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A hierarchical model for surface effects on chain conformation
and rheology of polymer solutions. I. General formulation

Vlasis G. Mavrantzasa) and Antony N. Berisb)

Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716

~Received 29 July 1998; accepted 23 September 1998!

The flow behavior of polymer solutions near a solid surface~either neutral or adsorbing! is modeled
through a new, hierarchical~macroscopic and microscopic! approach which enables the
thermodynamically consistent extension of equilibrium~static! considerations to nonequilibrium
~flow! conditions. The approach involves two steps: First, the set of primary, independent, variables
defining the state of the system at the macroscopic level is chosen, and a complete set of transport
and constitutive equations is constructed for them through a two fluid, Hamiltonian model. In the
present work, the macroscopic variables include the polymer chain concentration, the macroscopic
fluid velocity, and the conformation tensor~defined as the tensor of the second moment of the chain
end-to-end vector!. The governing equations involve the~extended! free energy or Hamiltonian of
the system,H, and are valid both in the bulk of the fluid and in the interfacial region. Thus, to solve
them one needs to specifyH. This is done in a second step, by invoking a microscopic model, which
consistently takes into account the simultaneous effect on chain conformations of both the solid
boundary and the imposed flow field. Solid boundary effects are taken into account in the solution
of a diffusion equation for the chain propagatorG(r ,n;r0) which represents the weighted
probability that ann-segment long chain which starts atr0 will end at positionr . Flow field effects
are taken into account through the definition of a generalized propagatorG8(r ,n;r0 ,a), which
further depends on the apparent strain tensora, representing chain deformation effects due to flow.
The present part of the paper describes the general formulation of the approach and its relevance
with previous works. Results from applying the methodology to the case of a polymer solution
flowing past a purely repulsive surface~a wall! are presented in the second part of this work.
© 1999 American Institute of Physics.@S0021-9606~99!50701-0#
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I. INTRODUCTION

The study of the behavior of polymer solutions next
solid surfaces has received a great deal of attention in
past few years,1–6 not only because of its intrinsic scientifi
interest but also because of its technological importance.
can mention the role of adsorbed polymer molecules in
stability of colloidal suspensions against flocculation, th
use as adhesives and lubricants, and the significanc
polymer-wall interactions in polymer flows through poro
media.7–9 In most of these cases, the interaction of polym
molecules with the solid surface takes place under the ap
cation of an external flow field. The flow field deforms th
polymer molecules and further enhances the conformatio
changes in the interfacial region. Better understanding of
fundamental interplay between flow and surface effects
the structure and conformational properties of polymer m
ecules can, therefore, significantly improve our capability
designing more efficient interfacial systems tailored for s
cific use in particular applications.

So far, most of the existing studies of polymer–surfa
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interactions have focused on the~static! equilibrium
problem,1,2,5,6 where a fairly good understanding has be
developed; on the contrary, very few works have underta
the same problem under flow conditions.3,4 The lack of an
adequate analysis for the flow problem can be attributed
the inherent complexity of the system, but also to the lack
a consistent thermodynamic and mathematical formal
that could enable the consistent extension and utilization
equilibrium concepts and principles to the nonequilibriu
~flow! regime. We use here the recently developed Ham
tonian formalism of dissipative flow processes in media w
internal microstructure10–12 in order to systematically inves
tigate the combined effects of the adjacency to a solid s
face and the imposed flow field on the polymer concentrat
and conformation.

The development of a Hamiltonian formalism for diss
pative systems started with the pioneering works of Ka
man, Morrison, and Grmela which all appeared almost
multaneously in 1984.13–15 After that, significant research
activity followed in the field which eventually culminated t
more systematic and broad descriptions such as the gen
ized bracket11 and, more recently, the GENERIC
formalisms.16 These latest two formalisms have proven to
equivalent in all but the Boltzmann equation~which can only
be described by the GENERIC formalism!.16,17 The key un-
derlying assumption of the Hamiltonian approach is the
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617J. Chem. Phys., Vol. 110, No. 1, 1 January 1999 V. G. Mavrantzas and A. N. Beris
istence of a partial~local! thermodynamic equilibrium,
which can be described by only a few internal variab
~such as the second moment of the distribution function
the polymer end-to-end distance vector!, in addition to the
traditional and widely used thermodynamic variables, l
the density and the temperature. In the following we emp
the methodology developed within the generalized brac
formalism as described in our previous work.11,12

So far, the Hamiltonian approach has enabled the
scription of the dynamics of many polymer flowin
systems.11–16In simple test cases, it has duly led to the sa
transport equations as the ones obtained from the applica
of more conventional conservation and continuum mech
ics principles. In more complicated cases, it has allowed
the evaluation of the thermodynamic consistency of vari
proposed models. In such cases, it needs to be coupled
an analysis of the microscopic physics in order to give m
valuable results. It is this combination of the microscop
modeling of the system internal structure with the mac
scopic Hamiltonian formalism that provides a means
studying the interaction of the~microscopic! polymer chain
conformations with a~macroscopic! flow in the adjacency of
a solid surface.

In fact, this approach has already been followed in
previous publication,18 in connection with the assumption o
a Gaussian distribution function for the chain end-to-end d
tance vector, in order to give a qualitative description of
effects of a purely repulsive surface~a solid wall! on the
conformation, concentration, and rheology of a dilute po
mer solution in a simple shear flow. Compared to that pre
ous work,18 in the present study, the length scale of analy
of the microscopic deformations is reduced from distan
commensurate with the average end-to-end chain len
~which is the minimum length scale for which the previous
assumed Gaussian approximation is valid! to distances com-
mensurate with the length of the repeat~polymer segment!
unit. This refinement is made possible through the use
self-consistent mean-field approach, based on the ran
flight chain model, describing chain conformations under
externally imposed field.

This paper is the first in a series of two. It presents
general formalism valid under both equilibrium and noneq
librium ~flow! conditions, and makes the connection w
previously developed theoretical works. It is organized
follows: Section II presents the macroscopic governing eq
tions in their most general form, valid under both sta
~equilibrium! and dynamic~flow! conditions. Section III de-
scribes the relevant terms entering into the expression for
extended free energy of the system; the microscopic mo
and the quantities it utilizes are described here in great de
Section IV follows with some additional calculations need
to evaluate a number of important mathematical quantit
In Sec. V, we give a description of the algorithm that sho
be followed for the solution of the combined microscopi
macroscopic equations. Finally, in Sec. VI, we present
conclusions.
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II. MACROSCOPIC FORMALISM: GOVERNING
EQUATIONS IN TERMS OF A FREE ENERGY
FUNCTIONAL

