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The flow behavior of polymer solutions near a solid surf@gther neutral or adsorbings modeled
through a new, hierarchicalmacroscopic and microscopicapproach which enables the
thermodynamically consistent extension of equilibrigstatig considerations to nonequilibrium
(flow) conditions. The approach involves two steps: First, the set of primary, independent, variables
defining the state of the system at the macroscopic level is chosen, and a complete set of transport
and constitutive equations is constructed for them through a two fluid, Hamiltonian model. In the
present work, the macroscopic variables include the polymer chain concentration, the macroscopic
fluid velocity, and the conformation tens@refined as the tensor of the second moment of the chain
end-to-end vectgr The governing equations involve tfextended free energy or Hamiltonian of

the systemH, and are valid both in the bulk of the fluid and in the interfacial region. Thus, to solve
them one needs to specifi. This is done in a second step, by invoking a microscopic model, which
consistently takes into account the simultaneous effect on chain conformations of both the solid
boundary and the imposed flow field. Solid boundary effects are taken into account in the solution
of a diffusion equation for the chain propagat@{r,n;ry) which represents the weighted
probability that am-segment long chain which startsratwill end at positionr. Flow field effects

are taken into account through the definition of a generalized propa@d{orn;rg,a), which

further depends on the apparent strain tergaepresenting chain deformation effects due to flow.
The present part of the paper describes the general formulation of the approach and its relevance
with previous works. Results from applying the methodology to the case of a polymer solution
flowing past a purely repulsive surfaga wall) are presented in the second part of this work.

© 1999 American Institute of Physids$0021-960809)50701-0

I. INTRODUCTION interactions have focused on théstatio equilibrium
problem!?®6 where a fairly good understanding has been
The study of the behavior of polymer solutions next todeveloped; on the contrary, very few works have undertaken
solid surfaces has received a great deal of attention in thghe same problem under flow conditiotsThe lack of an
past few years;® not only because of its intrinsic scientific adequate analysis for the flow problem can be attributed to
interest but also because of its technological importance. Wghe inherent complexity of the system, but also to the lack of
can mention the role of adsorbed polymer molecules in they consistent thermodynamic and mathematical formalism
stability of colloidal suspensions against flocculation, theirthat could enable the consistent extension and utilization of
use as adhesives and lubricants, and the significance @guilibrium concepts and principles to the nonequilibrium
polymer-wall interactions in polymer flows through porous (fiow) regime. We use here the recently developed Hamil-
media’~® In most of these cases, the interaction of polymefonian formalism of dissipative flow processes in media with
molecules with the solid surface takes place under the applipternal microstructur@2in order to systematically inves-
cation of an external flow field. The flow field deforms the tigate the combined effects of the adjacency to a solid sur-

polymer molecules and further enhances the conformationghce and the imposed flow field on the polymer concentration
changes in the interfacial region. Better understanding of this,,§ conformation.

fundamental interplay between flow and surface effects on o development of a Hamiltonian formalism for dissi-
the structure and conformational properties of polymer mo"pative systems started with the pioneering works of Kauf-
ecules can, therefore, significantly improve our capability for

o LYY ; ) man, Morrison, and Grmela which all appeared almost si-
designing more efficient interfacial systems tailored for SPemultaneously in 1984315 After that, significant research
cific use in particular applications. '

So f £ th e i ¢ vol ; activity followed in the field which eventually culminated to
O far, most of the existing studies of polymer—surfacey,, ¢ systematic and broad descriptions such as the general-
ized brackétt and, more recently, the GENERIC
dpresent address: Department of Chemical Engineering, University oformalisms%6 These latest two formalisms have proven to be
Patras, and Institute of Chemical Engineering and High-Temperatur ; ; ; ;

Chemical Processes. Patras, Greece 26500, %quwaler_lt in all but the Boltzmann eqqagq(?nlmylch can only
YAuthor to whom correspondence should be addressed. Electronic maipe dgscr'bed by t_he GENERIC f_orm{ah}s The ke_‘y un-
beris@che.udel.edu derlying assumption of the Hamiltonian approach is the ex-
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istence of a partial(local) thermodynamic equilibrium, 1. MACROSCOPIC FORMALISM: GOVERNING
which can be described by only a few internal variablesEQUATIONS IN TERMS OF A FREE ENERGY
(such as the second moment of the distribution function for UNCTIONAL

