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In this part, the general formulation described in Part | is applied to the modeling of the behavior
of a dilute polymer solution near a purely repulsive, planar solid surface, i.e., near a noninteracting
wall. The static equilibrium problem is considered first. The model equations here reduce to a
minimization problem for the Helmholtz free energy of the system, which results into the well
known equilibrium condition that the chemical potentials of all chain conformations in the
interfacial area should be equal to each other. The numerical results show that the loss of polymer
conformational entropy in the interfacial region gives rise to a strong polymer depletion which
extends up to a distance about three times the equilibrium root-mean-square polymer end-to-end
distance. Next, the problem of a polymer solution flowing past the wall is investigated. Here, the full
model equations need to be considered; these are solved numerically with a spectral collocation
technique. The numerical results show that the flow field enhances polymer depletion phenomena
near the wall relative to those observed under equilibrigtatio conditions: By increasing the
shear stress, the polymer concentration in the interfacial area decreases, in full agreement with
available experimental data. Moreover, the flow field is found to affect significantly the chain
conformations near the wall: The applied shear stress is seen to extend the chains along a primary
direction, ¢, and to depress them in the transverse directipnThe depletion of the interfacial
region in polymer molecules is further seen to lead to the formation of a boundary layer close to the
wall, where the macroscopic fluid velocity increases rapidly from its zero value exactly at the wall
to its asymptotic bulk profile, resulting into an apparent macroscopic slip at the wall. The
theoretically calculated slip coefficient is found to be of the same order of magnitude with the
experimentally measured one, as reported in the literature for a dilute polymer solution of
polymethylacrylate flowing near a glass surfdee Mueller-Moehnssert al, J. Rheol.34, 223

(1990]. © 1999 American Institute of Physids$0021-960809)50801-5

I. INTRODUCTION thermodynamics of the chain conformation. In return, the
chain conformation changes in response to changes in the

In Part {* we have addressed the problem of modelingvelocity and concentration field. The single, most important,
the behavior of a polymer solution over a solid surface undeguantity describing these macro—micro interactions is seen to
both equilibrium(statig and nonequilibrium(flowing) con-  be the generalized propagasf, accounting for the distri-
ditions. The analysis was based on the Hamiltonian formupution function for the chain end-to-end vector under flow
lation of transport phenomefid in systems characterized by conditions, used in the definition of the system Hamiltonian.
a Complex internal microstructure in the framework of the The present approach presents a refinement of our pre-
generalized bracket formaliS?nln particular, in Part | we vious WorH-O on s||p phenomena deve|oped during the flow
showed how to systematically account for the presence ahf polymer solutions near a noninteracting surféaewall),
multiple length scales by deriving macroscopic equationgyhere a Gaussian form had been assumed for the distribution
which couple, through the use of selected internal field varifynction for the chain end-to-end distance vector everywhere
ables with the system microstructure. This hierarchical api the flow domain, even at microscopic distances from the
proach is shown to lead to a natural coupling of the macroyq)|. Here, this assumption is removed, and instead, a self-
scopic flow equations with the microscopic chain consistent mean-field approach is followed, based on the ran-
conformation, through the system Hamiltonidnin particu- g4 flight chain model, which allows us to describe consis-
lar, we showed that the velocity field and the chain concengenqy chain conformation changes near the wall due to the
tration should vary in response, among other things, of genmacroscopically imposed flow field. This also permits reduc-
eralized forces dictated by the nonequilibrium j . yhe jength scale of analysis of microscopic deformations
from distances commensurate with the average end-to-end
dpresent address: Department of Chemical Engineering, University othain length(which is the minimum length scale for which
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The work is similar to the approach followed by Ploehn perpendicular to the surface, afio) that only one velocity
and Russeét in their study of the conformational properties component is nonzero, the componeqt which according
of a polymer solution near a solid surface under equilibriumto (a) varies only along the direction, i.e.,v,=v,(y), SO
conditions through a continuum model. Although both thethat the flow kinematics is
segment and the polymer chain densignd not only the
segment volume fraction as was done in the Ploehn and Rus-  “x= ¥x(¥).
sel modet!) are used in the present work in the expression _o 2
for the extended free energy of the system, both approaches vy &

aqy Y ; pp

represent the same continuum description of the discrete lat- =0,
tice model of Scheutjens—Fle¥rand they naturally reduce
to that in the limit of very long chains. As we will see, Then the macroscopic governing equations, Ef$)—
however, the present methodology is much more general arld6) of Part I, become as follows: The concentration equa-
fundamental, and allows us to extend these previous workdon becomes
to flowing conditions as well. sh d

. . . i o

As already mentioned above, the single, most important, VIl + —— —_p, ®)
quantity describing the coupling between macro—micro in- gy dy
teractions in our approach is the propaga®r(R+rgy,N where
—1;ry,a@), which shows how the distribution function for
the N-bead long chain end-to-end vecf@ris altered due to . oH; _dh;
the imposed flow field in thg direction, characterized by the =N1e Wle +C 9C
apparent strain tensora. To specify G'(R+rg,N ) )