The analysis of surface–polymer interactions is based
a consistent modification of the expression for the exten
free energy of the system that enters into a set of continu
equations governing the rheology and mass transfer phen
ena in dilute polymer solutions at the macroscopic lev
These equations represent an extension of the traditi
transport equations for fluids characterized by an internal
crostructure. The effect of microstructure is taken into a
count through the extra stress or conformation tensor, an
the evaluation of the extended free energy of the sys
upon which these equations depend. Similar equations h
been derived by a number of researchers: Helfand
Fredrickson19 and Milner20 coupled the internal deformatio
state with the number density of the polymer molecules
the description of the rheology and mass transfer. In para
Doi,21 Onuki,22 and Bhaveet al.23 arrived independently a
similar sets of equations describing stress-induced conce
tion and conformation changes in flows of dilute polym
solutions, where the polymer molecules were modeled
linearly elastic ‘‘Hookean’’ dumbbells. The same proble
has also been addressed from a continuum viewpoint
Öttinger24 and more recently by Mavrantzas and Beris25

based on a two-fluid model. Although all of these approac
have resulted into similar sets of equations, subtle diff
ences exist among them, which, as was shown in a re
publication,26 can prove critical in our capability to carry ou
computations.

The investigation of the differences between the eq
tions derived from three different formalisms, th
body-tensor,24 the two-fluid Hamiltonian,25 and an inhomo-
geneous kinetic theory,23 was undertaken in a recen
publication.27 There it was shown that, if all relevant terms
the inhomogeneous kinetic theory analysis are consiste
taken into account, the resulting equations are in per
agreement with those of the two continuum theories, at le
up to the leading order term in an expansion of the solut
variables with respect to their equilibrium values.27 The con-
sistent application of the kinetic theory to inhomogeneo
flows has also been the subject of a very recent pape
Curtiss and Bird.28 Their findings further reinforce the con
clusions of Beris and Mavrantzas27 ~see, in particular, their
Appendix B!, as they consistently extend the inhomogeneo
kinetic theory analysis to a broader class of macromolec
models. In the following, our two-fluid formulation25 is used
as the basis for the modeling of surface interactions, sinc
is the one involving the fewest parameters, while simul
neously yielding consistent results for a variety of inhom
geneous rotating viscometric flows,26 as compared agains
previous investigations.3,4,29,30

The main assumption behind the two-fluid model is th
of two interpenetrating continua corresponding to the po
mer and solvent molecules, which are assumed to be in t
mal but not mechanical equilibrium. Then, for an incom
pressible dilute polymer solution, the governing equatio
are derived as follows—for a detailed analysis see Ch
9.2.2 of Ref. 11 and Chap. 2 of Ref. 31. The two phases
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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the system are assumed to be completely characterize
the following set of primary~independent! variables: The
total mass densityr, taken to be constant for an incompres
ible system considered here, corresponding to a total
ment~polymer plus solvent! number densityr0 , the polymer
chain fraction number,n1 , the total momentum densityM
5rv, where v is the total velocity field, and an interna
structural parameter,C5r0n1c, wherec is a second-orde
tensor characterizing the conformation of polymer m
ecules. For an isolated Rouse chain in the bulk,c can be
identified with the second moment of the distribution fun
tion for the end-to-end distance vector of the polymer cha
Of course, more detailed internal structural parameters
discrete~such as the moments of the intrabead position v
tors of a Rouse chain32! or even continuum~such as a distri-
bution function33,34! nature can also be introduced into th
description of the internal microstructure. However, this
accomplished at the expense of complexity, thus, proh
tively increasing the applicability of the model. Since the
results can usually be closely followed up with suitable c
sure approximations,34 this path is not pursued any further
the present work.

We assume that the system is characterized by an
tended free energy functional,H, which is the sum of the
kinetic energy,Hk , and an internal free energy part,Hi :

H[Hk1Hi5E @hk~y!1hi~y!#A dy, ~1!

wherehk5rn2/2 is the kinetic energy density,hi is the in-
ternal free energy density,A stands for the surface area in th
plane (x-z), and y is the component perpendicular to th
surface;hi , is, in general, considered to be a function of a
n1 , C, and the position vectorr . Although the use of coarse
grained, structural parameters, such as the conformation
sorC or c, describing the overall polymer conformation in a
average sense, as independent arguments of the free e
density function is not an entirely new idea in irreversib
thermodynamics approaches to melt viscoelasticity, it is o
during the last years that people in polymer community h
started using it. For example, very recently, Mavrantzas
Theodorou35 used it, in conjunction with an atomistic simu
lation of a polymer melt, to calculate the free energy of
oriented polyethylene melt.

In general, in order to represent spatial inhomogenei
within the system, gradients of the primary variables ne
also to be included among the arguments ofhi , as was very
convincingly shown in the influential pioneering work b
Helfand,36 followed later by many others.37 Alternatively,
one can describe inhomogeneous effects through the de
dence of the Hamiltonian density on some auxiliary va
ables, connected to the primary variables through nonlo
~integral! relations. Such an auxiliary variable, widely us
in the present application, is the segment densityw. In this
way, inhomogeneous entropic effects are captured by
chain partition functionZ @first term on the right-hand-side o
Eq. ~18! below# exactly as was done by Hong an
Noolandi37 ~see their Eq. 2-20!, representing the relative
number of chain conformations in the interfacial region re
tive to the bulk. Such entropic effects usually dominate in
Downloaded 26 Jan 2005 to 128.101.10.146. Redistribution subject to AI
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high molecular weight polymer regime~Helfand regime,
Fredrickson38!, which is exactly the regime that we are inte
ested in describing here. Thus, although, an explicit dep
dence ofH also on gradients of the primary variables
possible within the formalism adopted here@see, for ex-
ample, Eq. 5.2-6 in the monograph by Beris and Edwards11#,
such a dependence will be neglected in the present study
only in order to simplify the mathematics and keep the co
plexity of model equations at a low, tractable level.

In our two-fluid Hamiltonian model, the starting point
that of the notion of two interpenetrating, but noninteracti
continua which we label as~1! and ~2!. Component~2! is
assumed to be structureless, whereas component~1! is as-
sumed to be viscoelastic, characterized by a structural
rameter, the conformation tensorC. According to the Hamil-
tonian approach11 followed in this work, the governing
equations are obtained from the dynamic equations de
oped for an arbitrary functionalF :

dF

dt
5$F,H%1@F,H#, ~2!

after the Poisson bracket$F,G% and the dissipative bracke
@F,G# have been defined for arbitrary functionalsF andG. In
this work, the Poisson bracket is taken to have two contri
tions

$F,G%5$F,G%11$F,G%2 . ~3!

