonian structure of the reversible dynamics and the Onsager-Casimir structure of the dissipative one 
[Beris and Edwards, 1994; Öttinger and Grmela, 1997].  Then, it is important to realize that those structures 
do not apply to any single one of the governing equations in isolation, but rather to the whole system of 
governing equations, for all the variables of the system, that needs to be dealt together.  In other words, 
individual terms in any one of the equations can arise (and usually do) from other principles, like 
microscopic modeling and continuum mechanics.  The main advantage of the dissipative Hamiltonian 
formalism is in revealing the connection that exists between some of these terms in order to be consistent 
with nonequilibrium thermodynamics.  For example, there is a close connection between the convective 
component entering in the description of the evolution dynamics of an inner variable and the dependence of 
the extra stress of the material on that same internal variable.  It is this consistency that brings all the 
advantage to the end user. It is exactly those items that the present review will tend to emphasize and 
illustrate in example applications.  And, we need to reiterate once more, all this new information, within the 
most general nonequilibrium thermodynamics context as it is presented here, comes in addition to all the 
information which was previously generated by applying more limited criteria.  Such is the case with the 
tensor forms that arise by applying the objectivity criterion traditionally developed within continuum 
mechanics [Oldroyd, 1950] or the inequality constraints on various transport coefficients that one usually 
gets by evaluating expressions of the local entropy production within the context of irreversible 
thermodynamics and then applying the principle of a non-negative entropy production [de Groot and 
Mazur, 1962].   
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Moreover, by construction, the theory allows for a smooth extension on whatever equilibrium 
thermodynamics modeling information one has available into the nonequilibrium regime---see, for 
example, the very illuminating first article on the special issue by [Jongschaap and Öttinger, 2001].  This is 
very important in applications involving polymer systems, for example, where a lot of equilibrium 
information is already available as a consequence of the substantial previous work performed under 
equilibrium conditions.  Rather than throwing away all that information in order to allow a completely 
phenomenological transport theory to develop, such as it was the case until recently, the new approach 
allows for a smooth transition into the nonequilibrium regime preserving and expanding previous 
equilibrium thermodynamics information.  This is only allowed by involving directly thermodynamic 
potential information into the nonequilibrium transport equations.  Last but not least, the new theory allows 
for a seamless integration of model equations described at two different levels of description.  For example, 
diffusion-type equations governing the evolution of the “propagator” function used to describe the chain 
conformations down to the repeating segment scale level, have been successfully integrated within the 
context of the dissipative Hamiltonian approach with phenomenologically-based Oldroyd-B-type 
macroscopical models in order to describe the flow and surface induced deformation of macromolecular 
chains and the rheology of dilute polymer solutions next to a surface [Mavrantzas and Beris, 1999a,b].  

 
However, it is also important to specify here that rather than using the dissipative Hamiltonian 

formalism to a-priori generate model equations one should try to apply the new ideas in order to shape 
suitably an independently developed physical understanding (usually arising from a microscopic modeling) 
building it into the form of evolution equations that are consistent with that formalism.  To facilitate that, 
we provide here several examples where we carefully analyze the physical significance of the various steps 
involved.  It is indeed the close interplay between the formalism and an underlying physical model that 
allows for the development of the final set of model equations, even if those refer to a macroscopic scale, as 
we limit to that our discussion in this work.  Several stages are involved in the model development process.  
First, the proper physics is important in order to appropriately define the number of variables, their 
mathematical type and (very important!) any constraints associated with each one of them.  This 
information alone is usually sufficient to define the reversible dynamics of the variables.  In other cases, 
more complicated, a suitable approximation from a finer model is needed, but, in return the constraints 
imposed by the formalism can be used to prune the suitability of approximations so that the resulting 
approximate equations are still consistent with each other---for a beautiful example of this type of 
application in selecting closure approximations of fourth order moments for the macroscopic modeling of 
the second moment dynamics of liquid crystals see [Edwards and Öttinger, 1997].  Next, it is through 
typically a microscopic model that we can build up the generalized thermodynamic information needed, in 
particular the dependency of thermodynamic potentials (usually the Helmholtz free energy) on the system 
variables.  It is exactly at this stage that all previously available equilibrium thermodynamics information 
can be used, albeit it needs to be extended to also account for nonequilibrium contributions, and this is 
where we are sometimes missing accurate information and a phenomenological analog mechanical model is 
often used ---see however [Mavrantzas and Öttinger, 2002] for a systematic process to generate that 
information from atomistic simulation of polymer melts.  Finally, additional information needs to be used 
regarding the nature of the dissipative phenomena that come into play.  It is usually there where most of the 
information is currently lacking with consequence the use of phenomenological formulae depending on 
adjustable parameters.  However, as the system complexity increases, the number of parameters also 
increases to make the model of little use.  This is the weak point of previous modeling attempts established 
solely at the macroscopic continuum mechanics level.  Instead, the newer applications of dissipatipe 
Hamiltonian formalism (in particular using the GENERIC formalism [Öttinger and Grmela, 1997]) 
circumvent the parameter proliferation problem by operating directly at a microscopic model.   Even at the 
microscopic level use of the dissipative Hamiltonian formalism can be very beneficial, as recent work on 
various reptation models for polymer melts has shown [Öttinger and Beris, 1999; Öttinger, 1999; 2000a; 
Fang et al., 2000].  Again, in these cases, most of the benefit is realized by pruning for the right velocity 
dependences to describe the reversible (convective) dynamics and by establishing a form for the the stress 
expression that it is consistent to the dynamics of the microscopic internal variables.  Eventually one hopes 
for a systematic transfer of information from the microscopic to the macroscopic level even for the 
dissipation, exactly as it is established now regarding the reversible dynamics---see [Edwards, 2002] for a 
recent analysis of a beautiful example of this kind pertaining to polymeric liquid crystals.  
 



 5

For this review, for illustration purposes, we will limit ourselves to a discussion of the application of 
dissipative Hamiltonian dynamics to the simplest “complex fluid” modeling cases, i.e. for macroscopic 
models of incompressible isothermal homogeneous polymer systems.  Moreover, deliberately we focus our 
attention to few well studied systems of (flexible) polymer solutions and melts, in an effort to establish 
patterns and correlations between various models and thus better explain and illustrate the benefits from the 
application of the dissipative Hamiltonian approach.  In so doing, regrettably quite a number of significant 
advances, of importance to polymer rheology are left out, despite the significant (and many times crucial) 
contribution taken from nonequilibrium thermodynamics.  Such are, for example, the cases of stiff 
polymeric systems (in particular, polymeric liquid crystals---see Ch. 11 in [Beris and Edwards, 1994] and, 
for more recent contributions, [Edwards et al., 2002]) as well as the cases where multiple transport 
phenomena (such as diffusion and flow---see [Beris and Mavrantzas, 1994; El Afif and Grmela, 2002]).  
However, discussion also of these issues (some of which are still under active development) would have 
extended considerably the present review and also increased its level of mathematical sophistication; thus 
those subjects are deferred for a future separate review.  The remainder of the paper is constructed as 
follows.  In the next session, a discussion on the variables selection, the starting point to any modeling 
effort, is presented.  Section 3 then presents a review on applications to single internal mode polymer 
rheology models.  Section 4 reviews multiple internal variable applications to polymer systems rheology 
with emphasis to cases where the variables are coupled.  Finally, section 5 has our conclusions and some 
thoughts on possible future developments. 
 

2. Variables selection 
 

The starting point of any modeling effort is the identification of the state variables, i.e. the (field) variables 
used to specify the state of the system under investigation.  In traditional transport phenomena, i.e. when a 
structureless medium is modeled, those variables are the system mass density, ρ, the (mass-averaged) 
velocity vector, v, the temperature, T, and N component concentrations, ci, i=1,...,N for an N-component 
mixture [Bird et al., 2002].  However, when a complex medium is to be modeled, such as a polymer 
solution or melt, additional variables (so-called inner variables [Prigogine and Mazur, 1953; Muschik, 
1990; Kestin, 1993]) are necessary in order to describe its inner structure and, in particular, the coupling 
between the flow-induced structure evolution and the structure-induced changes in the transport 
phenomena.  Depending on the description level (and therefore the complexity) of the modeling effort, 
those variables can be continuous fields over an extended space.  Indeed, at the microscopic level of 
description, the inner variables span, in addition to the regular 3-dimensional geometrical space and time, 
an inner conformational space typically of high dimensionality (such is, for example, the case of the 
distribution function of macromolecular Kramer N-bead/rod chains, spanning a 3*(N-1)-dimensional 
conformational space [Bird et al., 1987]).  On the other hand, under suitable assumptions (for example that 
of a Gaussian (bell) shape for the distribution function [Sureshkumar and Beris, 1995]) or when a closure 
approximation is used to close the first one (or first few) of a set of moment equations, it is sufficient to use 
as inner variables one (or more) moments of the internal variable distribution function.  Those moments 
then become macroscopic fields extending over space and time alone, exactly like the more traditional field 
variables (i.e. density, velocity etc) that we discussed above.   
 