the polymer end-to-end distance vegtdn addition to the The analysis of surface—polymer interactions is based on
traditional and widely used thermodynamic variables, likea consistent modification of the expression for the extended
the density and the temperature. In the following we employfree energy of the system that enters into a set of continuum
the methodology developed within the generalized bracketquations governing the rheology and mass transfer phenom-
formalism as described in our previous wdtk? ena in dilute polymer solutions at the macroscopic level.
So far, the Hamiltonian approach has enabled the deThese equations represent an extension of the traditional
scription of the dynamics of many polymer flowing transport equations for fluids characterized by an internal mi-
systems~1|n simple test cases, it has duly led to the sameFrostructure. The effect of microstructure is taken into ac-
transport equations as the ones obtained from the applicatidiPunt through the extra stress or conformation tensor, and in
of more conventional conservation and continuum mechant-he e"a“ﬂa“on of the e>.<tended free energy of th? system
ics principles. In more complicated cases, it has allowed fot;pon which these equations depend. Similar equations have

. . . . een derived by a number of researchers: Helfand and
the evaluation of the thermodynamic consistency of varioug. o .<049 and Milne?® coupled the internal deformation

proposed.models. In_ such cgses, It _negds to he con_JpIed W'Q?ate with the number density of the polymer molecules in
an analysis of the microscopic physics in order to give Morgye gescription of the rheology and mass transfer. In parallel,
valuable results. It is this combination of the microscopicpgj 21 Onuki?2 and Bhaveet al?® arrived independently at
modeling of the system internal structure with the macro-simijlar sets of equations describing stress-induced concentra-
scopic Hamiltonian formalism that provides a means fortion and conformation changes in flows of dilute polymer
studying the interaction of thémicroscopi¢ polymer chain  solutions, where the polymer molecules were modeled as
conformations with dmacroscopicflow in the adjacency of linearly elastic “Hookean” dumbbells. The same problem
a solid surface. has also been addressed from a continuum viewpoint by
In fact, this approach has already been followed in gOttinge”* and more recently by Mavrantzas and B&tis
previous publicatiort® in connection with the assumption of based on a two-fluid model. Although all of these approaches
a Gaussian distribution function for the chain end-to-end dishave resulted into similar sets of equations, subtle differ-
tance vector, in order to give a qualitative description of the€Nces Qms;ﬁamong them, which, as was shown in a recent
effects of a purely repulsive surfada solid wal) on the publications” can prove critical in our capability to carry out

conformation, concentration, and rheology of a dilute poly_computatlons.

S . . The investigation of the differences between the equa-
mer solution in a simple shear flow. Compared to that previ-. . ; .
tions derived from three different formalisms, the

ous work;™ in the present study, the length scale of analyS'SDody-tensoﬁ“ the two-fluid Hamiltoniarf> and an inhomo-
of the microscopic deformations is reduced from distanceg . aous kinetic theoR?, was undertaken in a recent

commensurate with the average end-to-end chain length,pjication?” There it was shown that, if all relevant terms in
(which is the minimum length scale for which the previously the inhomogeneous kinetic theory analysis are consistently
assumed Gaussian approximation is vel@distances com- taken into account, the resulting equations are in perfect
mensurate with the length of the repépblymer segment  agreement with those of the two continuum theories, at least
unit. This refinement is made possible through the use of ap to the leading order term in an expansion of the solution
self-consistent mean-field approach, based on the randowariables with respect to their equilibrium valuiéshe con-
flight chain model, describing chain conformations under arsistent application of the kinetic theory to inhomogeneous
externally imposed field. flows has also been the subject of a very recent paper by
This paper is the first in a series of two. It presents theCurtiss and Bird® Their findings further reinforce the con-
general formalism valid under both equilibrium and nonequi-clusions of Beris and MavrantZds(see, in particular, their
librium (flow) conditions, and makes the connection with APPendix B), as they consistently extend the inhomogeneous

previously developed theoretical works. It is organized ainetic theory analysis to a broader class of macromolecular

follows: Section Il presents the macroscopic governing equam?dels. In the following, our two-fluid formulatidhis used

tions in their most general form, valid under both static 25 the baS|§ for the modeling of surface mteractlpns,.smce it
—_ . " . is the one involving the fewest parameters, while simulta-
(equilibrium) and dynamidflow) conditions. Section Il de- D . : .
: - . neously yielding consistent results for a variety of inhomo-
scribes the relevant terms entering into the expression for the