The first contribution$F,G%1 involves the direct sum of the
terms corresponding to two interpenetrating continua e
one taken as a single compressible fluid written~following,
for example, Morrison and Greene39! in terms of the indi-
vidual mass and momentum densities, (r1 ,m1) and
(r2 ,m2), respectively,

$F,G%15E S 2F dF

dr1
¹bS dG

dmb
1 D 2

dG

dr1
¹bS dF

dmb
1 r1D G

2F dF

dr2
¹bS dG

dmb
2 D 2

dG

dr2
¹bS dF

dmb
2 r2D G

2F dF

dma
1 ¹bS dG

dmb
1 ma

1 D 2
dG

dma
1 ¹bS dF

dmb
1 ma

1 D G
2F dF

dma
2 ¹bS dG

dmb
2 ma

2 D 2
dG

dma
2 ¹bS dF

dmb
2 ma

2 D GDdV,

~4!

wherem15r1u1 andm25r2u2 are the momentum densitie
of the two fluids. The second term$F,G%2 involves elastic
contributions and refers to the viscoelastic component~com-
ponent 1!, characterized by the internal structural parame
C, i.e., the conformation tensor
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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$F,G%25E S 2F dF

dCab
¹gS dG

dmg
1 CabD

2
dG

dCab
¹gS dF

dmg
1 CabD G

2CabF¹aS dF

dmg
1D dG

dCgb
2¹aS dG

dmg
1D dF

dCgb
G

2CabF¹bS dF

dmg
1D dG

dCga
2¹bS dG

dmg
1D dF

dCga
G DdV.

~5!

The above form originated from Marsdenet al.40 and, for an
elastic medium, it was exactly derived by Edwards a
Beris41 from first principles.

Next, we derive the continuity and the momentum b
ance equations for the two individual species and the ev
tion equation for the conformation tensorC solely based on
the reversible dynamics described by the above w
established Poisson brackets, through a direct compariso
the dynamic Eq.~2! with the chain rule of differentiation
applied to an arbitrary functionalF.11 Then, two new sets o
variables are introduced, the total mass densityr with its
corresponding momentum densityM , and the reduced mas
densityr2 with its corresponding momentum densityM2 ,
i.e., ~r,M ! and (r2 ,M2):

r5r11r2 , M5m11m2 ,

r25r1 , M25
r2

r11r2
m12

r1

r11r2
m2 . ~6!

The velocitiesv andDv that the two new momentum dens
ties refer to are

v[
M

r11r2
5

r1

r11r2
u11

r2

r11r2
u2 ,

Dv[
M2

r2
5u12u2 , ~7!

respectively. In this way, the incompressibility constraint
easily taken into account by imposing

¹•M50⇔¹•v50, ~8!

in the final equations, wherev represents the mass avera
velocity of the mixture.

So far the two components of the fluid have been
sumed noninteracting. Thus, the dissipative bracket@F,G# is
next introduced, which involves three terms: The first is
viscous term, the second is a drag contribution term du
the fact that the two components in the mixture are allow
to move with different, in general, velocities and the third
a relaxation term for the polymer viscoelasticity
Downloaded 26 Jan 2005 to 128.101.10.146. Redistribution subject to AI
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@F,G#52E hs

2 F¹a

dF

dMb
1¹b

dF

dMa
GF¹a

dG

dMb

1¹b

dG

dMa
GdV2E Zab

dF

dM 2a

dG

dM 2b
dV

2E 2

lr0n1K
Cab

dF

dCag

dG

dCbg
dV, ~9!

plus their corresponding entropy correction terms which
not need to be mentioned, since they only affect nonisoth
mal processes. These are the only phenomenological dis
tive interactions assumed in our model, and they corresp
to well-established quadratic terms for the entropy prod
tion allowed in the system, representing the lowest order o
more general nonlinear dissipation. In the above equationhs

is the solvent viscosity, which is constrained to be no
negative,Z is the drag coefficient tensor, which is assum
to be symmetric and positive definite,l is the polymer re-
laxation time, andK the Hookean spring constant. The di
sipative form of the evolution equations can then be obtai
by evaluating the additional terms arising from the introdu
tion of the dissipative bracket into the dynamic equation
an arbitrary functionalF, Eq. ~2!. Note that exactly the sam
form of the equations would have been derived based on
more recently formulated GENERIC approach16 given the
equivalence of the two approaches as demonstrated in
eral occasions,16,17 also covering the present macroscop
model.

By re-expressing the resulting equations in terms of
new sets of variables~r,M ! and (r2 ,M2) and neglecting
inertial terms, a linear equation is obtained forDv. If this is
solved forDv and substituted back into the equation forM , a
one-fluid reduction of the two-fluid model can be obtaine
This consists of three equations: The momentum equa
for the total mass density, the evolution equation for t
conformation tensor, and the conservation or diffusion eq
tion for the density of the viscoelastic component, comp
nent ~1!, with a diffusivity tensorY given by

Y5r1S 12
r1

r11r2
D 2

Z21. ~10!

For a steady-state unidirectional flow, where the veloc
field has only one component,nx , in the directionx, varying
only along the perpendicular directiony, i.e.,nx5nx(y), the
substantial derivatives of all variables of interest with resp
to time are zero, and the final macroscopic governing eq
tions that are obtained are as follows.11,27,41

The first is the momentum equation

052¹p1hs¹
2v1¹•s2¹P2

]hi

]r
, ~11!

the second is the constitutive equation

C~1!52
1

lK
s, ~12!

where the subscript~1! denotes the upper-convected tim
derivative
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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C~1![
]C

]t
1v•¹C2C•¹v2¹vT

•C, ~13!

and the third is the concentration equation

05¹•FY•S ¹P1
]hi

]r
2¹•sD G . ~14!

Equation ~11! is the momentum equation for the tot
velocity field. This is seen to involve into the right-han
side, in addition to the traditional pressure and viscous te
~p is the pressure andhs the solvent viscosity!, three extra
terms: The first is a polymer contribution to the stress,s,
defined as

s[2C•

dH

dC
, ~15!

the second is a contribution from the osmotic pressureP,
defined as

P[n1

dHi

dn1
1C:

dH

dC
2hi , ~16!

and the third is a nonhomogeneous term due to the di
dependence of the internal part of the free energy densithi

on the local positionr . In Eqs.~11! and~14! above and in the
following, the partial derivative]/]r denotes a direct differ-
entiation with respect to positionr keeping all other vari-
ables on whichhi explicitly depends constant; this term i
therefore, zero in homogeneous bulk flows. The same c
vention holds for the partial derivatives with respect to
other variables. In contrast, the gradient operator¹ denotes
the total derivative with respect tor including both direct
and indirect~through differentiation by parts! contributions,
while the symboldH/da denotes the Volterra derivative o
the Hamiltonian functional, Eq.~1!, with respect to the vari-
ablea, a5n1 , C or v.