—1;r,,a), in Part | of the papet,a microscopic model was 1S the osmotic pressure,
invoked, whose equations define the statistics of chain con- oh:

formations near the surface consistently with the imposed ¢=2C. — (5
flow field through the concept of the apparent strain teasor J9C

The apparent strain tensardefines how the conformatiay s the stress tensor, and

of a polymer molecule which has already been altered by the

solid surface is augmented due to the flow field, through  hi(Yo)

h; 4

cC=a-Cya'. (1) poksT
The ’ 1. 1 R _ 1 [nl,e(yO) N }
propagatoG’ (R+rq,N—1;rq,a) defines the probabil =Us— @xs0(Yo) + = N1 e(Yo)IN
ity for a chain with its start at the poimy=(Xo,Yo.Zo) above 2 2 Z(N—1yo)
the boundary to have an end-to-end ved®omiven that the +(1— o(yo)IN(1—@(Yo)) + x@(Yo) (1— ¢(Yo))

apparent strain tensor i&. With the use ofa and G'(R

+ro,N—1;ry,a@), a complete, closed set of macroscopic— 1 » G(R+ro,N—1}yo)
microscopic equations has been derived for the macroscopic 2 N1e(Yo) J'O Z(N—1y,)
guantities of interest, which can be solved numerically as a

function of the imposed flow field. Such quantities include I [G'(R+ro:N—1;YO,a) Z(N—1yo) }d3R

the polymer concentration, the overall polymer chain confor- Z'(N=1yp; @) G(R+rg,N—1;y0)

mation, and the velocity profile in the flow domain near the (6)
solid boundary. The structure of the rest of this paper is as

follows: In Sec. Il, the governing equations are presented fois the internal part of the Helmholtz free energy density. As
a steady-state simple shear flow over a stationary, nonintepxtensively discussed in Partri ((y) and ¢(y) are not in-
acting solid surface. The solution for static equilibrium is dependent quantities but are related to each other through the
presented in Sec. I, mainly for validation purposes but alsdntegral constraint

for comparison with the generélinder flow case which is N—1 1

presented in Sec. IV. The concluding remarks and a discus- _ L ' )

sion of the most significant points are presented in Sec. V. (P(y)_nz::o fo 2 M1e(Yo)G'(Y:NiYo, @)

Z'(N—-1-nya)

II. MODEL EQUATIONS X Y,
Z'(N-1yg.,a) 7%

)
The governing equations consist of the concentration
equation, the momentum equation along the flow and thén Eq. (6) pg is the (constant segment and solvent molecule
shear directionsx andy, respectively, and the three consti- number densitykg the Boltzmann’s constant, the tempera-
tutive equations for the three unknown components of theure, ug the adsorption energy of a solvent moleculekygT
conformation tensoc,,, c,y, andc,,. To get the final form  units, ¢ the polymer segment surface fraction representing
of these equations, it is always helpful to keep in mind twothe chain segments adsorbed to the surfétcis zero when
things:(a) That all variables, i.e., the chain-end number den-no polymer adsorption takes placg, the surface energy of
sity n, ., the velocityv, the pressure, and the conformation adsorbed polymer moleculeé(y) the Dirac delta function,
tensorc vary only along one direction, the shear direction andZ’'(N—1y;a) the partition function

Downloaded 26 Jan 2005 to 128.101.10.146. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



630 J. Chem. Phys., Vol. 110, No. 1, 1 January 1999 V. G. Mavrantzas and A. N. Beris

’ s wheren, ,, is the polymer contribution to the viscosity in the

Z'(n,yo; @)= fo G'(y,n;yo,a)dy. (8 pulk (\ being the characteristic relaxation time of the poly-
mer).

Note that in Eq.(6) the nonprimed propagator and partition —The concentration equation becomes

function refer to the static equilibrium valuéise., whena

=1, the unit tensgrof the corresponding primed quantities.

Also note that in the above and the following, whenever the  V, In

symbolsr andry, or their equivalenty andy,, present

dummy variables, they are used interchangeably in the equa- . :

tions y y g y a —The three equations for thghree independent compo-

The x component of the momentum equation becomes nents of the apparent strain tensor become

Nye(y)
Z(N-1y)

B f?fdef:vy
Jdc

c=0. (16)

du, Ifger da Ifger da du
Tyxt 75 g, = CONSt= 7y, 9 . Cyy —2. =C ——, (17)
y da " dCy Y da T dcy, VY dy
where 7 is the solvent viscosity and,, the imposedcon-
stany total shear stress. Ifget da Ifget duy
They component of the momentum equation becomes 2| Cax Cyy Y Ga 3Cyy ~Cyy gy (18)
oh; doy, dp
+ ———"+——=0.
VyH (?y dy dy 0 (10) and
The xx component of the constitutive equation becomes . Moo Oa . Moo da . 9
c ah; te oh; K Nie c duy 11) W oda T dcy, VY da " ey,
TR 19ny_ Po 757 Exy dy

wheref 4 is the density of the flow contributiohy to the

The xy component of the constitutive equation becomes internal free energy density, defined as