. . eneous rotating viscometric flok%,as compared against
extended free energy of the system; the microscopic modt%

- SHetdy ¢ , _ Previous investigation$29:30
and the quantities it utilizes are described here in great detail.  tha main assumption behind the two-fluid model is that

Section 1V follows with some additional calculations neededys o interpenetrating continua corresponding to the poly-

to evaluate a number of important mathematical quantitiesmer and solvent molecules, which are assumed to be in ther-
In Sec. V, we give a description of the algorithm that shouldmal but not mechanical equilibrium. Then, for an incom-

be followed for the solution of the combined microscopic—pressible dilute polymer solution, the governing equations
macroscopic equations. Finally, in Sec. VI, we present ouare derived as follows—for a detailed analysis see Chap.
conclusions. 9.2.2 of Ref. 11 and Chap. 2 of Ref. 31. The two phases of
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the system are assumed to be completely characterized ygh molecular weight polymer regiméHelfand regime,
the following set of primary(independent variables: The Fredricksor), which is exactly the regime that we are inter-
total mass density, taken to be constant for an incompress-ested in describing here. Thus, although, an explicit depen-
ible system considered here, corresponding to a total seglence ofH also on gradients of the primary variables is
ment(polymer plus solventnumber density,, the polymer  possible within the formalism adopted hereee, for ex-
chain fraction numbem,, the total momentum densityl ample, Eq. 5.2-6 in the monograph by Beris and Edwdids
=pv, wherev is the total velocity field, and an internal such a dependence will be neglected in the present study, just
structural parameteiC=pgh,c, wherec is a second-order only in order to simplify the mathematics and keep the com-
tensor characterizing the conformation of polymer mol-plexity of model equations at a low, tractable level.

ecules. For an isolated Rouse chain in the bullcan be In our two-fluid Hamiltonian model, the starting point is
identified with the second moment of the distribution func-that of the notion of two interpenetrating, but noninteracting
tion for the end-to-end distance vector of the polymer chainscontinua which we label aél) and (2). Component(2) is

Of course, more detailed internal structural parameters, aissumed to be structureless, whereas compoiigrs as-
discrete(such as the moments of the intrabead position vecsumed to be viscoelastic, characterized by a structural pa-
tors of a Rouse chaif) or even continuuntsuch as a distri- rameter, the conformation tensor According to the Hamil-
bution functior’®*) nature can also be introduced into the tonian approacht followed in this work, the governing
description of the internal microstructure. However, this isequations are obtained from the dynamic equations devel-
accomplished at the expense of complexity, thus, prohibioped for an arbitrary functiondt :

tively increasing the applicability of the model. Since these

results can usually be closely followed up with suitable clo-

sure approximation¥: this path is not pursued any further in dF
the present work. at ~ (R HIF[FH], )
We assume that the system is characterized by an ex-
tended free energy functional, which is the sum of the
kinetic energyH,, and an internal free energy palt; : after the Poisson brackéF,G} and the dissipative bracket
[F,G] have been defined for arbitrary function&sndG. In
H=H, + Hi:f [h(y)+hi(y)]A dy, (1) :irgiswork, the Poisson bracket is taken to have two contribu-

whereh,=p1?/2 is the kinetic energy densityy is the in-

ternal free energy d_ensit}\ stands for the surfac_e area in the {F,G}={F,G},+{F,Gl,. 3
plane &-z), andy is the component perpendicular to the

surfaceh;, is, in general, considered to be a function of all:

ny, C, and the position vectar. Although the use of coarse- The first contribution{F,G}; involves the direct sum of the
grained, structural parameters, such as the conformation tererms corresponding to two interpenetrating continua each
sorC or ¢, describing the overall polymer conformation in an one taken as a single compressible fluid writtéailowing,
average sense, as independent arguments of the free enefgy example, Morrison and Greeiigin terms of the indi-
density function is not an entirely new idea in irreversiblevidual mass and momentum densitiesp,,m,;) and
thermodynamics approaches to melt viscoelasticity, it is only p,,m,), respectively,

during the last years that people in polymer community have

started using it. For example, very recently, Mavrantzas and
Theodorod® used it, in conjunction with an atomistic simu- SF 5 5G SF
lation of a polymer melt, to calculate the free energy of an{F’G}lzf ( _[ B( )_ ( ”
oriented polyethylene melt.