Equation~12! is the constitutive equation for the confo
mation tensorC which, together with~a! the expression for
the extra stress tensor provided by Eq.~15! and ~b! the ex-
pression forhi that corresponds to a solution of polym
molecules modeled as infinitely extensible random chain
Hookean dumbbells,11 is equivalent to the upper-convecte
Maxwell or Oldroyd-B model. For simplicity, the relaxatio
time l is assumed constant in our work, signifying, amo
other assumptions, a constant mobility. If hydrodynamic
teractions are taken into account, this assumption is
longer valid andl becomes a function, in general, of th
conformation tensor.11 However, for systems close to a sol
surface, a spatial dependence of the hydrodynamic inte
tion should also be anticipated. Given the high complexity
the existing model already, such a feature is left to be ex
ined in a future work.

Finally, Eq.~14! is the conservation of mass equation f
the polymer species, withY representing the diffusivity~as-
sumed constant here! and ¹P1]hi /]r2¹•s an extended
driving force. In the absence of a polymer contribution to t
stress and for a free energy density,hi , not dependent on the
local position, this equation reduces to the traditional m
diffusion equation, with the osmotic pressureP then identi-
fied with the chemical potential. In fact, as also derived
Downloaded 26 Jan 2005 to 128.101.10.146. Redistribution subject to AI
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other works,3,20–24we immediately notice the presence of th
gradient of the polymer excess stress,¹•s, in the driving
force of Eq.~14!. This term is responsible for stress-induc
polymer migration phenomena, as for example, discusse
Refs. 3 and 23–27. In addition, we notice the presence of
term ]hi /]r describing the partial derivative of the free e
ergy density with respect tor keeping all the other variable
constant. As mentioned above, this term is nonzero onl
there is a direct dependence ofhi on the local position; there
fore, it is zero in the bulk, where the medium is assumed
be homogeneous. However, as we will see in the followi
the presence of a solid surface does induce such a de
dence, so it is important to keep the corresponding term
the diffusion driving force.

As can be clearly seen from an inspection of the gove
ing equations, they crucially depend on the HamiltonianH,
and in particular on the internal free energy densityhi . Since
the relevant physics for the problem is introduced into
model primarily through the specification ofhi , defininghi

is not a trivial issue, and this is separately done in the f
lowing section, Sec. III, in conjunction with a microscop
analysis of the chain conformations near the surface.

III. MICROSCOPIC FORMALISM: THE INTERNAL FREE
ENERGY DENSITY

Consistently with the mean-field approach followed
this work, the internal free energy density of the polym
solution,hi , is taken to consist of three contributions

hi5hmix1hsurf1hdef. ~17!

The first term,hmix , describes the free energy density due
the random mixing of polymer segments with solvent m
ecules in the adjacency of a solid surface; it is this term t
involves an explicit dependence of the free energy density
r . The second term,hsurf, arises due to possible addition
enthalpic interactions of polymers with the solid surface.
nally, the third term,hdef, describes the entropic correction
to the free energy arising from the nonequilibrium deform
tion of the chains due to the imposed flow field.

A. The free energy of random mixing

To the first order, the free energy density of mixing c
be approximated by a Flory–Huggins-type equation

hmix

r0kBT
5n1~y!lnS n1~y!N

Z~N21,y! D1~12w~y!!ln~12w~y!!

1xw~y!~12w~y!!, ~18!

wheren1 has already been defined as the number fraction
polymer molecules,w is the number fraction of polymer seg
ments,x is the Flory-chi parameter, andZ(N21,y) is the
chain partition function, defined immediately below, repr
senting the relative number of conformations of anN21
segment chain starting aty versus the number of conforma
tions for the same chain in the bulk. In the way used abo
Z(N21,y) is exactly the same as the quantityvc used by
Scheutjens and Fleer5 to describe the ratio of the number o
arrangements of a chain in conformationc and that of a chain
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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in the bulk. In fact, Eq.~18! arises as the continuum analo
of Eq. ~13! of the Scheutjens–Fleer lattice model5 where the
continuum distance from the wall,y, is used in lieu of the
discrete lattice layer index. For example, in the Scheutje
Fleer formulation,nc is the number of chains belonging t
conformationc, which is represented asn1(y) here, denoting
the number fraction of chains starting aty. Throughout this
paper it is assumed that the volumes occupied by a poly
segment and a solvent molecule are equal so that the
ment number density is always equal to the volume segm
fraction. The case where polymer segments and solvent m
ecules are assumed to have differing molar volumes has
addressed recently.42

Equation ~18! was originally derived by Flory43 for a
homogeneous solution where the following relationship
tween the~constant! segment and~constant! chain number
fractions,w andn1 , respectively, holds:

n15
w

N
~homogeneous medium!, ~19!

with N representing the chain length, i.e., the total numbe
segment links per chain isN21. In the present work, though
we are interested in investigating spatial inhomogeneitie
the polymer solution which typically extend down to su
small length scales as the segment size. Thus, a consi
generalization of Eq.~19! is needed to close the system
equations. This is achieved by utilizing the chain conform
tion probabilities, and more precisely the concept of
propagator, as shown immediately below.

First, we need to define a means for counting cha
Although any point within a chain can serve as a refere
point, in the present work, we chose the end points. In f
since either end of a chain can be taken as a reference p
both of them should be treated as equivalent in the analy
and thus, we taken1 asn1,e/2, wheren1,e is the fraction of
chain end points, in consistence with lattice model desc
tions. We also introduce into the analysis in anad hocfash-
ion the concept of the propagator. Assuming that the sta
tics of chains remains Gaussian in the two neutralx and z
directions, we focus our attention on they axis, and we de-
fine the propagatorG(y,n;y0) such thatG(y,n;y0) A dy is
proportional to the number fraction ofn-segment chains tha
start at a distancey0 above the surface and end aty within
dy. To calculateG(y;n;y0), we can resort to the diffusion
equation approach,44,45 according to which, if no excluded
volume effects are considered,G(y,n;y0) satisfies

]G~y,n;y0!

]n
5

l 2

6

]2G~y,n;y0!

]y2 , ~20!

with initial condition

at n50, G~y,0;y0!5d~y2y0!, ~21!

and boundary conditions dictated by the specification of
problem; in Eq.~20!, l is the chain segment length.

The proportionality coefficient forG(y,n;y0) is so se-
lected that the integral of the propagator over all poss
chain end locations gives the chain partition functi
Z(n,y0):
Downloaded 26 Jan 2005 to 128.101.10.146. Redistribution subject to AI
–

er
g-

nt
ol-
en

-

f

in

ent

-
e

s.
e
t,
int,
is,

-

s-

e

e

Z~n,y0![E
0

`

G~y,n;y0!dy, ~22!

with its meaning as specified above. Then the number fr
tion of segmentsw is connected with the number fraction o
chain endsn1,e as follows:

w~y!5 (
n50

N21 E
0

` 1

2
n1,e~y0!