Rheological models involving only macroscopic variables are much easier to use in complex flows 
calculations.  However, we should also note here the significant developments which have taken place in 
mixed finite-element/stochastic numerical methods which have led to efficient computational techniques 
[Hulsen et al., 1997; Wapperom et al., 2000] allowing the use of microscopic models for the simulation of 
complex flows [Wapperom and Keunings, 2001].  The best current methods, based on the use of 
configuration fields [Hulsen et al., 1997] and/or a backward particle Lagrangian method [Wapperom et al., 
2000], have substantially refined the CONNFFESSIT technique [Laso and Öttinger, 1993] which was the 
first one established within a systematic statistical framework allowing for the solution of microscopic 
constitutive equations using stochastic methods [Öttinger, 1996].  Nevertheless, even if those newer 
methods allow solutions readily to be obtained in two-dimensional flow geometries of relatively complex 
shape [Wapperom and Keunings, 2001], the computational and memory requirements are still significantly 
higher the macroscopic continuum models.  Moreover, the additional load makes the use of microscopic 
models prohibitive for more complex time-dependent and three-dimensional simulations, like the direct 
numerical simulations of turbulent channel flow which have just started being feasible with current 
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computational resources using macroscopic viscoelastic models [Sureshkumar et al, 1997].  Indeed, as an 
indication of the acceptable performance of the macroscopic models there we can note in passing that 
simulations of a turbulent viscoelastic flow in a channel with the FENE-P model have demonstrated the 
polymer-induced drag reduction phenomenon and have shown, at least qualitatively, all the experimentally 
observed effects (like the widening of the streak spacing) associated with it for dilute polymer solutions 
[Sureshkumar et al., 1997].  Calculations of this type show that there is strong interest to possess good 
macroscopic models and justify the emphasis of our discussion here on macroscopic models.  Note 
however, as mentioned above, that even with that goal in mind, the physical basis of any work is most 
likely on a microscopic model, from which the macroscopic model is systematically constructed, as this 
represents the most straightforward and least arbitrary (and with the least number of adjustable 
coefficients!) path for a rational macroscopic model development.  It is exactly in this context that the 
dissipative Hamiltonian formalism finds its most usefulness. 

 
Even focusing on macroscopic models leaves considerable room for discussion as for the nature of the 

internal variables selected to represent the system structure in a given problem.  In particular, it is important 
to have a clear understanding, based on the physical interpretation of the internal variables, of their exact 
mathematical nature and of any applicable constraints, as those are crucial in the subsequent development 
of the theory.  For example, exactly as we know that concentration variables make physical sense if and 
only if they are nonnegative scalars, it is also important to specify that, for example, the conformation 
tensor c, typically used to characterize the deformation state of flexible chain molecules, makes only 
physical sense if it is a symmetric and nonnegative definite (i.e. with nonnegative eigenvalues) second 
order tensor.  This type of information is used in properly shaping the details of the corresponding dynamic 
evolution equation to consistently preserve the desired structure and, in fact, it is also associated with the 
well posedness (i.e. the evolutionary character) of the resulting governing equations (see, for example, 
[Joseph, 1990; Beris and Edwards, 1994].  In the past, many numerical schemes failed to provide 
converged solutions because they led to instabilities which were introduced due to a failure to conserve 
numerically the proper mathematical character of the internal structural parameters.   

 
At this point, discussing about the nature of the internal variables, it is also appropriate to mention here 

that in the early years of rheology and under the influence of the analysis of momentum transfer problems 
within simple (i.e. structureless) media, people used the extra stress tensor as an internal parameter of the 
system [Oldroyd, 1950].  Although good insights can lead to equivalent equations in terms of the stress 
variable as well (such is the case for the Maxwell model, for example) the fact is that the extra stress 
variable is an intermediate variable of a rheology model, with any internal conformation constraints only 
implicitly affecting the form of the extra stress tensor.  As a consequence, for example, of the fact that 
when the upper convected Maxwell model is expressed in terms of the extra stress tensor, the requirements 
for a nonnegative definite conformation tensor translate to a more complex criterion in terms of the values 
of the eigenvalues of the extra stress tensor, it took a considerable time until those constraints were 
discovered and as a result it took a long time until the connection was made between the failure to conserve 
the constraint inequalities numerically and numerical instabilities [Dupret and Marchal, 1986a,b; Joseph, 
1990].  In contrast, in the new nonequilibrium thermodynamics formulations, such as the Hamiltonian 
bracket formalism [Beris and Edwards, 1994], one is practically forced to work directly with the structural 
parameters and to specify explicitly all the physically imposed constraints.    

 
In addition, we also need to mention here that the nature of the internal variables also may depend on 

the particular formalism used.  Although it is true that there is complete freedom in the variables nature 
when the most general formalism is used (the GENERIC approach [Öttinger and Grmela, 1997]), this is not 
the case with others.  In particular, with the most restricted EIT formulation, the internal variables are 
defined as fluxes [Jou et al., 1996] whereas in the one generator bracket formalism the internal variables are 
all assumed to be densities [Beris and Edwards, 1994; Edwards et al., 1998].  These restrictions are not 
always limitations but inversely they can be an asset as they provide useful guidelines for the construction 
of the dynamic equations, especially important in complex multivariable representations of many 
simultaneous transport processes [Beris and Edwards, 1994].  In addition, for the simpler problems 
considered here (homogeneous flow problems) any variable characterizing an intensity can be trivially 
transformed into a density through a multiplication with a constant density.  Thus, in the following no 
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special effort will be made to adhere to densities as internal variables, even when the presented equations 
are derived using the bracket approach.    

 
In the following sections we will illustrate the dissipative Hamiltonian approach starting from the 

simplest and moving to the more complicated examples.  Thus, for convenience the more complicated 
elements of the theory will be introduced later, as needed.  In section 3, we will start by first examining the 
impact of nonequilibrium thermodynamics to one conformation models of polymeric fluids, where most of 
the work has so far been accomplished.  Then, in section 4, we will address more complex models 
involving more than one internal variables.  Finally, in section 5, we will close our discussion with our 
conclusions. 
 
  

3. Incompressible, isothermal and homogeneous flexible polymeric systems with one internal 
conformation tensor parameter 

 
We follow here the development presented in Chapter 8 of [Beris and Edwards, 1994] as corrected and 
extended in later works, for example [Leygue et al., 2001].  The general set of variables involves in 
addition to the velocity a single internal variable, a second order positive definite tensor, the conformation 
tensor c.  The governing equations involve, in addition to the zero divergence of the velocity: 
 0∇⋅ =v  (2) 
due to the incompressibility assumption, a general form for the momentum equation: 

 
D
Dt

T
spρ η= −∇ + ∆ +∇ ⋅v v T  (3) 

where ρ is the (constant) system density, D/Dt represents the substantial (material) time derivative, p is the 
pressure, ηs is the (nonnegative) viscosity of Newtonian stress contribution and T is the (symmetric) 
polymeric extra stress.  The polymer extra stress is a function of the internal structural parameter, the 
conformation tensor c, assumed symmetric and positive definite, which, in turn, follows a dynamic 
evolution equation of the general form: 

 ( )D
Dt 2

T ξ
−∇ ⋅ − ⋅∇ = − ⋅ + ⋅ −c v c c v γ c c γ g  (4) 

where ξ is a non affine motion dimensionless parameter, 0 2ξ≤ ≤ , γ represents the rate of strain tensor, 
T≡ ∇ +∇γ v v , and g is a (symmetric) second order tensor, with units those characteristic of the 

conformation tensor divided by time,  modeling the conformational relaxation.  The right hand side of Eq. 
(4) represents one of the two available objective formulations of the material derivative for a second otder 
tensor, the upper convected time derivative, first developed for rheology modeling by Oldroyd [1950].  The 
relaxation parameter g can be interpreted as a restoring force to equilibrium corresponding to the time 
derivative to the right hand side, and it is a function of the conformation tensor c.   
 

Continuum mechanics can provide useful information.  First, we can easily confirm that Eq. (4) is 
consistent to the principle of material objectivity, i.e. we are not introducing any artificial dependence on 
any particular reference system used to calculate our model equations [Oldroyd, 1950; Rivlin, 1980].  
Second, continuum mechanics (and tensor calculus) can help us regarding the mathematical interpretation 
(that can also lead to probable physical interpretations) of the conformation tensor c and its dynamics as 
dictated by Equation (4).  For example, when the dimensionless parameter ξ takes one of its two limiting 
values (0 or 2), the conformation tensor c acquires a contravariant or covariant character, respectively, the 
time evolution of which is described in an Eulerian frame of reference by an upper or lower convected time 
derivative [Truesdell and Noll, 1965; Truesdell, 1984; Jou et al., 2001 (p. 5)], in accordance to Eq. (4).    
Based on this mathematical behavior and the connections (through the mathematical properties) to 
geometry, possible physical interpretations for c can then be established as either a measure of internal 
(elastic) strain or an interfacial surface measure, respectively.  For most polymeric systems then, it is not a 
coincidence that it is the first (i.e. the contravariant character, ξ=0) that it is found to be the most 
appropriate one for applications (see however at the end of section 4 the illustration for an application in 
blends where the second one, i.e. the covariant, is more appropriate to be used).  Finally, we need to 
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mention here that the value of models with 0,2ξ ≠ is still a subject of debate due to the fact that models 
where such a value is used (for example, the Johnson and Segalman [1977] are found to exhibit Hadamard 
instabilities [Leonov, 1999].  However, those may or may not result in a catastrophic material instability in 
a flow and simply may limit the existance of steady state solutions (as, for example, associated with the 
tumbling seen in liquid crystals [Larson 1990; Beris and Edwards, 1994]). 