In general, in order to represent spatial inhomogeneities oF 0G| &G oF
within the system, gradients of the primary variables need | 8p2 Plom3)  op, P\omd P2
also to be included among the argumentfigf as was very ]
convincingly shown in the influential pioneering work by _ oF ﬁ ml) 9G v (5_': mt
Helfand?® followed later by many other¥. Alternatively, Lomg, Plomg ) smy Al emy e
one can describe inhomogeneous effects through the depen- -
dence of the Hamiltonian density on some auxiliary vari- _ oF (ﬁ 2)_ ﬁ (i Z)D
v m \Y% mZ | ||dV
ables, connected to the primary variables through nonlocal R T iy B R B '
(integra) relations. Such an auxiliary variable, widely used (4

in the present application, is the segment dengityn this

way, inhomogeneous entropic effects are captured by the

chain partition functiorZ [first term on the right-hand-side of wherem;=p,u; andm,=p,u, are the momentum densities
Eq. (18) below] exactly as was done by Hong and of the two fluids. The second terfiF,G}, involves elastic
Nooland?’ (see their Eq. 2-20 representing the relative contributions and refers to the viscoelastic comporieoin-
number of chain conformations in the interfacial region rela-ponent 1, characterized by the internal structural parameter
tive to the bulk. Such entropic effects usually dominate in theC, i.e., the conformation tensor
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F.G —f T vlZc FG—J"SV F v, 2y, 22
tF.Gr= | | = 5c,, Vo mi Ces FCI==] 2 |Veom, Ve om,|| V= om,
Y
6G oF Lo %8y fz oF 6
 6C.p vy sm, Cop A oM, B SM o M _ g
oF | &G 8G\ oF 2 oF  6G
_Caﬁ Va 1 _Va il _f Ca,B av, (9)
5my 5Cy,5 5my 5Cyﬁ )\poan 5Cay 5C37

_Caﬁ V

SF 5G 5G\ SF plus their corresponding entropy correction terms which do
B(W) f_vﬁ< ) DdV not need to be mentioned, since they only affect nonisother-
4 [ mal processes. These are the only phenomenological dissipa-
(5 tive interactions assumed in our model, and they correspond
to well-established quadratic terms for the entropy produc-
The above form originated from Marsdehal™ and, for an  tion allowed in the system, representing the lowest order of a
elastic medium, it was exactly derived by Edwards andmore general nonlinear dissipation. In the above equatjgn,
Beris* from first principles. is the solvent viscosity, which is constrained to be non-
Next, we derive the continuity and the momentum bal-negative,Z is the drag coefficient tensor, which is assumed
ance equations for the two individual species and the evoluto be symmetric and positive definitg,is the polymer re-
tion equation for the conformation tensGrsolely based on laxation time, andK the Hookean spring constant. The dis-
the reversible dynamics described by the above wellsipative form of the evolution equations can then be obtained
established Poisson brackets, through a direct comparison bf/ evaluating the additional terms arising from the introduc-
the dynamic Eq.(2) with the chain rule of differentiation tion of the dissipative bracket into the dynamic equation for
applied to an arbitrary function&.* Then, two new sets of an arbitrary functionaF, Eq. (2). Note that exactly the same
variables are introduced, the total mass denpityith its  form of the equations would have been derived based on the
corresponding momentum densiy, and the reduced mass more recently formulated GENERIC appro&tlgiven the

|40

densityp_ with its corresponding momentum denshy/_ , equivalence of the two approaches as demonstrated in sev-
i.e., (p,M) and (p_ ,M_): eral occasion$®” also covering the present macroscopic
model.
p=pi+tps, M=my+m,, By re-expressing the resulting equations in terms of the

new sets of variablegp,M) and (p_,M_) and neglecting
inertial terms, a linear equation is obtained for. If this is
p =p, M = P2 my— P1 m,. (6)  solved forAv and substituted back into the equation for a
p1tp2 p1tp2 one-fluid reduction of the two-fluid model can be obtained.
This consists of three equations: The momentum equation
The velocitiesv and Av that the two new momentum densi- for the total mass density, the evolution equation for the
ties refer to are conformation tensor, and the conservation or diffusion equa-
tion for the density of the viscoelastic component, compo-
nent(1), with a diffusivity tensorY given by