3
G~y,n;y0!*0

`G~y8,N212n;y!dy8

Z~N21,y0!
dy0 . ~23!

In Eq. ~23!, the integral ofG(y8,N212n;y) over y8 en-
sures that the rest of the (N21)-segment chain~i.e., of N
212n segments long! is above the confining boundary, an
the denominator is the normalizing constantZ(N21,y0),
taking into account all possible conformations of the ent
(N21 links long! chain that happens to start aty0 ; further,
the factor 1

2 corrects for double counting the chains throu
both their end segments. By using Eq.~22!, Eq. ~23! takes
the form

w~y!5 (
n50

N21 E
0

` 1

2
n1,e~y0!G~y,n;y0!

Z~N212n,y!

Z~N21,y0!
dy0 .

~24!

Equation~24! is the correct generalization of Eq.~19! for
inhomogeneous polymer solutions, and can also be c
pared against a similar formula proposed by Dolan a
Edwards46 for chains permanently anchored on a surfa
@Eq. ~6! in their paper#. Indeed, in the limiting case thatn1,e

is a delta function at the surface, Eq.~24! reduces to their
equation. Oncen1,e has been determined, other chain dens
measures can be evaluated; for example, the middle c
densityn1,m can be obtained as

n1,m~y!5E
0

` 1

2
n1,e~y0!

3GS y,
N21

2
; y0D ZS N21

2
,yD

Z~N21,y0!
dy0 . ~25!

Of particular significance is the quantityZ(N21,y0), de-
fined by Eq.~22!, because it is the partition function of th
corresponding chain whose origin is aty0 .47–49This quantity
is bound to play a central role in the analysis, since it co
veys all the information for the effects of the surface on t
polymer molecules at the conformational level.

B. Enthalpic surface contributions to the free energy

The second component of the free energy arises fr
possible enthalpic interactions of polymer molecules with
solid surface. The solid surface directly affects the therm
dynamic state of the solution in two ways: First, if the su
face is adsorbing, polymer segments gain energy by com
close enough to it. In such a case, since the chains consi
a large number of monomeric units all of which can, in pri
ciple, interact with the adsorbing surface, a crowdness of
interfacial region in polymer segments is expected, a
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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segment–segment interactions should be very import
even when the energy of adsorption is very low.

Second, the presence of the solid surface changes
statistics of the polymer conformations in its vicinity; th
means that the number of conformationsG(r ,n;r0) from r0

to r involving n segments depends highly on the distan
from the wall of the point of originr0 of the chain. Far away
from the wall, of course, chain conformations at the level
approximation of our work are isomorphic to the rando
flight problem with equal probabilities, andG(r ,n;r0) obeys
a Gaussian distribution. The above effects influence the t
number of available conformationsZ(N21,y0) defined by
Eq. ~22!, which determines the internal conformational e
tropy of the system. This entropic effect has already b
taken into account in the definition ofhmix described in Eq.
~18! above.

The expression for the enthalpic contribution of the s
face to the free energy,hsurf is therefore, written as

hsurf

r0kBT
5us2wsxsd~y!, ~26!

wherexs is the adsorption energy parameter

xs52~up2us!, ~27!

and corresponds to the difference between the free energ
the transfer of a polymer segment and a solvent molec
from the bulk to the surface. In the above equations,us and
up are the adsorption energies of a solvent and a segm
molecule, respectively, inkBT units, andws the polymer
segment surface fraction representing the chain segment
sorbed on the surface. According to Eq.~27!, if a segment is
preferentially adsorbed to a solvent molecule,xs is positive;
moreover, the case of a purely repulsive surface~a wall! is
obtained in the limitxs→2`. To calculatews we need to
address the issue of how the solid surface affects the st
tics of polymer conformations nearby, an issue that is v
specific to the details of surface–polymer interactions.
Part II of the present work, the simple case of a neutral w
will be investigated for whichws is zero. The more complet
case of an adsorbing surface will be separately addressed
forthcoming paper.

C. Flow-field contributions to the free energy

The third component of the free energy in Eq.~17!, hdef,
is zero under equilibrium~static! conditions. Under nonequi
librium ~flow! conditions,hdef describes additional change
to the statistics of conformations due to chain deformat
from the flow field. These changes are taken into accoun
evaluating the entropy decrease accompanying the chain
formation and its orientational change. Following Flory,50 in
order to evaluate this entropy reduction, we need to calcu
the configurational entropy change involved in the format
of the deformed state. A key assumption in the origin
analysis by Flory is that this change can be characterized
a modification in the end-to-end distance by multiplicati
scalar factors,ax , ay , and az along thex, y, and z direc-
tions, respectively. In addition, following Flory, it is as
sumed that the function that describes the distribution of
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polymer end-to-end distance vector is of the same formbe-
fore and after deformation; the effect of the deformation
simply to rescale it. For a random chain in the bulk who
end-to-end distance is described by a Gaussian distribu
this approach leads to the following expression~in our nota-
tion! for the flow contribution to the free energy:50

hdef

r0kBT
5

n1,e

2 S ax
21ay

21az
223

2
2

1

2
ln~ax

2ay
2az

2! D . ~28!

In this form, Flory’s theory of polymer elasticity was quit
successfully applied to many problems of interest such as
evaluation of the elastic contribution to steric stabilization51

and the phenomenon of the flow-induced polymer migrat
in the bulk of viscometric flows.52

However, since an arbitrary flow field simultaneous
orients and deforms the polymer molecules in space, s
scalars are not adequate to describe the chain deforma
and need to be replaced by a tensorial quantity. Moreo
near a confining boundary, the effect of the flow can
longer be captured by a simple rescaling of the equilibri
polymer end-to-end distribution function. Thus, two gen
alizations are made in this paper: First, it is assumed that
flow imposes a strain on polymer molecules described b
tensora, so that, in order for a particular chain to have
end-to-end vectorR after deformation (R5r2r0 , wherer0

andr are the location vectors for the chain starting and e
ing points, respectively!, it must have had an end-to-end di
tance vectora21

•R before deformation. Second, it is as
sumed that the propagator after the flow field has b
imposed will, in general, be a new functionG8 of the coor-
dinateR ~the chain end-to-end vector!, the starting location
r0 and the strain tensora. With this generalization, we can
proceed in the analysis in exactly the same way as done
Flory to evaluate the appropriate form for the Boltzma
factor that should enter into the expression forhdef. The
result is

hdef

r0kBT
52

1

2
n1,e~y0!E G~R1r0 ,N21;y0!

Z~N21,y0!

3 lnFG8~R1r0 ,N21;y0 ,a!

Z8~N21,y0 ;a!