 
Kinetic theory [Bird et al., 1987] and network theory [Green and Tobolsky, 1946; Giesekus, 

1985a] have then be used to advantage to connect macroscopic parameters with microscopic ones, for 
dilute solutions and concentrated solutions and melts, respectively.  It is through these works that the bulk 
of the physics can be introduced into the model, with the internal conformation tensor parameter acquiring 
a specific physical meaning, that of the second moment of the end-to-end chain distribution [Bird et al., 
1987] or an elastic deformation strain [Leonov, 1976]. Similarly, through the microsopic theories one can 
build an intuition on the form of the conformational dissipation, g, and in particular the corresponding 
effective relaxation time embedded in there and its relation to the (inverse) of the polymer mobility 
[Giesekus, 1982a,b; 1985b; Bird and deAguilar, 1983].  Also pertinent is the insight gained from the 
microscopic motion within an externally imposed macroscopic flow field of idealized particles, such as 
rigid particles of ellipsoidal shape.  It is through the exact analysis made possible by the model idealization 
of such cases that an understanding of the non-affine character of the motion (manifested, for example, in 
the rotational lag between the particle motion and the surrounding fluid local rotation) can be established 
leading to specific predictions for the value of the non-affine parameter ξ as a function of the particle 
description and the flow characteristics [Jeffery, 1922].  It is through these studies that we have learned, for 
example, to associate the non-affinity to the stiffness of the molecular motion, so this is the reason why this 
is now primarily used for stiff molecular structures, like liquid crystals---see the discussion on Ch. 11 in 
[Beris and Edwards, 1994].  Also pertinent to this discussion is the work of [Edwards and Beris, 1997] 
where the connection of the Poissonian structure for liquid crystals to rigid body rotation is made. 

 
 However, one has to emphasize here that because of the necessary abstractions and approximations 

(sometimes known as “projections” from a higher to a lower dimensionality configurational space) required 
as we move from a microscopic to the more macroscopic model, the correlations between equivalent set of 
parameters are not always uniquely defined.  Instead, what it is most often the most successful strategy is a 
“renormalization” such as, for example, encountered in the modeling of other physical phenomena, such as 
in the renormalization of the electron charge in quantum electrodynamics (this is taken to an extreme: the 
“real” charge cannot be calculated [Feynman, 1961].  For a more pertinent to rheology example, we can 
also refer here to the renormalization of the molecular extensibility parameter as we move from the 
microscopic modeling of the Finite-Elasticity Non-Linear Elastic Dumbbell (FENE), which does not 
possess a closed form second moment macroscopic model to one of its macroscopic projections, the FENE-
P equation.  For a range of flows, such as flow past a cylinder, the FENE-P results corresponding to a 
renormalized extensibility parameter were found much closer to the FENE results, than the results 
corresponding to the same value of the extensibility parameter [van Heel et al., 1998]. 

 
Still, there are questions remaining that can only be answered by looking more closely to the local 

thermodynamics.  In particular, it is of usefulness to separate the reversible from the irreversible 
components of the dynamics, if not for other reason, simply because of the facilitation of further analysis of 
the structure of the equations that can lead to a more appropriate and consistent modeling representation 
(but this is much more useful and fundamental than that, as the following more detailed discussion 
hopefully will indicate).  In this way, we can for example learn to recognize the dissipation components in 
the governing equations (1)-(3).  Those are just three:  The viscous contribution in the momentum equation, 
the non-affine (i.e. with ξ≠0,2) interaction of the velocity with the conformation and the relaxation term g 
in the evolution equation for the internal structural parameter, c.  In addition to the time irreversibility 
associated with the phenomena modeled by these terms, one can recognize specific symmetry constraints 
(see further below) as well as the fact that these are the only terms contributing to the local entropy 
production.  In contrast, the remaining terms in the equations represent reversible effects resulting to a very 
specific form for the velocity contribution---although in the particular case here this is simply reflected in 
the use of the appropriate (for the tensorial nature of c) objective time derivatives, in other cases (see 
below) this observation can have dramatic consequences in the forms that need to be used. 
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Let us now discuss these nonequilibrium contributions in more detail.  First, the nonequilibrium 

thermodynamics framework specifies the form of the functional dependence of the tensors T and g on the 
conformation tensor c in terms of three auxiliary quantities, the elastic contribution to the Helmholtz free 
energy density, ae(c), a Newtonian shear viscosity coefficient, ηs, and a fourth order tensor, the normalized 
relaxation tensor Λ(c): 

 2(1 )T
s

aξ η γ∂
= − ⋅ +

∂
T c

c
 (5) 

 
3 3

1 1

ag
cαβ αβγε

γ ε γε= =

∂
= Λ

∂∑∑  (6) 

the latter relationship shown here in Cartesian component form for clarity.  Notice, for consistency, the 
appearance of the nonaffine parameter ξ in the stress expression.  The auxiliary quantities, a and Λ, have 
very specific physical (thermodynamic) meaning.  The first accounts for the polymer contributions to the 
(extended; i.e. valid also at non-equilibrium) Helmholtz free energy of the system.  Indeed, the total 
Helmholtz free energy, A, is assumed to have the following form: 

 ( )21
2V

dVA v aρ= +∫  (7) 

where V is the volume occupied by the polymer system and the first term in (7) represents the kinetic 
energy contribution.  Various expressions can be assumed to represent the elastic free energy density 
depending on the nature of the polymer phase (i.e, dilute solution, polymer melt etc).  A list of the most 
widely used ones is supplied in Table 1 together, for convenience, with the corresponding expressions for 

the thermodynamic potential a∂
∂c .   

In turn, the fourth order relaxation tensor, Λ, accounts for the contribution to the local rate of the 
entropy production (per unit volume), σλ, of the polymer relaxation process, a purely dissipative process, 
assumed to have the following quadratic form in terms of the gradient of the Helmholtz free energy with 
respect to the conformation tensor (consistent to the Onsager-Casimir linear irreversibility relations 
[Onsager, 1931a,b; Casimir, 1945]): 

 
3 3 3 3

1 1 1 1

1 a a
T c cλ αβγε

α β γ ε αβ γε

σ
= = = =

 ∂ ∂
= Λ  ∂ ∂ 

∑∑∑∑  (8) 

where T is the (assumed constant) temperature.  Alternatively, Eq. (8) can be considered as the starting 
point for the development of the dissipation terms in the evolution equation of the internal variables---those 
terms (at least the simple ones, corresponding to quadratic expressions for the local rate of the entropy 
production in terms of various gradients of the Helmholtz free energy density) can then be easily deduced 
from Eq. (8) considering that the entropy production due to relaxation of c can be also alternatively written 
as: 

 
1: :s a
Tλσ

∂ ∂
= = −
∂ ∂

g g
c c

 (9) 

and then deducing g by comparing Eq. (9) with Eq. (8).  A similar procedure can also be used to deduce the 
corresponding terms in the momentum or other internal variables evolution equations, if present, 
contributed by all present terms to the local rate of entropy production adopted expression.  In such a way a 
more systematic way to develop these terms (and evaluating their consequences to the governing equations) 
has been developed. 
 

Various models can be generated using different expressions for the relaxation tensor Λ.  A 
compilation of some of the most often employed forms can be found in Table 2.  The relaxation 
contribution to the local rate of the entropy production, σλ, is one of the two contributions assumed here (in 
isothermal and homogeneous applications) for the total local rate of the entropy production, σs:  
 s N λσ σ σ= +  (10) 
the other one taken to represent an isotropic viscous (Newtonian) dissipation, σN,: 
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1
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s
N T αβ αβ

α β

ησ γ γ
= =

 
=  

 
∑∑  (11) 

It is exactly the requirement of for a nonnegative rate of entropy production which leads to the constraint of 
nonnegative viscosity (from Eq. (11)) and a nonnegative definite relaxation tensor, Λ, from Eq. (8).  Finally 
we should note here that different models can be constructed by specifying different functional 
dependences for the scalars ηs, ξ, assumed functions of the conformation tensor c, primarily (at a higher 
order there may be a mixing on dependences to the velocity; however, the lower order dependencies are set 
by the Onsager/Casimir expressions as indicated here).   
 

The fairly simple set of equations described here has still quite powerful predictive capabilities, as it 
can be judged from the richness of the expressions for the thermodynamic parameters a and Λ that can be 
used, a sample of which is shown in Tables 1 and 2, respectively.  Indeed, in this way most of the over the 
past several years developed viscoelastic constitutive models can be cast in the general form outlined 
above.  For example, using the expression for the Helmholtz free energy, a, corresponding to the linear 
elastic (Hookean) form from Table 1 and choosing the corresponding expression for the relaxation matrix 
Λ as indicated in Table 2, one can recover the Upper Convected Maxwell, the Hookean dumbbell model 
with hydrodynamic interactions, the Giesekus, the Phan-Thien and Tanner and the Extended White-
Metzner models.  If in addition to the parameters corresponding to the Upper Convected Maxwell model a 
non-zero Newtonian viscosity is chosen, we recover the Oldroyd-B model, if in addition we choose a non-
zero value for the ξ parameter we recover the Johnson-Segalman model (or the Oldroyd-A model if ξ=2).  
Alternatively, keeping the same expression for the relaxation matrix Λ but switching to a different 
expression for the Helmholtz free energy, a, as shown in Table 1, one can also switch to a different model.  
For example, in this way, one can recover the Finite-Extensible Non-Linear Elastic Dumbbell model with 
the Peterlin preaveraging approximation (FENE-P) from the Upper Convected Maxwell.  Additional 
applications also exist in the literature following the above exposed approach.  Where things become 
different (and more interesting) is when additional constraints are used to advantage in order to guide tigher 
restrictions to the models---such is the “volume preserving” constraint, expressed by the requirement that 
det(c) remains constant.  This has been used originally by Leonov [1976] and was later employed within 
the GENERIC formalism to induce further generalizations of the original Leonov model by Aït-Kadi et al., 
[1999]---see also the corresponding entries in Tables 1 and 2. 
 