) ah; N oh | K Nie duy 12
Cxx Csy Cxy cyy - Po 2 Cyy dy (12) Rges
- : Faer= - —- (20
And theyy component of the constitutive equation becomes le
c ah; c all -0 (13) Since the flow contribution to the internal free energy density
Ve  YVacy, is given by the last term in Ed6), i.e., in scaled units

By subtracting Eq(3) from Eq. (10) it is seen that the
pressurep is constant in the flow field. In addition, one can
readily see from the definition of the stress tensor, 6Gg.
that the left-hand-side of Eq13) is simply the stress com-
ponentoy,; thereforeo,,=0, and this implies that only the
componentsr,, anda,, of the stress tensar are nonzero;
these are needed in calculatifglI. Since, in addition, the
part of the internal free energy which is related to flow de-
formation is a function of the conformation tensothrough G(R+r10,N—1y0)
its dependence on the apparent strain deformation tesasor
and not orc directly, the governing equations need first to bewe find that
transformed from functions af to functions ofe. If all this
is done consistently and the final results are nondimension- » G(R+r9,N—1;yo)
alized, the governing equations take the following dimen-  fae{Yo)=— fo Z(N—-1yy)
sionless form: 70
—The momentum equation along tkalirection becomes

_ » G(R+rg,N—1;yo)
hged Yo) = —N1e(Yo) fo Z(N—1y,)

G,(R+r01N_1;yOla)
Z'(N=1lyp; @)

Z(N—1yo)

XIn

}d?’R, (21)

G,(R"‘ro,N_l;yo,a)
XIn

de Z’(N_laYO;a)
oyt B dy =const= 7y, (149 Z(N—1y,) }ng .
wheref is the viscosity parameter defined as the ratio of the G(R+r0,N—1;yp) ’ 22
solvent contribution to the polymer contribution to the total
viscosity in the bulk (ro=(X0,Y0,Z9) denotes the starting point of the chain
which shows thaf 4 is a function only of the tensce, or
,3=L: s , (15) equivalently ofa, but not ofn;,. In the above and the
Nip Mp.b following, the following scaling has been used and then
Po 5 KeTh overbars are dropped:
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. n ¢ du.  du lem where the flow is identically zero, and Sec. IV deals with
le af X X .
Nie=——, Cog=y7 = o =N, the nonequilibrium flow problem where a constant shear
© Ny kgT' dy dy . . .
: - stress is applied on the solution.
— y ~ 1 kBT 32 - hl
Y= et C'=G7) » M= Ny T’ lll. STATIC EQUILIBRIUM PROFILES
. Po 5 K
K 2 When polymer chains are in contact with a noninteract-
. o ing (impermeablg wall (ys=—«), they experience a de-
oaﬁ,:—aﬁ. (23 crease of their entropy due to the loss of conformations
Mib which cannot survive the imposition of the hard boundar
Po 7 kBT p Y.

The decrease of conformational entropy results in an increase

According to this, distances are scaled with the root-mean®f their free energy, therefore, molecules move away from

square equilibrium end-to-end distance in the bR i.e., the surface to the bulk. In the following sections, this deple-
tion phenomenon will be investigated by solving the model

(kg T equations developed in Sec. Il to the case of a quiescent
Ro= K (24) polymer solution above a solid wall. In this cages | (the
unit tensoy, and the propagatdd’ (R+rq,N—1;y,, @) be-
comesG(R+ry,N—1;yg), i.e., it reduces to its static equi-
librium form. To calculateG(R+rq,N—1;y,), we solve the
Nip corresponding diffusion equation th@tsatisfies, Eq(20) of
Go=po > kgT. (25  Partl.
The description of polymer conformations through a dif-
With this scaling, the characteristic velocity for our systemfusion equation dates back to the pioneering work of
of equations is defined by the ratio Bf, over\: Chandrasekhat on the problem of random flights. In its
R original formulation this problem is described as follows: A
,,O:_Ol (26)  particle undergoes a sequence of random displacements
A Ar=ri—rq, Ary,=ro—rq,..., Ary_1=rny_1—In_2, the
With the exception of the concentration equation, Eq.Magnitude and direction of each one of which is considered
(16), which is an ordinary differential equation, all other O be independent of all the preceding ones. The probability
equations are algebraic. However, even the concentratiofiat the position after theth displacement lies in the open

equation can be cast in an algebraic form if we make th@pherelr—ri|<_dri is determined by the same unknown dis-
approximation that tribution function assigneda priori. Then the following

question is asked: What is the probabil@y 1G(r,n;ry)dr
(whereZ is a normalization factgrthat aftemn displacements
the coordinates of the random walker lie in the open sphere
[r—r,|<dr,? Under certain assumptions, this problem of
random flights is isomorphic to that of polymer chain con-
formations. Of course, this case necessarily implies that the
probabilities for each chain segment orientation are indepen-
dent of each other. For certain applications this might be a

and the stresses with the modulus of elastic®ty of the
polymer solution in the bulk

dfger _ Ifger, .
dy gc YT

(27)