3
Z~N21,y0!

G~R1r0 ,N21;y0!Gd3R, ~29!

where r05(x0 ,y0 ,z0) denotes the start of the chain, an
Z8(N21,y0 ;a) is the partition function corresponding to th
propagatorG8. G8(r ,n;y0 ,a) denotes the weighted prob
ability that the chain will reach the positionr within dr in n
steps with its start at a distancey0 above the surface unde
the applied straina. Of course, in the case of an amorpho
bulk chain where the propagator is described by a Gaus
function, and when the tensora can be diagonalized alon
thex, y andz directions withax , ay , andaz in the diagonal,
Eq. ~29! is easily found to reduce consistently to Eq.~28!.

To calculateG8, we make the assumption that, in th
deformed state,G8 remains Gaussian in the neutral directio
z, while in the plane of flow (x2y), it obeys a deformed
nonisotropic diffusion equation, which we prefer to write
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ne
-

a

ai
ai
w

m
se

e
p-
o
c

e
de
th

rg

to

r

over
n

i.e.,
ow

-

one

ns

e-
the

tice
our
r

c-
-

623J. Chem. Phys., Vol. 110, No. 1, 1 January 1999 V. G. Mavrantzas and A. N. Beris
the space of the eigenvector directionsj andh of the tensor
a. That is, we make the assumption thatG8 can be decom-
posed into the product of two distribution functions, o
two-dimensional~in general, non-Gaussian! and another one
dimensional Gaussian,Gjh8 andGz8 , respectively

G8~r ,n;r0 ,a!5Gjh8 ~~j,h!,n;~j0 ,h0!,a!Gz8~z,n;z0 ,a!,
~30!

where

Gz85
1

A2pczz,n
0

expS 2
~z2z0!2

2czz,n
0 D . ~31!

The variance along thez direction,czz,n
0 , is exactly the same

as in the equilibrium case and coincides with thezzcompo-
nent of the second moment of the distribution function for
n-segment long sub-chain in the bulk. In turn,Gjh8 satisfies
the following ~in general, anisotropic! diffusion equation in
the space of the eigenvector directionsj andh of the tensor
a:

]Gjh8

]n
5D1

]2Gjh8

]j2 1D2

]2Gjh8

]h2 , ~32!

whereD1 andD2 are the two chain ‘‘diffusivities’’ driven by
the strain tensora in the eigenvector directionsj and h,
respectively

D15
N21

2
bjj ,

~33!

D25
N21

2
bhh ,

with the matrixb defined through

b5a2. ~34!

The scaling of the diffusivities in terms of the apparent str
tensor eigenvalues provides for the distortion of the ch
conformations that are anticipated to occur due to the flo

Equation~32! needs to be solved together with the sa
initial and boundary conditions as for the equilibrium ca
i.e., initial condition the same as in Eq.~21! above and
boundary conditions dictated by the physical problem. Wh
Eq. ~32! is solved in the bulk with boundary conditions a
plied at6`, the solution recovered is that of the product
two stretched Gaussians; when such a solution is introdu
into Eq. ~29!, we are led to Eq.~28!. Therefore, our schem
extends Flory’s previous analysis on flow induced chain
formations in the bulk to the more general case of chains
are close to a solid boundary.

In summary, by substituting Eqs.~18!, ~26!, and~29! for
the various components of the internal part of the free ene
hi into Eq. ~17! gives
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r0kBT
5us2wsxsd~y!1

1

2
n1,e~y!lnFn1,e~y!

2

N

Z~N21,y!G
1~12w~y!!ln~12w~y!!1xw~y!~12w~y!!

2
1

2
n1,e~y!E

0

` G~R1r0 ,N21;y!

Z~N21,y!

3 lnFG8~R1r0 ,N21;y,a!

Z8~N21,y;a!

3
Z~N21,y!

G~R1r0 ,N21;y!Gd3R, ~35!

for the internal part of the free energy density, wheren1,e(y)
and w(y) are not independent quantities but are related
each other through the integral constraint, Eq.~24!.

The last step in our analysis is to connect the tensoa
with the conformation tensorc in terms of which the evolu-
tion equations have been written. Sincea describes the
change in the polymer end-to-end distance components
their equilibrium~zero flow! value in a similar fashion as a
‘‘apparent strain,’’ we have

c5a•c0•aT, ~36!

which guarantees that the tensorc itself is symmetric, and
where the subscript 0 denotes static equilibrium values,
values calculated by taking into account surface but no fl
effects. In the case of interest here,c0 has a diagonal form

c05F cxx,0 0 0

0 cyy,0 0

0 0 czz,0

G , ~37!

wherecxx,05czz,05kBT/K ~i.e., they remain at their equilib
rium values!, whereascyy,0 depends on the distancey from
the surface@i.e., cyy,05cyy,0(y).# This results into the fol-
lowing set of relations~assumingaxz5ayz5azx5azy5azz

50 andaxy5ayx):

cxx5axx
2 cxx,01axy

2 cyy,0~y!,

cxy5axy~axxcxx,01ayycyy,0~y!!, ~38!

cyy5axy
2 cxx,01ayy

2 cyy,0~y!.

In the absence of flow effects, Eq.~35! for the internal
free energy density can be directly compared against the
reported by Scheutjens and Fleer.5 To within a constant
which is proportional to the total number of polymer chai
and a function of the number of lattice sites per layer~and,
therefore, does not contribute to the minimization proc
dure!, the two expressions are identical provided that
following two correspondences are made:~a! The sum over
all possible conformations in the Scheutjens–Fleer lat
model corresponds to an integral over all chain starts in
continuum model, and~b! the ratiovc between the numbe
of arrangements of a chain in conformationc and that of a
chain in the bulk solution corresponds to the partition fun
tion Z(N21,y), which gives the ratio of the available con
formations for a chain starting aty over those for a chain in
the bulk.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Using Eq. ~35! for the internal part of the free energ
density together with the kinetic energy densityhk , one can
in principle solve for the polymer density and polymer co
formation either by minimizing the total Hamiltonian in ca
of static equilibrium conditions or by solving the governin
equations with suitable boundary conditions in case of flo
ing conditions. Part II addresses this issue for the case
dilute polymer solution near a noninteracting surface.
additional issue, however, which should also be resolved
fore considering this problem is how to calculate the Volte
derivative dHi /dn1 , i.e., of dHi /dn1,e appearing in Eq.
~16!, in the presence of the integral constraint, Eq.~24!. This
Volterra derivative plays the role of a generalized chemi
potential and appears explicitly in the governing equatio
This is addressed in the next section.