Going well beyond simply reformulating existing models using the new formalism, the nonequilibrium 
thermodynamics allows automatically for the generation of new models, simply by mixing and matching 
different expressions for the model parameters.  In this way, for example, a new variant for the Marrucci, 
Greco and Ianniruberto (MGI) model [Marrucci et al., 2001] for entangled linear polymer melts has been 
recently developed [Leygue et al., 2001] with much improved modeling predictions.  For example, the new 
expression for the relaxation matrix developed in that model (last entry in Table 2) allows (for α=1) for the 
ratio of the second to the first normal stress coefficients to reach an asymptotic value of 1 at long times 
after cessation of simple shear flow [Leygue et al., 2001], exactly as seen in detailed experimental 
observations [Kalogianitis and van Egmond, 1997].  Moreover, the consistency required between the stress 
and the evolution equation (expressed here in the specific dependence on parameters, like the non-affine 
parameter ξ (see Eqs. (4) and (5)) also results in a significant improvement of the predictive capabilities of 
the model, as also demonstrated with the variant of the MGI model developed within the nonequilibrium 
thermodynamics framework [Leygue et al, 2001] as, for example, seen in the comparison for the 
predictions for the transient expressions for the two normal coefficients in shear flow with experimental 
data [Kalogianitis and van Egmond, 1997].  Finally, there is still the possibility for further improvements if 
the new generalized deformation scale of Milner [2001] is employed---however, this still has not been used 
in connection with the improved MGI model.   
 

With this opportunity we need to note here that a slightly more general form of the evolution equation 
for the conformation tensor is used in order to represent the Convective Constraint Release (CCR) 
mechanism incorporated in the MGI model [Marrucci et al., 2001] within the nonequilibrium 
thermodynamics framework [Leygue et al., 2001].  This more general set for the evolution and stress 
equations (which also corrects, for the general case where L lacks the symmetry (αβ↔ γε), an equivalent 
expression originally proposed in [Beris and Edwards, 1994]) has as follows [Leygue et al., 2001]: 
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−∇ ⋅ − ⋅∇ = ∇ − Λ

∂
c v c c v L v

c
 (12) 

and 

 2 : :T a a∂ ∂
= ⋅ + + ∇

∂ ∂
T c L Q v

c c
 (13) 

where L and Q are two new fourth order tensors, in general functions of the conformation tensor c, also 
obeying the same symmetry properties as the relaxation matrix Λ, as indicated in the caption for Table 2.  
The fourth order tensor L generalizes the non-affine interactions, the previously one (corresponding to the 
Johnson and Segalman model [Johnson and Segalman, 1977]) obtained when we adopt the following value 
for L [Beris and Edwards, 1994] given here in component form: 

 ( )2 a a aL c c c cαβγε γ βε βγ αε ε βγ βε γ
ξ δ δ δ δ= − + + +  (14) 

Notice the similarity between the L and the Λ tensors (in fact for the Johnson and Segalman model, the two 
are proportional to each other, ξ= −L Λ ).  Similarly, the tensor Q generalizes the Newtonian viscous 
response of the system to an anisotropic one, the previously more common isotropic viscous contribution in 
Eq. (5) obtained when we express Q in terms of the isotropic fourth order tensor obtained by suitable 
permutations of the diadic II, where I is the second order unit (delta) tensor, so as to preserve the 
symmetries: 

 ( )2
s

a a aQαβγε γ βε βγ αε ε βγ βε γ
η δ δ δ δ δ δ δ δ= + + +  (15) 

A direct viscous contribution is not necessary for melts, such as that described by the (modified or original) 
MGI model.  There the critical role is played by the CCR mechanism which can be captured if we adopt the 
following expression for the non-affine fourth order parameter L [Leygue et al., 2001]: 

 ( )
1

2

1
2

( , ) :
tr

aJ ∂
= − ∇

∂
cL c v Λ

c c
 (16) 

where the scalar function J represents higher order nonlinearities in the model, acting as a switch from 1 to 
0 when the prescribed expression for L risks violating the requirement for a nonnegative entropy 
production [Leygue et al., 2001].   
 

The availability of a simple expression for the local entropy production rate is yet another contribution 
of nonequilibrium thermodynamic considerations to rheology, of importance even to isothermal flows.  
This expression, provided by Eqs. (8) and (11) for the simple model, generalizes to the following equation 
when the new equations (12) and (13) are used to replace the simpler previous expressions for the 
constitutive equation (4) and the stress, Eq. (5), respectively: 

 
1 T

T
σ = Φ :Ω :Φ  (17) 

where Φ is a generalized potential forces vector 

 ,T a∂ = ∇ ∂ 
Φ v

c
 (18) 

and Ω is a generalized dissipation matrix 

 
− 

=  
 

Λ L
Ω

L Q
 (19) 

As you can see there is a contribution to the total dissipation from the mixed nonaffine terms only if the 
fourth order matrix L is nonsymmetric with respect to an interchange of the first two by the last two indices 
{ } { }αβ γε↔ (something which is satisfied by the simpler model, Eq. (14), but not by the MGI 
expression, Eq. (16)).  Therefore, the need for the use of the switch function J as to prevent a potential 
violation of the nonnegative character of the local entropy production.  Notice that a similar switch function 
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has also been suggested [Marrucci, 2000] from a different ground, namely in order to prevent the 
appearance of a negative effective relaxation time. 
 

In addition, as it is shown in more detail in the chapter 8 of [Beris and Edwards, 1994], information has 
been collected there regarding the mathematical well-posedness of the systems of governing equations 
resulting from the dissipative Hamiltonian formalism and in particular regarding the evolutionary character 
of the constitutive equations and the preservation (upon integration in time of the constitutive equation) of 
the positive definite character of the conformation tensor.  The latter is necessary especially when the 
physical interpretation of the conformation tensor requires its positive-definite character.  Such is the case 
for dilute solutions when the conformation tensor is identified with the second moment of the end-to-end 
distribution function [Bird et al., 1997].  As shown in section 8.1.6 of [Beris and Edwards, 1994] for most 
of the models cast in the nonequilibrium thermodynamics formalism described above the well-posedness 
issues referenced above have be proven to hold whereas it is only with models (such as the White-Metzner 
fluid [White and Metzner, 1963]) which are inconsistent with the formalism that well-posedness fails.  
Whether in general the two (i.e. the nonequilibrium thermodynamic consistency and mathematical well-
posedness) are always following each other it is not known, but there is plenty of evidence that the two are 
at least strongly correlated. 
 

Even non considering well-posedness issues (that may or may not be of importance to calculations) 
there are several advantages already drawn from casting the equations within the general nonequilibrium 
thermodynamics framework presented here.  Some of those have already become evident as we were 
explaining the proposed equations above.  For clarity we repeat them among a more complete list appended 
below: 

1. First of all, it is important to note from the outset that although the formalism-based set of 
either the set of simpler equations (2-4) or even the more general set of Eq. (2) and Eqs. (12-
13) is constructed within the rules of traditional continuum mechanics as, for example, those 
developed by Oldroyd [1950], they represent only a small subset of all the possible equations 
that could have been otherwise constructed based only on the continuum mechanics rules.  
Nonequilibrium thermodynamics does offer therefore specific constraints and it is in those 
constraints that most of the usefulness of the formalism can be found.  Of special importance 
is the consistency relationship between the expression for the stress and the evolution 
equation for the conformation tensor.  For some models, such as the MGI and the 
Encapsulated Dumbbell, application of that relationship suggests corrective terms to be 
applied either to the stress or to the evolution equation, respectively.  In addition, the 
formalism provides guidelines for the primary form of the functional dependence of various 
parameters entering the theory.  In particular, excluding a direct dependence on the velocity 
for the relaxation time and for the elastic part of the Helmholtz free energy, the formalism 
does not allow the original White Metzner model [White and Metzner, 1963; Beris and 
Edwards, 1994].  Instead, by suggesting a direct dependence of the parameters only on the 
conformation tensor, a new model along the same spirit of the original White-Metzner 
approach has been developed, the so-called extended White Metzner model [Souvaliotis and 
Beris, 1992].  This model showed a much better agreement to known experimental trends 
(among other things, a finite extensional viscosity is predicted) using parametric dependencies 
on the conformation tensor of the same complexity (like power-law) than the original White-
Metzner model has on the velocity gradients.  In addition, one can show that this model is 
devoid of the possible instabilities that can occur as a result of the loss of evolutionarity that 
can happen with the White-Metzner model [Dupret and Marchal, 1986b; Verdier and Joseph, 
1989].   