The validity of this approximation was checked numerically
a posteriori and was found to introduce a numerical error
always less than 1%. With this approximation, the concen
tration equation, Eq(16), becomes

Nye(y) poor assumption necessitating an extension of the original
Vyl Inl 55— o]~ faefc(y)) | =0, (28)  analysis which causes additional difficulties. In particular,
Z(N—1y) e O
substantial difficulties are encountered when excluded-
from which it is easily seen that volume effects need to be taken into account. In this case, the

_ position and orientation of a link along the polymer chain
N1(y)=Z(N=1y)exH fuef C(y)) ~ Faefc(*) ] (29 depends on the position of not only just the previous one but
In this way, the chain end concentration profile can be calalso of all the others. This explains the quite extensive litera-
culated separately after the momentum and constitutivéure on the subject:

equations have been solved for the velocity gradient and the ~ According to Edwards? one way to overcome the com-
components of the strain tensey respectively. As explained plexity introduced by excluded-volume effects is by approxi-
in Part I, in order to close the above system of equations, onmating the effects of interactions of monomers along the
needs to knowG'(R+ry,N—1;y5,a), a task far from chain by a self-consistent field. Thus, the conformation of a
trivial, since, it depends both on the type of the imposed flowchain is treated as a random walk in the presence of a poten-
field and the specific interactions between polymer chaingial field the magnitude of which, in turn, depends on the
and surface. The next sections of this part will show howrandom walk realizations. Using the proper normalization in
G'(R+ry,N—1;y,,@) can be calculated in the case of a order to build chain statistics, Edwatdgroved that for di-
polymer solution in contact with a neutrgdurely repulsivg  lute solutionsG(r,n;ry) is given as the solution to the fol-
solid wall. Section Il deals with the static equilibrium prob- lowing diffusion equation:
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aG(r,n;r /2 _u\2 2
¥=?VZG(I’,n;I’o)—v‘P(I’)G(r,n;I’o), (30 Gy:—l (exp{— (y OYo) }_[_(YJFOYO) D
n 27TCSy,n 2Cyyn 2Cyyn
subject to the initial condition (39
at n=0, G(r,0;ro)=38(r—ro), (31) where(again in scaled unijs
and boundary conditions dictated by the specification of the o _ N (40)
problem. In particular, for the problem of chain conforma- CynTN=T

tions realized in a semi-infinite medium confined by an im- o o o
penetrable surface located at the-0 plane, the following i.e., ¢y, , as well asc,, , andc;,, coincide with the corre-

boundary conditions apply: sponding component of the second moment of the distribu-
tion function for ann-segment long sub-chain in the bulk. In
at y=o, G(r,n;ro)=0, writing down Egs.(39) and (40), we have tacitly assumed

—0. G(rMr)=0 (32)  that the mean-square end-to-end distance of the polymer
at y=0, (r,n;ro)=0. chain modelled as a random walk Nf—1 steps should be

In Eq. (30), / is the chain segment length,the excluded- Mapped to the mean-square end-to-end distance of the same

volume parameter, defined by polymer chain imposed by the macroscopic model, that is,
we have used that
v=f (1—e VikeT)ddr, (33 (N=1)/2 KkgT
’ 3 "k (4

whereU is the potential between two segments separated by
a distance, and¢(r) the segment number fraction at spatial The partition functiorZ(n,y,) is found by applying Eq(8),
locationr. the result being
Although excluded-volume effects can, in general, be
addressed by our formalism, the assumption of a dilute poly- Yo
mer solution here allows us to neglect the potential term in Z(”'YO):erf( \/F) (42)
the diffusion equation. This and the assumption of isotropic- yyn
ity in the other two directions in whicls remains Gaussian, Equilibrium profiles are then calculated by assuming a zero
imply that flow field in the governing equations: In particular, by sub-
) ) ) ] stituting Eq.(42) for Z(n,y,) into Eq. (29) for the concen-
G(1,n:10) = Gx(X,N:X0) Gy(Y.NY0) Go(2.Mi20), (34 ya4i0n of chain end points, and by keeping in mind that, due
where, in scaled units to absence of flow effect$ige=fqe=0, we get the follow-
ing result for the profile of chain end points:

1 (x—xo)z)
G,(X,N;Xg) = ———==—=€exp — (35
N 2%, Miely) _ f(—g’ ) (43
Nip V2Cyy N—
and PN