IV. THE VOLTERRA DERIVATIVE dHi /dn 1,e

The calculation ofdHi /dn1,e requires some special han
dling, because the internal part of the free energy density,hi ,
is a function of bothw(y) and n1,e(y) which are not inde-
pendent but are connected through the integral constr
Eq. ~24!. Two alternative approaches can be followed: T
first one involves the use of a local Lagrange multiplier, a
it is the easiest to apply; however, its applicability is stric
limited to static conditions under which the governing equ
tions can be cast into a minimization problem. Thus, a s
ond approach is also presented, which not only does red
to the same formula as the Lagrange minimization proced
under equilibrium conditions but has also the advantage
being applicable under nonequilibrium conditions. Both
these approaches are presented in Appendix A, and they
to the following formula fordHi /dn1,e :

1

kBTr0

dHi

dn1,e
~y0!

5
1

2 F11 lnS N

2 D1~x21!NG1
1

2 F ln n1,e~y0!

2 (
n50

N21 E
0

`

@ ln~12w~y!!12xw~y!#P~y,n;y0!dyG
2

1

2
ln Z~N21,y0!2

1

2 E G~R1r0 ,N21;y0!

Z~N21,y0!

3 lnFG8~R1r0 ,N21;y0 ,a!

Z8~N21,y0 ;a!

3
Z~N21,y0!

G~R1r0 ,N21;y0!Gd3R, ~39!

whereP(y,n;y0) is defined by Eq.~A1.3! of the Appendix.
For a dilute polymer solution (w(y)!1;y), Eq. ~39! re-
duces to
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kBTr0

dHi

dn1,e
~y0!

5
1

2 F11 lnS N

2 D1~x21!NG1
1

2
lnS n1,e~y0!

Z~N21,y0! D
2

1

2 E G~R1r0 ,N21;y0!

Z~N21,y0!

3 lnFG8~R1r0 ,N21;y0 ,a!

Z8~N21,y0 ;a!

3
Z~N21,y0!

G~R1r0 ,N21;y0!Gd3R. ~40!

Thus, the problem boils down to calculating the partiti
functionsZ(N21,y0) andZ8(N21,y0 ;a), i.e., the propaga-
tors G(R1r0 ,N21;y0) and G8(R1r0 ,N21;y0 ,a) in the
absence and presence of flow, respectively. For both,
corresponding diffusion equation needs to be solved. In
cases,y is the direction normal to the wall which is assum
to coincide with the coordinate planey50, x is the flow
direction ~whenever a flow is applied!, andz is the neutral
direction.

V. FINAL CONSIDERATIONS

With expression~40! for dHi /dn1,e , a possible method-
ology for calculating surface effects on the rheology of
polymer solution can be developed as follows:

~1! Given the type of flow imposed on the solution~for
example, extensional or simple shear!, the kinematics of the
flow and the form of the strain tensora are first assumed. Fo
the assumed type of flow, the propagatorG8(R1r0 ,N
21;y0 ,a) should first be calculated. At this stage, w
should keep in mind that calculatingG8(R1r0 ,N
21;y0 ,a) is not a straightforward task; in general, it is
very formidable problem, since it depends on both the ty
of flow considered and the solid surface–polymer inter
tions, the latter dictating the proper boundary conditions.
some cases, however, analytical solutions can be found
will be seen in Sec. II of the present work for the case o
simple shear flow past a non-interacting surface.

~2! By integratingG8(R1r0 ,N21;y0 ,a) over R, the
partition function Z8(N21,y0 ;a) is then calculated as a
function of the distancey0 from the surface and the~as yet
unknown! elements of the strain tensora.

~3! Having calculated G8(R1r0 ,N21;y0 ,a) and
Z8(N21,y0 ;a), the Volterra derivativedHi /dn1,e is ob-
tained in terms ofy anda, by using Eq.~39! or Eq. ~40!.

~4! This allows us to substitutedHi /dn1,e into the mac-
roscopic governing equations and solve for the independ
macroscopic variables. The governing equations consis
the concentration equation, Eq.~14!, the three components o
the momentum equation, Eq.~11!, and the equations for the
three independent components of the constitutive equat
Eq. ~12!. These equations can be written either in terms
the conformation tensorc or in terms of the apparent strai
tensora, through Eq.~36! or its equivalent, Eq.~38!. Equa-
tions ~11!, ~12!, ~14!, ~22!, ~24!, ~35!, and ~36! define a
closed system of partial differential equations fora, ux(y),
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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n1,e(y), andw(y), and constitute the final system of equ
tions to be solved. The input data are the number of s
ments per chainN and the Flory chi-parameter needed in t
expression fordHi /dn1,e , as well as all quantities characte
izing the flow field like, for example, the imposed she
stresstyx , and the bulk fluid~solvent and polymer! viscosi-
ties. Results from applying the methodology to the probl
of a simple shear flow above a noninteracting solid surf
are presented in Part II of this work.

VI. CONCLUSIONS

In this paper, a continuum model has been presented
the study of surface effects on polymer solutions under q
escent and flow conditions, with length resolution down
chain segment size. The model makes use of a genera
free energy formulation and a set of governing equati
connecting microscopic parameters to macroscopically
served quantities, derived from the Hamiltonian descript
of transport phenomena. Within this framework, most of
physics is built into the description of the free energy of t
system; this is the most important quantity entering into
governing equations. To define it, a microscopic model
the polymer conformations in the interfacial region needs
be developed. In our work, this is achieved by employ
into the analysis not only the polymer segment density
also the polymer chain end density. Thus, polymer con
mations are defined by specifying the starting point of ev
chain and the transition probabilities for its conformations
develop in space.

Within this hierarchical approach, the problem of stud
ing surface effects on the structure and rheology of polym
solutions has been broken down to two different sub-tas
The first involves calculating the propagator~which de-
scribes chain conformations! near the solid surface in th
presence of the flow field; the second involves solving
final system of governing equations to get the desired p
files for the given flow field. Through this structured met
odology, the new approach permits extending the len
scale of analysis near the boundary from the chain size d
to the segment length. Thus, it allows, in principle, for
much more systematic modeling of surface- and flo
induced chain deformations than previously possible w
continuum approaches, of detail commensurate to the d
of lattice models,5 or fully microscopic chain conformation
studies,6 limited though to static equilibrium only. In the
present Part, only the general formulation of the new
proach was given. Results from applying it to the problem
a dilute polymer solution flowing near a wall are presented
Part II of the work. Additional results from extending th
approach to a polymer solution flowing past an adsorb
surface will be presented in a future work.
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APPENDIX: EVALUATION OF dHi /dn 1,e

1. Through the use of the definition of the Volterra
derivative

We want to calculate the Volterra derivative,dHi /dn1,e ,
of the functional

Hi5E
0

`Fhmix~n1,e~y!,w~y!!2
kBTr0

2
n1,e~y!

3E G~R,N21;y!

Z~N21,y!

3 lnFG8~R,N21;y,a!

Z8~N21,y;a!

Z~N21,y!