2. Second, although other applications of irreversible thermodynamics can lead, usually after 
considerable manipulation of the formulae, to the same information about the local entropy 
production (like rational thermodynamics [Truesdell, 1984]) those expressions are all 
effortlessly obtained here simultaneously (or even before) with the actual governing 
equations, since the entropy production terms are an inherent part of the formalism, rather 
than a product of subsequent form manipulation.  The expressions for the local rates of the 
entropy production allow to obtain, in addition to the standard inequalities for transport 
phenomena (like a nonnegative viscosity) and relaxation processes (nonnegative relaxation 
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time) more complex inequalities like the one associated with the nonaffine motion 
accompanying the Convective Constraint Release mechanism accompanying the dynamics of 
linear polymer melts [Leygue et al., 2001]. This identification can lead to more physical 
model descriptions devoid of undesirable mathematical instabilities. 

3. Third, the formalism allows for a systematic generation of new model equations through 
analysis and synthesis.  Indeed, by analyzing the governing equations into their convective 
(reversible) and dissipative (irreversible) parts and by expressing the dependences directly in 
terms of the (extended) Helmholtz free energy of the system and its derivatives with respect to 
the field variables as well as in terms of dissipative parameters, one can detect similarities and 
differences between various previously proposed models, such as shown in the data supplied 
in Tables 1 and 2.  Then, through a different combination of those previously identified 
components, or by suitably modifying them, new models can be constructed that potentially 
fit better the experimental data.  For example, the combination of a sophisticated free energy 
expression, such, for example, suggested by  Marrucci for a linear polymer melt, with a more 
sophisticated expression for the relaxation tensor suggested originally by Giesekus [1982a] 
has led to a better description of transient normal stress data [Leygue et al., 2001]. 

4. Fourth, the formalism lends itself to its generalization to more complex model equations 
allowing for different measures of deformation (compare, for example, that used in solutions 
from the melts---see also [Milner, 2001]) or more internal variables (such as, for example, 
multiple mode models) which also exhibit internal coupling (see the section below for 
examples).  It also becomes indispensable when the complexity of the model increases due to 
either the presence of multiple transport phenomena (see, for example, Ch. 10 in [Beris and 
Edwards, 1994]) but primarily when the internal structure becomes more complex, due to 
multiple length (and time) scales (like, for example. with blends [Wagner et al., 1999; Grmela 
et al., 2001], and flows next to surfaces---see [Mavrantzas and Beris, 1999a,b]). 

 
 

 
4. More complex, using multiple internal variables, models for flexible polymeric systems 

 
One obvious generalization of the models discussed in section 3 involves the use of multiple modes of 
conformation [Beris and Edwards, 1994].  Multiple relaxation modes arise naturally from a detailed 
microscopic analysis of the dynamics of long macromolecular chains due to the natural coupling of the 
internal degrees of freedom [Bird et al., 1987].  This analysis is particularly simple in the limit of small 
deformations and in the absence of hydrodynamic interactions where it can be shown that the overall chain 
dynamics can be recovered as the linear superposition of a sequence of discrete vibration/deformation 
modes, each one at specific relaxation time and elastic modulus characteristics [Doi and Edwards, 1986].  
This is the so-called Rouse limit and despite its simplicity it is found to be still pertinent to the dynamics of 
polymer melts---see, for example, [Ferry, 1980].  In general, one can describe phenomenologically the 
small deformation dynamics of any viscoelastic system by the superposition of a spectrum of linear 
viscoelastic responses [Ferry, 1980].  This spectrum of multiple relaxation modes is theoretically 
considered continuum but in practice it can be very well approximated as discrete with few modes, of the 
order of 10 or so.  The spectrum has also been shown to be fully compatible with non-equilibrium 
thermodynamics which can also be used to infer critical properties (like that of the fading memory) [Beris 
and Edwards, 1993].   
 

However, although in a straightforward generalization of linear viscoelasticity to the nonlinear (i.e. 
large deformations) regime, one could simply replace the linear viscoelastic elements with individual 
Upper Convected Maxwell (or other more nonlinear) modes, such a description is obviously not unique 
[Quinzani et al., 1995].  Moreover, for a general flow it is not even guaranteed that it is going to work, even 
as we introduce more adjustable parameters to the models, switching to various nonlinear generalizations to 
the Maxwell model.  Nevertheless, the simultaneous use of a series of, configurationally uncoupled (i.e. 
coupled only through the common flow field), viscoelastic models, is one approach taken in the past in 
order to represent macroscopically the complicated internal polymer dynamics even in the presence of large 
deformations, and has seen some success [Quinzani et al., 1995].  An alternative, but in many ways 
equivalent approach, is to use an integral model based on the weighting of various deformation measures 
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calculated over the past history of each individual fluid element such as the BKZ [Bernstein et al., 1963], 
Wagner [Wagner, 1979], Doi-Edwards [Doi and Edwards, 1978] and other integral models.  Although 
some success has also been made following that route as well, these integral generalizations to the finite 
deformation regime of linear viscoelasticity are also not guaranteed to provide good approximations to 
arbitrary flow fields.   In addition integral models offer, in general, an expensive way of performing 
simulations in complex flows due to the requirement to keep track of previous particle deformation 
histories (although some recent work [Wapperom and Keunings, 2001] has shown promise for two-
dimensional flow simulations, using deformation field evaluations).  
 

The reason why we say that both the use uncoupled multiple differential models as well as the single 
integral models are not guaranteed to work is the neglect of nonlinear interactions that can directly couple 
the conformations of the individual elements considered in the dynamics.  Introducing that coupling 
restores the generality of the modeling, and in as one gets closer to the most general representation of an 
arbitrary viscoelastic dynamic behavior, typically represented by a infinite nested integral expression 
[Truesdell and Noll, 1965].  However, the complexity also increases dramatically.  In particular, 
implementing just the next step towards the most general integral expression, necessitate the presence of 
two nested integral expressions, thus making the already difficult integral calculations even more difficult--
-see, for example, the work of [Vrentas et al., 1991] on integral models with strain coupling.  Therefore, we 
focus here on the other alternative, the coupled multimode differential models.  Introduction of the 
conformational coupling there is much more straightforward.  The first work along those lines is attributed 
to Giesekus [1982b] who just stopped short from applying in practice a proposal to examine the 
possibilities for direct coupling between the multiple conformation tensors.  It also arises naturally within 
the nonequilibrium thermodynamics framework, as more structural parameters are introduced to the model 
[Edwards et al., 1996].  Some examples, where nonequilibrium thermodynamics has been applied to, 
follow. 
 

One of the earlier models where the coupling between two internal structural parameters appears is the 
Marrucci and Acierno model of entangled polymer melts [Marrucci et al., 1973; Acierno et al., 1976a,b].  
This model possesses two internal variables, the (usual) conformation tensor, meant here to represent the 
conformation of the entanglement chains, and an additional scalar variable, the number of entanglements 
per chain, χ.  Thus, in constructing the elastic Helmholtz free energy density, we need to make two changes 
over the more traditional expressions:  First, the relevant reference density is that of the entangled chains, 
thus (1 )n c χ= + , where c is the chain number density.  Second, there is an extra contribution due to the 
entropy of the distribution of the entanglements.  Both changes are reflected in the Helmholtz free energy 
form as it appears in Table 1.  Where the changes are more interesting is in establishing the right form for 
the evolution equations for the internal structural parameters.  In particular, we have found [Beris and 
Edwards, 1994] that in order to get the right dependence of the evolution equation for χ on the stress, a 
general form for the relaxation needs to be used corresponding to a symmetric form for the local rate of the 
entropy production, analogous to the one shown above for the MGM model: 

 
1 T

T
σ = Φ :Ω :Φ  (20) 

where Φ is a generalized potential forces vector 

 ,T a a
χ

 ∂ ∂
=  ∂ ∂ 

Φ
c

 (21) 

and Ω is a generalized dissipation matrix 

 
χ

 
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*

*

Λ Λ
Ω

Λ
 (22) 

where Λ, Λ* and Λχ are relaxation matrices of fourth, second and zero (i.e. scalar) order, respectively. 
Corresponding to this relaxational entropy dissipation we have now the following evolution equations for 
the two internal variables, c and χ, developed following a similar procedure to the one described above after 
Eq. (9): 
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and 
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Although specific forms for the relaxation matrices have also been proposed in [Beris and Edwards, 1994] 
so that the end result is as close to the original model as possible (at least as far as the evolution equation 
for χ is concerned) the important item to note here is that the coupling correction (through the Λ* matrix) 
introduced automatically by the thermodynamic approach to the evolution equation for c is new.   As a 
consequence of the coupling introduced through this term of the two structural evolution equations, Eqs. 
(23) and (24), there is an additional term that needs to be introduced into the original evolution equation for 
c in order to ensure thermodynamic consistency. This contribution and the possibility for a wider selection 
for alternative relaxation components for the primary relaxation matrix Λ among the possible choices 
suggested in Table 2, still remain to be tested in practice as far as potentially considerably improving the fit 
of the Marrucci-Acierno model to experimental data. 