The same result can also be obtained directly from the initial

Gy yo) = 1 oxd — (z—Zo)2> (36) form of the governing equations: If a flow field equal to zero
27 ThJo ‘/ZWngn Zngn ' is assumed, then the model equations boil down to the usual
equilibrium condition
with (also in scaled unijs
. oH;  oH; a4
ng,n: C(z)z,n: N—1"' (37) 5nl,e 5nl,e b
WhereasG. satisfies which simply states that, at equilibrium, the chemical poten-
y tial of every conformation should be constant everywhere in
dGy /2 &ZGy the domain (the subscriptb in Eq. (44) refers to bulk
Tn 6 oy (38)  conditions.*? Indeed, by neglecting flow effects in the ex-

pression for the Volterra derivativéH;/én,, Eq. (40) of
with initial and boundary conditions corresponding to Egs.Part I, and by substituting it back into E¢4), Eq. (43
(31) and(32) above. A point to notice here is that, by con- reported above is obtained straightforwardly.
sidering Eq.(30), we have implicitly neglected end effects. From the calculated ditribution of chain ends, the density
This is also an important assumption, since, for a Rousgrofile of chain middle points can be found through EZp)
chain(for example in a flow field, inner parts of chains are of Part I, while the segment fraction profile can be found

much more affected than chain ends. from Eqg.(7) above. In fact, a closed form expression can be
The solution to the above diffusion problem can befound for ¢(y) by approximating the summation by a suit-
found by the method of images able integral for high chain length¥; It is found that
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FIG. 1. The density of chain middle points,,, chain end points, ., and
polymer segmentg as a function of the distangefrom the wall scaled with
the root-mean-square equilibrium end-to-end distance in the Rgilk

FIG. 2. The componentRR,) of the second moment of the distribution
function perpendicular to the wall as a function of the distance from the
surface of the chain end point and the chain middle point obtained from the
exact solution to the equations. The corresponding results obtained with the
use of the Gaussian assumption are also indicated. In all cases, distances
from the wall are scaled with the root-mean-square equilibrium end-to-end

e(y) y? ) c( y ) distance in the bullR,.
——=1-2(1+ erfd ————
#b Cyyn-1 \/ZCSy,N—l
22y y2 of the distributioq function in the direction perpendicular to
+ 5 exp — -0 the wall,(RyRy), is plotted as function of the distance from
\/chy,N—l 2CyyN-1 the wall of both the endyy, and the middle pointy,,, of the
’ chain (both scaled wittRy). In the first case(R,R,) shows
y v2y L . -
+ 1+40_) erfd ——2— an initial decrease as the chain starts to feel the confining
Cyy,N-1 \/cyrjny,1 effects of the solid wall until a minimum is attained, and then
an increase takes place as the chain realizes more and more
B 2V2y exd — 2y (45) conformations perpendicularly to the wall. In contrast, when
Jarc \c? ’ the middle point of the chain is brought close to the wall,
yy,N—1 yy,N—1

o ] o (RyRy) exhibits a continuous decrease since conformations
which is in complete agreement with the findings of Ploehnca gevelop only in the parallel direction. As a matter of fact,

and Russéf who did not consider chains in their analysis these trends had also been observed in the previous ork,
but probabilistically coupledp(y) to the partition function \ynere a Gaussian forfieentered symbols in Fig)ad been
Z(N—-1y). _ _ o . assumed for the distorted from the wall distribution function
The profiles of chain end points, chain middle points, inroughout this paper, we refer to that workthe Gaussian
and polymer segments are shown schematically in Fig. bnnroximationdue to the assumption of a Gaussian form
where all quantities have been scaled with their bulk valueyit, 5 variable width for the polymer end-to-end distribution
The horizontal axis denotes distance from the surface scalgglction. as compared &xactfor the present work, meaning
with the equilibrium root-mean-squarems) polymer end-  hat theexact formof the distribution function has been used
to-end distance in the bulR,. According to this figure, iy the calculations However, the quantitative agreement
starting from their bulk value, alt, ¢, Ny and ¢ decrease it the results obtained using the exact distribution function
monotonically as the solid surface is approached fill theys seen from the figure to be rather poor. For example, notice
reach the value zero exactly on the surface. The length scalfai within the Gaussian assumptiofR,R,) is found to
in all cases is the same, roughly three tinfgs However,  gyop exactly to zero for a chain whose middle point is
the degree of depletion is different for the end points than fogoyght within an infinitesimal distance from the surface
the middle ones: Indeed, although polymer segments anfl, _.0). In contrast, the results with the exact distribution

chain ends seem to suffer the same degree of depletion, chai\ction show tha{R,R,) reaches a finite value as, tends
middle points suffer a stronger depletion than chain endq er0.

points. This happens because the conformational loss that a

chain u_ndgrgoes is much higher if its mlfjdle rather than 'tSIV. NONEQUILIBRIUM (FLOW) PROFILES

end point is brought closer to the surface: In the second case,

chain conformations can still survive by developing perpen-  In this section, we want to evaluate the changes induced

dicularly to the wall. on the system by imposing a constant shear strgsen it.
This can be seen more clearly in Fig. 2 where the widthTo do so, we have to take two important steps. The first is to
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calculate an exact solution for the propaga®niR+rg,N

V. G. Mavrantzas and A. N. Beris

where &q,Y0)=(0y,) is the location of chain origin and

—1;r¢,a) of the polymer molecules in the deformed state.(x,y) the location of chain end in thi,y) coordinate system.
The second is to substitute it into the model equations and To understand the physical meaning of E4g) and its
solve them for the conformation tensor, the velocity field andole in our formalism, we should notice the following two

the polymer concentration. To calcula®’, we make the

limiting cases: First, far away from any boundary conditions,

assumption that, in the deformed sta®, remains Gaussian the solution to Eq(48) is a Gaussian function in the direc-

in the neutral directiorz, while in the plane of flow X

tions ¢ and » with variances proportional to the correspond-

—vy), it obeys the deformed nonisotropic diffusion equation,ing second moments of the tendmras dictated by the ap-