= P P2
pitp2 pitpe T pitpy O p1 \?
Y=p,|1- z 1 (10)
p1tp2
M_
Av= p— =Uu;—Uy, (7) For a steady-state unidirectional flow, where the velocity

field has only one component,, in the directiorx, varying
) ] ) o ~_only along the perpendicular directigni.e., v,= v,(y), the
respectively. In this way, the incompressibility constraint isgypstantial derivatives of all variables of interest with respect

easily taken into account by imposing to time are zero, and the final macroscopic governing equa-
tions that are obtained are as folloWs."#*
V-M=0sV.v=0, (8 The first is the momentum equation
. _ _ oh;
in the_ final equations, where represents the mass average 0= -—Vp+ 5 ,Vv+V-o—VII—- = (12)
velocity of the mixture. r

So far the two components of the fluid have been as
sumed noninteracting. Thus, the dissipative bra¢keg] is
next introduced, which involves three terms: The first is a 1
viscous term, the second is a drag contribution term due to C1)=— K& (12)
the fact that the two components in the mixture are allowed
to move with different, in general, velocities and the third iswhere the subscrip(l) denotes the upper-convected time
a relaxation term for the polymer viscoelasticity derivative

the second is the constitutive equation
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9C other works>?°~?*we immediately notice the presence of the
Cy=—; v VC-C-Vv—- vv'-C, (13 gradient of the polymer excess stre¥s,a, in the driving
force of Eq.(14). This term is responsible for stress-induced
and the third is the concentration equation polymer migration phenomena, as for example, discussed in

Refs. 3 and 23-27. In addition, we notice the presence of the
) (14)  termoh;/dr describing the partial derivative of the free en-

ergy density with respect tokeeping all the other variables

Equation(11) is the momentum equation for the total constant. As mentioned above, this term is nonzero only if

velocity field. This is seen to involve into the right-hand- there is a direct dependencetgfon the local position; there-
side, in addition to the traditional pressure and viscous termfore, it is zero in the bulk, where the medium is assumed to
(p is the pressure ang the solvent viscosity three extra be homogeneous. However, as we will see in the following,
terms: The first is a polymer contribution to the strees, the presence of a solid surface does induce such a depen-

0=V.

( oh; )
Y- |VII+ —=V. o
ar

defined as dence, so it is important to keep the corresponding term into
the diffusion driving force.
SH . .
o=2C. —, (15) As can be clearly seen from an inspection of the govern-
6C ing equations, they crucially depend on the Hamiltortign
the second is a contribution from the osmotic presdire and in particular on the internal free energy denbity Since
defined as the relevant physics for the problem is introduced into the
model primarily through the specification bf, definingh;
M=n, — +C: ——_h (16) is not a trivial issue, and this is separately done in the fol
Yon, T eCc lowing section, Sec. Ill, in conjunction with a microscopic

and the third is a nhonhomogeneous term due to the dire&naIySIS of the chain conformations near the surface.

dependence of the internal part of the free energy dehsity
on the local positiom. In Egs.(11) and(14) above and in the 1ll. MICROSCOPIC FORMALISM: THE INTERNAL FREE
following, the partial derivatived/dr denotes a direct differ- ENERGY DENSITY

entiation with respect to position keeping all other vari- Consistently with the mean-field approach followed in

ables on whicHy explicitly depends constant; this term is, this work, the internal free energy density of the polymer
therefore, zero in homogeneous bulk flows. The same Cons’olution,hi , is taken to consist of three contributions

vention holds for the partial derivatives with respect to all
other variables. In contrast, the gradient operatatenotes hi=hmix+ Ngyrrt Nges. 17
the total derivative with respect to including both direct
and indirect(through differentiation by partscontributions,
while the symbolsH/éa denotes the Volterra derivative of
the Hamiltonian functional, Eq1), with respect to the vari-
ablea, a=nq, C orv.

Equation(12) is the constitutive equation for the confor-

The first termh,,, describes the free energy density due to
the random mixing of polymer segments with solvent mol-
ecules in the adjacency of a solid surface; it is this term that
involves an explicit dependence of the free energy density on
r. The second termhg,, arises due to possible additional

. hich h : h ion enthalpic interactions of polymers with the solid surface. Fi-
mation tensoiC which, together with(@) the expression for .y “the third termh,.;, describes the entropic corrections

the extra stress tensor provided by E45) and (b) the ex- to the free energy arising from the nonequilibrium deforma-

pression forh; that corresponds to a solution of polymer 4. of the chains due to the imposed flow field.
molecules modeled as infinitely extensible random chains or