 
A similar in the form differential model for a polymer melt, i.e. based also on two internal parameters, 

one tensor and one scalar, is the pompon (or pom-pom) model, proposed originally by Bishko et al., [1997] 
and McLeish and Larson [1998] for branched polymers endowed with the pompon molecular structure, i.e. 
a main skeleton leading to “fluffy” ends with q side (end) branches each (q > 1).  The breakthrough in 
modeling that system came in the development of two special measures for the polymer deformation:  a 
tensor one, S, representing a scaled polymer skeleton deformation tensor, defined in terms of a (usual) 
second order and symmetric nonnegative definite structural parameter c as a scaled polymer conformation: 

 
( )tr

=
cS
c

 (25) 

of unit trace (by definition), and a scalar parameter representing either the relative deformation, λ, of the 
skeleton over its equilibrium value if it is smaller or equal than q, or, otherwise, the extent to which side 
branches penetrate into the overextended tube surrounding the main branch, 2sc/sb, where sc, sb are the 
molecular weights of the arm that penetrates the main tube and the molecular weight of the entire side arm, 
respectively.  Since the meaning of the scalar variable changes depending on whether λ is equal or not to its 
maximum allowed value, q, it is convenient for modeling to replace it by a more general expression, λ*, 
defined as [Öttinger, 2001]: 

 * H( )c

b

s qsλ λ λ= + −  (26) 

where H represents the Heaviside step function defined as zero if the argument is negative and one if it is 
nonnegative.  By considering separately the stretching along the main polymer backbone from its overall 
deformation and by considering the partial retraction of the end arms into the main tube surrounding the 
polymer, McLeish and Larson [1998] have managed to produce a modified reptation model for polymers 
with the pompon structure that was very successful in reproducing linear viscoelasticity data.  The original 
model was offered in an integral form.  However, to allow for an easier handling of complex flows, 
McLeish and Larson [1998] also developed a differential approximation.  This is the form that was later 
cast [Öttinger, 2001] into the GENERIC formalism [Öttinger and Grmela 1997], thus ensuring its 
thermodynamic admissibility.   
 

It is instructive to show here the key elements of the pompon GENERIC reformulation, albeit using a 
slightly different presentation than in [Öttinger, 2001] (to keep the discussion within the simplified 
nonequilibrium formalism used in this work) that also hopefully allows us to develop a more intuitive 
understanding of the form of the final equations.  Of course, as usual, an additional advantage of the 
application of the nonequilibrium formalism here, as well as everywhere else, is the potential for an 
improvement in the model arising through the substitution of the expression used for anyone of its key 
elements (like the expressions used for the Helmholtz free energy density and the relaxation matrices) with 
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others, potentially more appropriate for a particular application.  Indeed, more specifically for the pompon 
model, generalizations for both these expressions have also been suggested [Öttinger, 2001; Verbeeten et 
al., 2001].    

 
The starting point of the modeling is to see how to properly describe the reversible (convective) 

dynamics of the two internal parameters, c and λ*.  The convective dynamics of the first, the conformation 
tensor c, is, as usual, that described by an upper convected derivative: 

 ( ) T
rev

D
Dt

≡ −∇ ⋅ − ⋅∇
cc v c c v  (27) 

The second variable, λ*, needs more care as far as its handling.  The important thing here is to realize, 
guided by its physical meaning, that since it represents a relative deformation measure it is dimensionless 
and hence modeled by a ratio of the actual length versus a proper reference length.  The other piece of 
information we need to use is the fact that the only relevant physical length scale in the problem is provided 
by the conformation tensor, c, which scales as length square.  Therefore, an internal length scale can be 
constructed by taking the square root of the first invariant of c, tr(c).  In this way, we can analyze λ* as the 
ratio of an absolute length s, (hence representing a proper scalar quantity) and the square root of tr(c): 

 
( )

*

tr
sλ =

c
 (28) 

Knowing then now that the s as a real scalar obeys a reversible dynamics described simply by the regular 
material (substantial) time derivative: 

 ( )rev

Dss
Dt

=  (29) 

whereas c, as mentioned above, obeys an upper convected dynamics, it is straightforward to calculate, 
through application of differentiation by parts, the corresponding reversible dynamics for λ*: 

 

( ) ( )
( )( ) ( )( )

( )

( )( ) ( )( )

1 3
2 2

1 3
2 2

*

*
*

tr
tr 2 tr

1 tr
tr 2 tr

:

rev
revrev

T

T

s s

Ds s D
Dt Dt

D
Dt

λ

λ λ

= −

 = − −∇ ⋅ − ⋅∇ 
 

= − ∇

c
c c

c v c c v
c c

v S

 (30) 

where use was made of the defining relations provided by Eqs. (25) and (28) and the symmetry of S.  It is 
therefore the relative character of λ* with respect to an invariant of a second order tensor that requires the 
additional term in the modeling of the reversible (convective) dynamics and this physical understanding is 
important in order to lead to the proper mathematical description. 
 
 The next step in the modeling involves developing an expression for the reversible component for 
the extra stress, revT .   For that suffice to use the regular expression developed to model elasticity: 

 2T t
rev

a∂
= ⋅

∂
T c

c
 (31) 

where the important item to realize here (emphasized by adding the subscript t to the symbol for the partial 
derivative) is that the partial derivative in the right hand side is a total partial derivative, i.e. to calculate it 
one needs to take into account all possible dependences, explicit as well as implicit (i.e. through the 
dependence on parameters which in turn are functions of c). This last remark is the key to unravel the right 
stress expression for the pompon model since the assumed expression for the free energy expression there 
(see last line in Table 1) involves an explicit dependence on both c and λ*, and we know now, after Eq. 
(27), that the later conceals a dependency on c as well.  Taking that implicit dependency into account, and 
using differentiation by parts, Eq. (31) becomes: 
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( ) ( )

( ) ( )

* * *

*

* *
*

*

, ,
2
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2

T
rev

a a

a a

λ λ λ
λ

λ λ
λ

λ

 ∂ ∂ ∂
= ⋅ + 

 ∂ ∂ ∂ 
 ∂ ∂

= ⋅ + 
 ∂ ∂ 

c c
T c

c c

c c
c S

c

 (32) 

where use, again, was made of the defining relations provided by Eqs. (25) and (28).  Therefore, what we 
see here is that again all the elastic information is passed through the conformation tensor c and it is only 
(again) the relative character of λ* and, by consequence, its implicit dependence on the tr(c), that generates 
an additional contribution to the stress. 
 
 The third step in the modeling involves the expression for the elastic contribution of the Helmholtz 
free energy.  The proposed one by [Öttinger, 2001], listed in the last row of Table 1, can be explained by 
resorting again to the physical interpretation of the internal variables.  For that purpose, let us start by the 
simplest expression for a, that for a Hookean (linearly elastic) dumbbell, used in the Upper Convected 
Maxwell model (first line in Table 1).  Notice that it has two terms, both expressed in terms of a single 
second order nonnegative-definite tensor internal variable, the conformation tensor c.  The first, 
proportional to ( )tr c , models the entropic contribution of the internal degrees of freedom in a chain; the 

second one, proportional to ( )( )ln det c , models the group entropy generated by having a (Gaussian) 

distribution of chains with different conformations.  In the pompon model those two effects (internal and 
group) are represented separately by two different internal variables, the stretching factor λ* and the strain 
measure S.  Guided by the similarities we can then interpret the quadratic function of λ* as replacing the 

( )tr c term, and the ( )( ) ( )( ) ( )( )ln det ln det 3ln tr= −S c c  term as equivalent to the ( )( )ln det c , 

where, again, use is made of the defining equation, Eq. (25) for S.  If in addition we also see the plausibility 
of an additional term, proportional to ln(λ* ), in order to model the group entropy contribution for λ*, and 
the fact that the quadratic expression for λ*, could, in general, change discontinuously (as far as the higher 
than second derivatives are concerned) as λ* crosses the critical value q, (since then the underlying 
interpretation for λ* changes---thus explaining the presence of the Heaviside unit function within the 
quadratic function), all the terms appearing in the expression for the Helmholtz free energy density can be 
understood.  In particular, the expression appearing in Table 1 is the one for which (with suitable choices 
for the relaxation matrices---see next paragraph below) the original McLeish and Larson [1998] model is 
recovered. Albeit a generalization of that expression is, in principle, also possible [Öttinger, 2001], the one 
chosen there enjoys special properties that can, in a way, justify its selection:  the weight of the ln(λ* ) is 
compatible with that of the ( )( )1

2 ln tr c of the first term, again an indication for the implicit dependence 

on c due to the scaling reasons mentioned above; moreover, the quadratic term weighing the heaviside H 
function is exactly the proper one to allow for the zero and first order continuity of a at  λ*=q while 
simultaneously the quadratic term on λ* disappears as λ* > q, still preserving the convex character of that 
expression with respect to λ*.   
 

The last step in the nonequilibrium modeling involves the introduction of dissipative phenomena.  This 
is typically done, at least for melts, with the selection of the appropriate relaxation matrices to describe 
relaxation processes of the internal variables.   This selection follows the assignment for the local rate of 
the entropy production, as explained before.  In this case, this is represented by a general quadratic form in 
terms of the thermodynamic potentials that we can form based on the internal variables of the system.  For 
the pompon model, we have (by analogy to the MGM model---see above) the following form for the local 
rate of the entropy production: 

 
1 T

T
σ = Φ :Ω :Φ  (33) 

where Φ is a generalized potential forces vector defined as 
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 *,T a a
λ

∂ ∂ =  ∂ ∂ 
Φ

c
 (34) 

and Ω is a generalized dissipation matrix 

 
λ

 
=  Λ 

*

*

Λ Λ
Ω

Λ
 (35) 

where Λ, Λ* and Λλ are relaxation matrices of fourth, second and zero (i.e. scalar) order, respectively.  The 
selection of the relaxation matrices, is only limited by the requirement that the corresponding expression to 
the local rate of entropy production to be nonnegative.  Several choices are therefore possible, and for each 
one a different set of constitutive equations arise---see also [Öttinger, 2001].   
 