Eq. (32) of Part I. That is, we make the assumption that

G'(r.n;iro, @) =G, ((£,17),n;(§0,70), )G (2,20, @),

(46)
where
G’=—1 ex —T(Z_ZO)Z) (47
z 27TC(Z)Z'n ZCZZ,I'] 1]

plied shear stress, i.e., for the fulN{1)-segment long
chain

G = 1 ex‘{_(f‘fo)z_(ﬂ_ﬂo)z
& J2m)bgb,, 2by; 2b '

77
(54)

However, far away from the solid boundary, the equilibrium

exactly as in the equilibrium case, Wher@éﬁn satisfies the value of the macroscopic conformation tensor is the unit ten-
following diffusion equation in the space of the eigenvectorsor, i.e.,co=1 (in scaled units therefore, from Eq(1), we

directions¢ and » of the tensora:
’ 21 20!

aeg,,: d G§”+ 3G,

an 1 252 2 67]2 )

wheren denotes the path length along the chain, Bndand

(48)

D, are the two chain “diffusivities” driven by the strain

tensore in the eigenvector direction§and », respectively.
The transformation from the coordinate systéxyy) to
eigenvector spacé, ») is given by

X=¢& cosa— 7 sin «a,

y=¢ sin e+ 7 cos«, (49)
where the angla is defined as
\/( bxx_ byy)2+ 4b>2<y_ (bxx_ byy)
, by#0
tan a= bey ,
0, by,=0
(50)
and the matrixb is given by
b=a?. (51)

Based on Eq(33) of Part I, the two diffusivitiedD, andD,
in Eq. (48) are simply given(in dimensionless uniishy

N—1 N—1 )

bee=

N—1 (52)

2 “wr

(ay,)%.

Equation (48) needs to be solved together with the sam
initial and boundary conditions as for the equilibrium case,

namely
at t=0, G'=38(Xx—Xo)d(y—VYo),

at x=xo, G’'=0,

at y=0, G'=0, (53

at y=+o, G'=0,

e

find that, in the eigenvector space, the value of the macro-
scopic conformation tensor under the applied flow field is
=a- a'=a?=b (in scaled units By using this into Eq(54)

and substituting the result into E@1) to calculatehyes, we
obtain that

Nie

1 1
hger= 5 Etr(c)—z In defc) |, (55)

(in scaled unitg which is exactly the one that produces the
Maxwell model®!° Second, in Sec. I, we saw that if flow
effects are neglected and the two diffusivities in ihendy
directions are those dictated by the Kuhn lengthithen Eqg.
(48) reduces to a one-dimensiondlD) diffusion equation,
Eq. (38) above, in they direction which very nicely repro-
duces the equilibrium profiles. Thus, the proposed equation,
Eq. (48), constitutes a consistent generalization of the micro-
scopic picture underlying the Maxwell model, in order to
accommodate inhomogeneous, boundary-condition effects
on chain conformations.

Flow effects in our work are, therefore, taken into ac-
count indirectly through the evaluation of the two diffusivi-
tiesD, andD, that define the macromolecular conformation,
thus, eliminating the necessity for the use of a potential func-
tion from the flow field. But the reader should immediately
realize that this indirect accounting is done so as to always
consistently satisfy the two important limits: First, it satisfies
the equations in the bulk far away from any boundaries, and,
second, it satisfies the equilibrium profiles near the bound-
ary. In addition, the governing equations always satisfy the
criterion of thermodynamic admissibility. In essence, our
work here very much resembles the work of TrelSavho
also used a strain parameter similar to tenedn order to
define the variance af in his work on rubber elasticity. The
present work offers a consistent extension of his work to
account for the resulting inhomogeneities due to boundary
effects.

The solution to boundary-value problem, EGE)—(53),
can be found again by the method of images and for the
entire N—1)-segment chain is given by
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12
G = 1 exr{_(g_fo)z_(ﬂ_ﬂo)z)
&n 27T /b§§b7777 2b§:§ 2b7]7] Lo _
(f_f )2 ( - )2 _ Gaussian ,‘:—’—, : ,,’—”
_eXp< )| (56) o A
133 nn 0.8 — s Z 7
where i I'/’ 74 exact
II o
2 Dl |:.'§r 0.6 I// !
(1= o+ 2570\ 1
— i,
&= 172 : 04 B=0.1
{4 —_— %,=00
2 D, >
(s°—=1)mo+2s&, D. 0.2 - -=-- 1,=05
1
= . ---- =1.0
0-0 1 I 1 I 1 I 1
_ /D1 0.0 1.0 20 3.0 40
S=— D_2 tan a. (@) y
The partition function is next found from E¢g) as 12
Z' (Yo, 0)=2" (yo,b) = erf| |, (58) 10
\/2byy i Gaussian 5~ ="
see proof in Appendix B of Ref. 10. 0.8 . I t
The reader can now immediately see how the bulk limit, | Al exac
Eqg. (55, can be recovered from Ed@56): By letting the c 4
chain origin to lie at a distancg, far away from the solid g 06
boundary {,— =), we have that . ' 6= 05
(= &) (6 £0)% 04 4 00
(59 1/ kol
(7= 12)*> (9= 10)?, wad f - - - 5= 10
which means that the second term in Egf) is unimportant; ] / ---- 7,=20
in addition, far away from the walty=1, and, as explained
above, therc= a- a'= ?=b. Using these equalities in Eq. 0.0 — T T T T T
(56) gives a Gaussian form foG’, which, in three- ®) 0.0 1.0 20 30 40
dimensional(3D) space, identically reproduces the Maxwell y
model. FIG. 3. The density of chain middle points ,, as a function of the distance