Hookean dumbbell is equivalent to the upper-convected- o
Maxwell or Oldroyd-B model. For simplicity, the relaxation A. The free energy of random mixing

time X is assumed constant in our work, signifying, among g the first order, the free energy density of mixing can

other assumptions, a constant mobility. If hydrodynamic in-pq approximated by a Flory—Huggins-type equation
teractions are taken into account, this assumption is no WIN
Ny (y

longer valid and\ becomes a function, in general, of the Pimix = ny( )In(
conformation tensof* However, for systems close to a solid poksT 1y Z(N—-1y)
surface, a spatial dependence of the hydrodynamic interac-
tion should also be anticipated. Given the high complexity of Txe(y)(1=e(y)), (18
the existing model already, such a feature is left to be examwheren; has already been defined as the number fraction of
ined in a future work. polymer moleculesy is the number fraction of polymer seg-
Finally, Eqg.(14) is the conservation of mass equation for ments, x is the Flory-chi parameter, and(N— 1) is the
the polymer species, withf representing the diffusivityas-  chain partition function, defined immediately below, repre-
sumed constant herand VII+dh;/dr—V - o an extended senting the relative number of conformations of ldr-1
driving force. In the absence of a polymer contribution to thesegment chain starting sitversus the number of conforma-
stress and for a free energy density, not dependent on the tions for the same chain in the bulk. In the way used above,
local position, this equation reduces to the traditional masZ(N—1yy) is exactly the same as the quantity used by
diffusion equation, with the osmotic pressuiiethen identi-  Scheutjens and Fletto describe the ratio of the number of
fied with the chemical potential. In fact, as also derived inarrangements of a chain in conformatioand that of a chain

T(1=e(y)In(1=e(y))
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in the bulk. In fact, Eq(18) arises as the continuum analog %

of Eq. (13) of the Scheutjens—Fleer lattice motielhere the Z(n,yo)= JO G(y,n;yo)dy, (22)
continuum distance from the wal, is used in lieu of the

discrete lattice layer index. For example, in the Scheutjenswith its meaning as specified above. Then the number frac-
Fleer formulation,n. is the number of chains belonging to tion of segmentsp is connected with the number fraction of
conformationc, which is represented as(y) here, denoting  chain ends; . as follows:

the number fraction of chains starting yatThroughout this N-1
paper it is assumed that the volumes occupied by a polymeg(y) = z > Ny o(Yo)
segment and a solvent molecule are equal so that the seg- n=0

ment number density is always equal to the volume segment ,
Y yS & g SNy [56(y ,N=1=niy)dy

fraction. The case where polymer segments and solvent mol- dyo. (23)
ecules are assumed to have differing molar volumes has been Z(N—1yo)
addressed recentfy. In Eq. (23), the integral ofG(y’,N—1—n;y) overy’ en-

Equation(18) was originally derived by Flof} for a  suyres that the rest of theNE 1)-segment chaifi.e., of N
homogeneous solution where the fO||0Wing I'E|ati0n5hip be-— 1—n Segments |onpi5 above the Confining boundary, and
tween the(constant segment andconstant chain number  the denominator is the normalizing constattN— 1,y,),
fractions,¢ andn, respectively, holds: taking into account all possible conformations of the entire

(N—1 links long chain that happens to startg; further,
nlzf (homogeneous medium (199 the factor3 corrects for double counting the chains through
N both their end segments. By using Eg2), Eq. (23) takes

with N representing the chain length, i.e., the total number of€ form
segment links per chain §—1. In the present work, though, N1 g Z(N—1—
( n,y)
we are interested in investigating spatial inhomogeneities ip(y)= 2 5 N1e(Yo)G(Y.NYo) -~ dYo.
0 2 Z(N—1yo)

the polymer solution which typically extend down to such

(24)
small length scales as the segment size. Thus, a consistent
generalization of Eq(19) is needed to close the system of ~ Equation(24) is the correct generalization of EQL9) for
equations. This is achieved by utilizing the chain conformainhomogeneous polymer solutions, and can also be com-
tion probabilities, and more precisely the concept of thepared against a similar formula proposed by Dolan and
propagator, as shown immediately below. Edwardé® for chains permanently anchored on a surface

First, we need to define a means for counting chainslEQ. (6) in their pape}. Indeed, in the limiting case that, ¢