G~R,N21;y!Gd3RGA dy,

~A1.1!

where the argumentsw(y) and n1,e(y) are related by the
following equation:

w~y!5
1

2 (
n50

N21 E
0

`

n1,e~y0!P~y,n;y0!dy0 , ~A1.2!

with P(y,n;y0) defined as

P~y,n;y0![G~y,n;y0!
*0

`G~y8,N212n;y!dy8

*0
`G~y8,N21;y0!dy8

.

~A1.3!

The contribution to the Volterra derivative of the seco
term in Eq.~A1.1! is easily seen to be2kBTr0/2*G(R,N
21;y)/ Z(N21,y)ln@G8(R,N21;y,a) / Z8(N21,y;a)Z(N
21,y)/G(R,N21;y)#d3R. What remains is to calculate th
contribution of the Flory–Huggins mixing term,Hmix ,
which is a function of bothw andn1,e . This consists of two
terms: The first is]hmix /]n1,e and comes from the direc
dependence ofhmix on n1,e . The second comes from th
indirect dependence ofhmix on n1,e through its relation with
the segment fractionw by Eq. ~A1.2!.

To evaluate the second contribution, we make use of
definition of the Volterra derivative of an arbitrary function
F :

F~n1,e1dn1,e!2F~n1,e!

[E F dF

dn1,e~y!
•dn1,e~y!GA dy as dn1,e~y!→0,

~A1.4!

where the argumentn1,e is meant to be a function,n1,e

5n1,e(y), and the limit is to the constant zero function~i.e.,
the function of a zero value everywhere!. Now, we assume
that the argumentn1,e(y) changes infinitesimally from
n1,e(y) to n1,e(y)1dn1,e(y). This will result in a change of
w(y) from w(y) to w* (y), given by

w* ~y!5
1

2 (
n50

N21 E
0

`

@n1,e~y0!1dn1,e~y!#P~y,n;y0!dy0 ,

~A1.5!

which, with the help of Eq.~A1.2!, can also be written as
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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w* ~y!2w~y!5
1

2 (
n50

N21 E
0

`

dn1,e~y0!P~y,n;y0!dy0 .

~A1.6!

SinceHmix is a function of bothn1,e(y) and w(y), the
change in Hmix upon changingn1,e(y) from n1,e(y) to
n1,e(y)1dn1,e(y) can be expressed as follows:

Hmix~n1,e1dn1,e!2Hmix~n1,e!

5E
0

`F]hmix

]n1,e
dn1,e1

]hmix

]w
~y!•@w* ~y!2w~y!#GA dy,

~A1.7!

i.e.,

Hmix~n1,e1dn1,e!2Hmix~n1,e!

5E
0

`F ]hmix

]n1,e
dn1,e1

1

2

]hmix

]w
~y!

3S E
0

`

dn1,e~y0! (
n50

N21

P~y,n;y0!dy0D GA dy, ~A1.8!

or, equivalently

Hmix~n1,e1dn1,e!2Hmix~n1,e!

5E
0

` ]hmix

]n1,e
dn1,eA dy1

1

2 E
0

`E
0

` ]hmix

]w
~y!

3 (
n50

N21

P~y,n;y0!dn1,e~y!dy A dy0 . ~A1.9!

In the last equation,y andy0 are dummy indices; there
fore, they can be interchanged, which, after collecting co
mon factors together, helps casting Eq.~A1.9! into the fol-
lowing form:

Hmix~n1,e1dn1,e!2Hmix~n1,e!

5E
0

` ]hmix

]n1,e
dn1,e~y!A dy1E

0

`

dn1,e~y!S 1

2 E
0

`

3
]hmix

]w
3~y0! (

n50

N21

P~y0 ,n;y!dy0D A dy. ~A1.10!

Comparison of the last equation against Eq.~A1.4!, the defi-
nition equation of the Volterra derivative, suggests that

dHmix

dn1,e
5

]hmix

]n1,e
1

1

2 E
0

` ]hmix

]w
~y0! (

n50

N21

P~y0 ,n;y!dy0 .

~A1.11!

This is the desired result. By collecting then all contributio
to the Volterra derivativedHi /dn1,e we get that
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s

dHi

dn1,e
52

kBTr0

2 E G~R,N21;y!

Z~N21,y!

3 lnFG8~R,N21;y,a!

Z8~N21,y;a!

Z~N21,y!

G~R,N21;y!Gd3R

1
]hmix

]n1,e
1

1

2 E
0

` ]hmix

]w
~y0!

3 (
n50

N21

P~y0 ,n;y!dy0 , ~A1.12!

which is the relation that we wanted to obtain.

2. Through the use of a local Lagrange multiplier

This approach is valid only for static equilibrium cond
tions. In this case, the defining equation is of the form

d~Hi2Hi ,b!

dn1,e
50, ~A2.1!

whereHi andHi ,b ~the internal part of the free energy in th
bulk! are functions ofw and n1,e which are constrained
through Eq.~A1.2!. In order to take the constraint into ac
count, we make use of a local Lagrange multiplier,w(y),
and we form a new functional

F~n1,e ,w,l!5E
0

`

hi~w~y!,n1,e~y!!dy1E
0

`

l~y!S w~y!

2
1

2E0

`

n1,e~y0! (
n50

N21

P~y,n;y0!dy0D A dy,

~A2.2!

wherehi denotes the internal free energy~in fact, it is the
internal free energy minus the corresponding expressio
the bulk!. As was shown above, the last term on the rig
hand side gives rise to a double integration, whose t
dummy indices,y and y0 , can be interchanged so that th
functionalF takes the form

F~n1,e ,w,l!5E
0

`S hi~w~y!,n1,e~y!!1l~y!w~y!

2 1
2n1,e~y!E

0

`

l~y0! (
n50

N21

P~y0 ,n;y!dy0D A dy.

~A2.3!

The equilibrium conditions then become

]F

]w
50,

]F

]n1,e
50, ~A2.4!

]F

]l
50,

from which we get
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]hi

]w
~y!1l~y!50,

]hi

]n1,e
~y!2

1

2 E
0

`

l~y0! (
n50

N21

P~y0 ,n;y!dy050, ~A2.5!

w~y!2
1

2E0

`

n1,e~y0! (
n50

N21

P~y,n;y0!dy050.

Elimination of the parameterl(y) in the last three equation
and substitution ofhi then leads to the following conditions

2
kBTr0

2 E G~R,N21;y!

Z~N21,y!

3 lnFG8~R,N21;y,a!

Z8~N21,y;a!

Z~N21,y!

G~R,N21;y!Gd3R

1
]hmix

]n1,e
~y!1

1

2 E
0

` ]hmix

]w
~y0! (

n50

N21

P~y0 ,n;y!dy050,

w~y!2E
0

` 1

2
n1,e~y0! (

n50

N21

P~y,n;y0!dy050, ~A2.6!

which are in complete agreement with the conditions
tained through the definition of the Volterra derivative wh
dHi /dn1,e50.
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