Having calculateds’ andZ’, the resulting model equa- Y from the wall for various shear stresseg, and for two values of the

tions, Eqs.(l?)—(22), (29), (56), and (58), can be solved vi;cosity pargmeteﬁ,ﬁzo.l(a) andﬁ:0.5_(p),'respectively. Thg distanc_e
. . . is scaled with the root-mean-square equilibrium end-to-end distance in the

numerically through a spectral collocation technique, and %ulk Ry. The upper set of curves corresponds to the “fully Gaussian ap-
zero-order continuation scheme in the shear strgséstart-  proximation” whereas the lower set to the “exact” form for the distribution
ing from the equilibrium profiles at a number of fixed function near the wall.
points from the wall. In all cases, an exponential conver-
gence was observed in the iteration scheme with the error
tolerance criterion set up at 10, Representative results for mental data. The figures clearly show that the application of
the profiles of the quantities of interest are shown in the nexthe shear stress shifts the equilibrium profiles to the right,
figures for various values of the imposed shear strgsand  i.e., it enhances the depletion phenomena in the interfacial
the viscosity parameteB. For comparison, in every figure, region. Interestingly enough, this picture is the opposite of
the results obtained with the use of the Gaussian approximahat observed with the use of the Gaussian approximation
tion for the polymer end-to-end vector as reported in Ref. 1Qupper group of curves in Fig.)3Indeed, within the Gauss-
are also shown. ian approximation, the flow-induced shear stress is found to

In Figs. 3a) and 3b) we show typical profiles for the force the chains closer to the wall; furthermore, the quanti-
density of chain middle points for various imposed sheaitative agreement is quite poor. Notice though that in both
stress values,, and two different values of the paramefgr  groups of profiles, a limiting curve is reached for high
0.1 and 0.5, respectively. The use of such relatively smalenough values of,,, beyond whichr,, has no effect on the
values may imply(depending on the molecular parametersdensity profile. In addition, the profiles seem to be quite
used strong chain overlaps, which could violate the dilute insensitive to the viscosity parametgér
polymer solution assumption. These values were simply cho-  Experimentally, polymer depletion phenomena near a
sen in order to enable to comparison with available experiwall have been studied by Ausseres all’ through the
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FIG. 5. The velocityr, as a function of the distancgfrom the wall for
various shear stresseg, and for 3=0.1. The corresponding results ob-
tained with the use of the Gaussian assumption are also indicated in centered
symbols. The velocity is scaled witR, /N, where\ is the relaxation time of

the polymer, and the distance wiky,.

evanescent-wave-induced-fluorescence techniga®vIF).

For a dilute agqueous xanthga semirigid polysaccharigle
solution above a nonadsorbing silica surface, they found that
the shear rate increases the surface excess, which measures
the extent of depletion, relative to that exhibited under equi-
librium conditions. On the contrary, the Brownian dynamics
simulations of Duering and Rabfhshowed the depletion
phenomena near the wall to decrease with the shear rate,
which agreed with our earlier results based on the assump-
tion of a Gaussian distribution function for the polymer sta-
tistics near the wall. The present work shows that if the exact
distribution function is employed, then the theoretical find-
ings are in agreement with the experimental observations.

In Figs. 4a)—4(c) we show representative results for the
effect of the shear stress on the conformational characteris-
tics of the polymer chains. As such, we have chosen the two
second moments of the distribution function in the eigenvec-
tor space(R.R;) and(R,R,), respectively, and the angle of
orientationa. In Fig. 4@) in particular, we see that, asg,
increases(R.R;) increases fast and monotonically. Indeed,
for a viscosity ratiog=0.1 and a shear stress valag,
=0.8, the chains near the wall are seen to be elongated by
about 2 to 3 times than in the bulk of the flow. In contrast to
the rapid increase ofR;R;), Figs. 4b) and 4c) show that
the shear stress has a less dramatic effect on the other com-
ponent(R,R,) and on the angle of orientatiom. In all of

*
0.0 f— T T T T
© 0.0 1.0 §'° 30 40 the Gaussian approximation.
m

FIG. 4. The componen(R.R;) (a), the componen{R,R,) (b) of the sec- The next ﬁg_ure’ F_'g' S, '_S VerY |mport.ant b.ecause it
ond moment of the distribution function perpendicular to the wall, and theShows the velocity profile,,(y) in the interfacial region. As
tan(e) (c), as a function of the distance from the surface of the middle pointcan be seen in this figure,, starting from the value zero on
Otf the C:améos;c\)/)ant%us shear S"ej_s‘?ﬁ- Forltthe E'tg_hes; Va_'t‘;]etﬁf the Shiat'h the wall, increases quite rapidly in the interfacial region be-
stress f,,=0.80), the corresponding results obtained wi e use of the, . o oy .