Corresponding to this relaxational entropy dissipation provided by Eqs. (33-35) we have now the 
following evolution equations for the two internal variables, c and λ*, developed following a similar 
procedure to the one described above after Eq. (9): 

 *

D :
Dt

T a a
λ

∂ ∂
−∇ ⋅ − ⋅∇ = − −

∂ ∂
*c v c c v Λ Λ

c
 (36) 

and 

 
*

*
*: :TD a a

Dt λ
λ λ

λ
∂ ∂

− ∇ = − − Λ
∂ ∂

*v S Λ
c

 (37) 

 
Those reduce to the constitutive equations corresponding to the original McLeish and Larson [1998] 
differential approximation using the following expressions for the relaxation matrices---see also [Öttinger, 
2001]:  

 ( ) ( )
*

1 * 1
3 * *2 3 ; ;

1 (1 ) H( )q qλ
λ

λ λ
−= − − ⋅ = Λ =

+ − + −
Λ c I S I c Λ 0  (38) 

while you should note that different time scales are used in order to render dimensionless the different 
relaxation matrices in the above expression.  Regarding the relaxation matrices, the following remarks may 
also be added.  Although there are choices for the relaxation matrices that can be made in order to recover 
the McLeish and Larson [1998] model, and those choices appear to be thermodynamically admissible, they 
are marginally so, leading to an almost singular behavior, as the limits / 3→S I  and * qλ → + are 
taken, for the relaxation matrices Λ and Λλ , respectively.  Alternatively, one can use different forms for the 
relaxation matrices---see also [Öttinger, 2001; Verbeeten et al., 2001].  An advantage of the use of a more 
general relaxation is the possibility to obtain more realistic values for the second normal stress coefficient 
[Öttinger, 2001; Verbeeten et al., 2001].  However, we also need to mention here that a drawback to a more 
conventional dissipation form may be a qualitative different behavior from that of the integral model (the 
shear viscosity does not exhibit the right asymptotic behavior with increasing shear rate), as the one 
originally observed with a Maxwellian type dissipation (see the discussion following Eq. (30) in [McLeish 
and Larson, 1998]).  However, it may be possible to fix that by adding a CCR term, similar to the one seen 
in the MGI model or further modifying the relaxation matrices, even adding a mixed term.  Whether this 
offers a modeling advantage over the McLeish and Larson model, remains to be seen.  In any case, we 
cannot help but to observe the many possibilities that open once the nonequilibrium formalism is followed, 
which therefore can make the nonequilibrium thermodynamics formalism beneficial even in cases such as 
the present one when the original model is amenable from the beginning to a nonequilibrium 
thermodynamics representation. 
 

A new model that has been developed based on mode coupling is the coupled multimode Upper 
Convected Maxwell [Edwards et al., 1996].  This follows an earlier suggestion by Giesekus [1982b] who 
examined potentially coupling between multimode models, albeit he did not develop that to any specific 
model.  In [Edwards et al., 1996] this idea is developed through the nonequilibrium thermodynamics 
formalism by specifically using multiple conformation tensors, ci, i=1,...,N, each one obeying an evolution 
equation that arises naturally as a generalization of the Upper Convected Maxwell, allowing for each 
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conformation tensor a general relaxation involving, potentially, all modes.  In short, the stress is obtained, 
as in the case of decoupled modes and in linear viscoelasticity, as a linear superposition of elastic 
contributions from all conformation tensors: 

 
1

2
N

i
i

i

a
=

∂
= ⋅

∂∑T c
c

 (39) 

The difference from more traditional (uncoupled) multimode models is in the evolution equation for each 
one of the conformation tensors, allowing for a more general coupling with all the structural parameters: 

 
1

D :
Dt

N
i T i i ij

j
j

a
=

∂
−∇ ⋅ − ⋅∇ = −

∂∑c v c c v Λ
c

 (40) 

where Λij are generalized relaxation (fourth order) matrices, with all the symmetries discussed before and in 
addition, the symmetry i j↔ .  Another constraint that the relaxation matrices have to satisfy is that the 
overall rate for the local entropy production, σλ, stays is non negative.  This is given as a quadratic form in 

terms of the thermodynamic potentials i
a∂
∂c (similarly to previous expressions) as: 

 
1 1

1 : :
N N

ij
i j

i j

a a
Tλσ

= =

 ∂ ∂
=  ∂ ∂ 

∑∑ Λ
c c

 (41) 

This places additional restrictions, especially to the off-diagonal forms.   
 

In [Edwards et al., 1996] the coupled multimode theory has been worked out in more detail in the 
limiting case of two coupled modes. There, in addition to the use of two Maxwellian type (i.e. 
corresponding to the Maxwell model---see first entry in Table 2) diagonal elements Λ11 and Λ22 (with two 
different relaxation times, λ1 and λ2 , respectively), a specific selection for the off-diagonal matrix Λ12 = Λ21 
was proposed: 
  

 ( )12 1 2 1 2 1 2 1 2

1 2 1 22 a a ac c c c c c c c
n nαβγε γ βε βγ αε ε βγ βε γ
θ
λ λ

Λ = − + + +  (42) 

In particular, it was shown that this selection leads to a thermodynamically admissible model when the 
coupling parameter θ has an absolute magnitude less or equal than 1.  As θ spans its allowed range, the 
model predictions vary significantly.  In particular, shear thinning and non-zero second normal stress 
coefficients are predicted, as well as a finite extensional viscosity and overshoot of the shear stress in the 
startup of shear flow [Edwards et al., 1996].  In addition, the corresponding linear viscoelastic spectrum has 
relaxation times which are, in general, different than the primary relaxation times of the conformation 
modes, λ1 and λ2.   
 

Very recently the two coupled Maxwell modes model was used [Edwards et al., 2002] to explain the 
shear thickening behavior occasionally observed in dilute solutions of high molecular weight polymer 
solutions [Vrachopoulou and McHugh, 1987; Kishbaugh and McHugh, 1993a].  In this work of [Edwards 
et al., 2002], the two conformation tensors, c1 and c2, were used to represent the deformed polymer chains 
and the structures developed in the solution as a result of the association of the macromolecular dynamics, 
respectively.  The primary effect of the supermolecular structures is to reduce the effective shear stress with 
the reduction being proportional to their size that changes dynamically with the flow.  The mechanism 
offered therefore in this work for the observed shear thickening in two previous experiments, of 
polypropylene in tetralin [Vrahopoulou and McHugh, 1987] and polystyrene in decalin [Kishbaugh  and 
McHugh, 1993a],  is that, due to the coupling of the two structural modes, the size of the structures 
represented by the second mode goes through a maximum as the shear rate is increased with the 
consequence that its shear-reducing capability goes through a maximum too, resulting therefore in an 
overall shear-thickenning effect after the maximum has been reached.  This is clarifying and considerably 
refining the previous mechanism based on the development of an internal structure, proposed before by 
Kishbaugh and McHugh [1993b].  The innovative component of the (Edwards et al, 2002] work is the use 
of the structural variables of the model to consistently explain both optical (like dichroism and 
birefringence) and rheological data with a fairly good success in representing all the major qualitative 
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trends, provided a mode coupling in used, despite the admittedly crude form of the model involving only 5 
parameters.  However, clearly due to many phenomenological components in the current model and the 
complexity of the phenomenon other mechanisms may still be at play and need to be resolved before a truly 
quantititative understanding emerges.  Thus kinetic effects, controlling the creation and distraction of the 
supermolecular structures may also be important [van Egmond, 1998].  A qualitative modeling of those 
effects has also separately been attempted in the past through Brownian dynamics simulations 
[Hatzikiriakos and Vlassopoulos, 1996] with encouraging results.  Clearly, as more choices are made to 
represent the essential components of the model (like the kinetics governing individual population 
concentrations, as well as for the relaxation, free energy and the coupling between the conformation 
tensors) and in particular as a more solid foundation of the model is built to the underlying microstructure, 
the potential of even more successful applications of the coupled modes model seems to be great. 
 

Other examples also exist in the literature, which can also be analyzed following more or less the 
development put forward before and they keep coming at an accelerating pace.  Here, we will only mention 
one that started from an attempt to use a multimode representation to better capture the behavior of polymer 
mixtures of two (or more) different polymers represented by two or more internal configuration tensors.  
However, in the most interesting of those cases, one of the constituents becomes insoluble and forms a 
separate phase.  Then, in order to appropriately handle those cases we also need to follow the structure of 
the interface and that ended up being the area where most of the effort has so far been spent---see [Wagner 
et al., 1999] and [Grmela et al., 2001] where the GENERIC framework is used to understand the Doi-Ohta 
model of immiscible blends [Doi and Ohta, 1991] and both the Doi-Ohta and the Maffetone-Minale model 
of ellipsoid drops [Maffetone and Minale, 1998].  To successfully pursue that analysis one has to go much 
more in depth with the underlying microstructure to guide the proper mathematical analysis.  It suffices to 
say here that the internal variables that emerge now involve one scalar field Q (representing the total 
interfacial area per unit volume) and a symmetric and traceless second order tensor, q, representing the 
second moment of the orientation distribution of the surface.  The details are complex due to the presence 
of the constraints and the details of the microscopic interpretation for q but the important conclusion is that 
all the physics can properly be taken into account leading again to equations that are consistent with both 
the physical interpretation of the variables and the principles of nonequilibrium thermodynamics.  It is, by 
the way, interesting enough to note here that due to its very different physical interpretation and in contrast 
to the cases referring to the conformation tensor c that we discussed before, it is now the lower convected 
time derivative that emerges as the dominant part governing the reversible dynamics of the internal 
structural parameter, q (the overall reversible dynamics is however more complex than that due to the 
reasons outlined above). Further extensions have also been worked out within the Poisson bracket and 
GENERIC formalism, such as the one involving an additional velocity variable to model independently the 
movement of the interface [Grmela et al., 1998]. 
 