Gaussian assumption are also indicated. A#s00.1. In all cases, distances fore it reaches b,UIk characteristics, within a dls'Fance from the
from the wall are scaled with the root-mean-square equilibrium end-to-endVall about two times the bulk rms end-to-end distaRge In

distance in the bullRy. the same figure, the results of the Gaussian approximation

these figures, the centered symbols denote the predictions of
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FIG. 6. The slip velocityvs as a function of the shear stressgg for two FIG. 7. The dimensionless slip coefficiektas a function of the viscosity
values of the viscosity parametgr 8=0.1 and3=0.5, respectively. The parametes. The slip coefficient is scaled witRy /7, .
velocity is scaled wittRy/\ and the shear stress with the modulus of elas-
ticity of the solutionGy= 7, , /N, wherey, ;, is the polymer viscosity in the
bulk and\ the relaxation time of the polymer. surements showed a sharp transition in the velocity profile at
very small distances from the watn the order of the radius

) of gyration of the polymer chains, 0,4m) from zero to a
are also represented by the centered symbols: In this casgite value. This is the first instance where the apparent
the qualitative and quantitative agreement of the two apgharacter of the slip phenomena has directly been verified
proaches is excellent indeed. This happens because the gperimentally. Quantitative comparison of their results with
locity profile is a secondary rather than a primary quantity ing,r model predictions, however, is not feasible at the present
our formalism: It is calculated through a simple integrationjne pecause additional electrostatic interactions between
after the velocity gradient, which is the quantity that explic-the charged PMA molecules and an electric double layer at
ily enters into the governing equations, has been detefe \all existed in the experiments for which the present
mined. The agreement is even more striking considering thg,ode| cannot account. A rough comparison has nevertheless
qualitative and quantitative discrepancy of the Gaussian agjeen attempted where the parameteleta entering into our
proximation for the concentration and conformational pro-qodel have been taken from the experimental work of
files. By further extrapolating the bulk velocity profile to pueller-Moehnssert al® For the lowest polymer concen-
intersect the wall, an apparent slip velocitycan be defined  {ation (0.005% wt) examined in the experiments, the ex-
which can be used to quantify the corresponding hydrodypnerimentally measured slip coefficiektwas found to be 4
namic boundary layer near the wall. According to Fig», w103 cmPldyn/s whereas the model prediction is (0.8
should be a strong function of the viscosity ratio paramgter +0.1)x 10~ cmP/dyn/s. It is seen, therefore, that by simply
and the imposed shear stress. In the next figure, Fig. 6, 4ccounting for conformational changes near the wall, is
we see that the slip velocity is practically a linear function Ofenough to capture the correct order of magnitude of the slip
the shear stress,,, thus, the ratio of the slip velocity over phenomena. Moreover, the model prediction is lower than
the shear stress, i.e., thdimensionlessslip coefficientk,  he experimentally measured value, which is quite pleasing,
should be a function of only the viscosity ratio parameer  pecause the additional electrostatic repulsions for which the
Figure 7 shows exactly this dependence: Asncreasesk  model cannot presently account are expected to enhance the
decreases fast, and f@>1.0, k is essentially zero. In fact, gepletion and slip phenomena in the interfacial area. For a
according to scaling used above, it turns out that the slignore detailed comparison of our results for the velocity field
velocity scales witlRy/\ so that the dimensional slip coef- ith other experimental and available theoretical data in
ficient is a function not only oR, and B but also of the  fjows through membrané&;22due to the consistency of the
polymer viscosityz, j, - Gaussian approximation and the exact distribution function

The linear dependence of the slip velocity on the sheaygeq in this paper regarding,(y) and v, we refer the in-
stress has been verified experimentally by Mueller—grested reader to our previous publicatin.

Moehnssenet al® in ducted flows of an electrolyte-free,

aqueous squthn of a hlgh—n1_olecule_1r-we|ght, anionic pon-V. CONCLUSIONS

acrylamide. Using a laser-differential anemometer and a

total-reflection-microscope anemometer, these investigators The major result of this work is that the shear stress is
were able to measure the velocity profile up to distances ofound to enhance the depletion phenomena near the wall,
0.15 um from the wall for a variety of polymer concentra- which is in contrast to the previous findings, based on the
tions. For the lowest concentratidd.005% wt), the mea- Gaussian assumption, that the shear stress drives the polymer
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