5. Conclusions 
 
In conclusion, it is hoped that through this review I was able to transfer information not only about some of 
the many results in polymer rheology that have already been established with contributions from the new 
formalisms of nonequilibrium thermodynamics, but also and most importantly, about what is the exact 
nature of those contributions.  This is why the subject of the review was limited to only “simple” 
rheological applications in order to allow a more detail description of the modeling process which is 
necessary in order to appreciate the subtle, but still very decisive, help provided by the new formalisms of 
nonequilibrium thermodynamics.  Those formalisms, by systematically analysis the dynamic equations into 
a reversible and an irreversible component, allow to exploit all the inherent structural properties imbedded 
within each one of the two and for which extensive information has already been accumulated to generate a 
substantial degree of confidence for the results.   
 

But the structural properties represent only a scaffolding to build up the modeling edifice, and one that 
in many occasions we willingly throw out from the final form of the final equations.  I believe that is it 
exactly based on that allegory that we also need to finally judge the importance of the dissipative 
Hamiltonian framework.  It is there to help build up and in many occasions support the final building 
model.  Without the underlying physics, typically more and more now based on a detailed microscopic 
model, the building blocks for a robust and efficient macroscopic model simply are not there.  But also 
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hopefully we can see that without the right framework acting as a glue to keep together and strengthen the 
building blocks, the building model may either never be possible to put together or, if it is put together on a 
flimsy basis, it may altogether collapse. 

 
We have seen here applications of contributions from nonequilibrium thermodynamics in a fairly 

limited area, that of the macroscopic descriptions of incompressible, isothermal and homogeneous flexible 
polymer systems.  We discussed only macroscopic applications because at the end, for engineering 
applications, this is what one wants to have, but clearly, the influence of microscopic modeling was clear 
throughout the review.  On the other hand, the limitation in the selection of the applications allowed us to 
go further in depth in the model development process (while simultaneously keeping the necessary 
mathematical complexity to a minimum).  However, this limited selection of topics prevented us to cover 
exciting areas of active research (like polymeric liquid crystals, multiple transport processes, nonlocal (like 
surface-induced) effects, flow-induced phase transitions etc) where many contributions have also been 
made.  There are nevertheless two issues there that make such a coverage problematic:  first, the level of 
complexity is such that any discussion of those areas can be reduced to either heavy mathematics or some 
list of final examples.  We still need working paradigms to bring the level of difficulty down so that more 
researchers can take advantage of the developed tools in those important areas.  Second, those areas are 
also heavily dominated by the microstructure; fluctuations are therefore very important and so is the 
generation and propagation of apparent “discontinuities” (=defects) at the macroscopic scale thus rendering 
both the modeling but also any simulations a very challenging task.   

 
Although there is a lot of progress in developing microscopic models, where fluctuations are more 

resolved, we still need to learn how to effectively transfer that information to more macroscopic levels 
without increasing to unacceptably high levels the complexity of the approach.  Certainly, working on new 
approximation paradigms (through renormalization [van Heel et al., 1998] or additional intermediate 
macroscopic variables [Ghosh et al., 2002]) is a step in the right direction, however, we are still lacking 
working examples for most of the problems of interest.  I expect most of the future advances in exactly this 
area where the same principles that have given us the opportunity to construct physically acceptable models 
at any level can also guide us to efficiently generate bridges between various levels of description.
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Table 1  List of commonly used expressions for the Helmholtz free energy energy density a and the 

corresponding thermodynamic potential, a∂
∂c , with respect to the conformation tensor, c. The 

expressions are provided in dimensionless form.  The free energy is made dimensionless with respect to 
nkBT, where n is a chain number density, kB is the Boltzmann factor and T the temperature, and c is made 
dimensionless with respect to the square of the equilibrium end-to-end chain distance, kBT/K where K is the 
(apparent) elastic constant for the chain’s elastic energy.  In the random flight model, kBT/K=1/3Nl2, where 
N, l is the number, length of repeating (Kuhn) segments [Kuhn and Grün, 1942]. 
 
Model    ( )a c  a∂

∂c  Remarks 
/References 

Maxwell 
Oldroyd-B ( ) ( )( ){ }1

2 tr ln det−c c  11 1
2 2

−−I c  Also called 
Hookean or 
Linear Dumbbell 
model [Bird et 
al., 1987] 

FENE-P ( )

( )( )

21
2 2

1
2

tr
ln 1

ln det

L
L

 
− − 

 
−

c

c
 

( )
11 1

2 2

2

1
tr

1
L

−

 
 

− 
 − 
 

I c
c

 

L represents the 
dimensionless 
maximum chain 
extensibility; L2 
also appears as b 
[Bird et al., 1987] 

Bird and 
DeAguiar 
(modified)  

( ) ( )( ){ }
( ) ( )( )

( )

1
2

3
1

31
2

tr ln det

tr
ln

det
α−

−
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c c
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3( 1)1
tr

2 )

α

α −

 −
− 
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− −

I
c
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α is an aniso-
tropic mobility 
parameter; [Bird 
and DeAguiar, 
1983] 

Leonov 
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1 1

1 2
1 1 1 3 1

33
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; ;

W a a
I Ia a I I I

II
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1 3

12
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W I
a I
W I I
a I

−

−

−

∂
− +
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∂
− −

∂

I c

I c c
 

In is the n-th 
invariant of c; in 
the original 
model I3=1 
[Leonov, 1976] 

Marrucci 
and 
Acierno 
(modified) 

( ) ( )( )( )
( )

1
2

3
2 0

( 1) tr ln det

ln

χ

χ χ

+ −

−

c c
 

( ) ( )11
2 1χ −+ −I c  χ is the number of 

entanglements 
per chain 
[Marrucci et al., 
1973, Acierno et 
al., 1976a,b] 

MGI  
(modified) 
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2ln det
tr

6ln tr ln det
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[Marrucci et al., 
2001; Leygue et 
al., 2001] 

Pompon ( )( ) ( )( ){ }1
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*2 * 2 *
3

2 *

3ln tr ln det

( ) H( )
1 2ln( )

q qλ λ λ

λ
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c c

 

13 1
2 2tr( )

−−
I c
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λ* is an extended 
stretch factor 
[Öttinger, 2001; 
McLeish and 
Larson, 1998] 
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Table 2   List of commonly used expressions for the fourth order relaxation tensor Λ, made 

dimensionless by 2
B

e

k T
nKλ where eλ represents an equilibrium relaxation time and the other 

parameters have been defined in Table 1.  Note that only one of four equivalent contributions to the 
αβγε component is given, the others (represented as [perm.] in the table) arising from the following 
permutations of the original subscripts: αβγε βαγε αβεγ βαεγ↔ ↔ ↔ (this table is adapted 
from [Beris and Edwards, 1990]). 
 

Model 
αβγεΛ  Remarks/references 

Elastic 
dumbbell 
(UCM, 
OldroydA, B, 
FENE-P) 

( )1
2 [ .]c permαγ βεδ +   

Elastic 
dumbbell with 
hydrodynamic 
interactions 

( ) ( )
31

2 4 [ .]
tr tr

c
c h permβε
αγ βε βε

πδ δ
   

− + +        c c
 

12
30 Ih

π
≤ ≤ ;  [Bird 

et al, 1987] 
Modified 
encapsulated 
dumbbell 

( ) ( )
1

2
11 [ .]

tr
c c c permαγ βε αβ γεσ δ σ

 
+ − + 

 c
 

0σ ≥ ; [Bird and 
DeAguiar, 1983] 

Giesekus ( )( )1
2 (1 ) [ .]c c permαγ βε βεα δ α− + +  0 1α≤ ≤ ; [Giesekus, 

1982a] 
Leonov ( )1

3 [ .]c c c c permαε γβ αβ γε− +  [Leonov, 1976] 

Phan-
Thien/Tanner 
(linear) 

( )( )( ) ( )1
2 1 tr 3 [ .]c permαγ βεε δ+ − +c  [Phan-Thien and 

Tanner, 1977] 

Extended 
White/ Metzner ( )1

2 *
1 2 3

1 [ .]
( , , )

c perm
I I I αγ βεδ

λ
+  

λ* is a dimensionless, 
positive function of the 
invariants of c; for 
example, λ*=K(I1)k  
[Souvaliotis and Beris, 
1992] 

Leygue, Beris 
and Keunings ( )1

2
1

21
2

tr
(1 ) [ .]

3
c c c permαγ βε βεα α
  
  + − +

    

c
 

0 1α≤ ≤ ; [Leygue et 
al., 2001] 

 
In the remarks column a number of sufficient conditions known to assure the non-negative character of 
the relaxation dissipation are listed (see [Beris and Edwards, 1994] for more details regarding their 
derivation). 
 
 

 
 

 
 

 