Although any point within a chain can serve as a referencés a delta function at the surface, E@4) reduces to their
point, in the present work, we chose the end points. In factgquation. Once, . has been determined, other chain density
since either end of a chain can be taken as a reference poirfiieasures can be evaluated; for example, the middle chain
both of them should be treated as equivalent in the analysiglensityn, , can be obtained as
and thus, we take; asn; /2, wheren, is the fraction of » 1
chain end points, in consistence with lattice model descripn (y)= > N1e(Yo)
tions. We also introduce into the analysis inahhocfash- 0

ion the concept of the propagator. Assuming that the statis- N—1
tics of chains remains Gaussian in the two neutrand z Zl——Y
. . ) . N—1 2
directions, we focus our attention on thieaxis, and we de- xGly, Yo d (25)
fine the propagatoG(y,n;yy) such thatG(y,n;yg) A dyis 2 Z(N=1yo)

proportional to the number fraction ofsegment chains that Of particular significance is the quanti®(N—1y,), de-
start at a distancg, above the surface and endyawithin  fined by Eq.(22), because it is the partition function of the
dy. To calculateG(y;n;yo), we can resort to the diffusion corresponding chain whose origin isyat.*’~**This quantity
equation approach;*® according to which, if no excluded s bound to play a central role in the analysis, since it con-
volume effects are considere@(y,n;y,) satisfies veys all the information for the effects of the surface on the

AG(ymye) 2 FG(Yn:ye) polymer molecules at the conformational level.

T on 6 ayZ 20 . -
B. Enthalpic surface contributions to the free energy

with initial condition The second component of the free energy arises from

at n=0, G(y,0:y0)=8(Y—Yo), (21) po;sible enthalpic inte_ractions of pplymer molecules with the

solid surface. The solid surface directly affects the thermo-

and boundary conditions dictated by the specification of thelynamic state of the solution in two ways: First, if the sur-
problem; in Eq.(20), / is the chain segment length. face is adsorbing, polymer segments gain energy by coming
The proportionality coefficient foG(y,n;yg) is so se- close enough to it. In such a case, since the chains consist of

lected that the integral of the propagator over all possiblea large number of monomeric units all of which can, in prin-
chain end locations gives the chain partition functionciple, interact with the adsorbing surface, a crowdness of the
Z(n,yo): interfacial region in polymer segments is expected, and
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segment—segment interactions should be very importanpolymer end-to-end distance vector is of the same fban

even when the energy of adsorption is very low. fore and after deformation; the effect of the deformation is
Second, the presence of the solid surface changes ttemply to rescale it. For a random chain in the bulk whose

statistics of the polymer conformations in its vicinity; this end-to-end distance is described by a Gaussian distribution,

means that the number of conformatid@ér,n;ry) fromr,  this approach leads to the following express{onour nota-

to r involving n segments depends highly on the distancetion) for the flow contribution to the free energy:

from the wall of the point of originy of the chain. Far away

from the wall, of course, chain conformations at the level of Ner _ %

approximation of our work are isomorphic to the random  poksT 2

flight problem with equal probabilities, ar@(r,n;r,) obeys

a Gaussian distribution. The above effects influence the tot

number of available conformatior(N—1.y,) defined by evaluation of the elastic contribution to steric stabilizatfon

Eqg. (22), which determines the internal conformational en- he bh fthe flow-i | . .
tropy of the system. This entropic effect has already beef'jmdt € phenomenon of the flow-induced polymer migration

: . _— S th the bulk of viscometric flow8?2
taken into account in the definition & described in Eq. However, since an arbitrary flow field simultaneously
(18) above. '

Th ion for th thaloi tributi f th orients and deforms the polymer molecules in space, such
f ¢ etﬁxr;ressmn or e_erlh aprC con r'lttu lon OTINe SUrscalars are not adequate to describe the chain deformation
ace to the free energly, is therefore, written as and need to be replaced by a tensorial quantity. Moreover,

a/)2<+ a§+ a§—3 1

> 5 |n(a§a§a§) . (28

In this form, Flory’s theory of polymer elasticity was quite
uccessfully applied to many problems of interest such as the

Nyt near a confining boundary, the effect of the flow can no
poksT =Us— @sxs8(Y), (26) longer be captured by a simple rescaling of the equilibrium

i ) polymer end-to-end distribution function. Thus, two gener-
where s is the adsorption energy parameter alizations are made in this paper: First, it is assumed that the
Xs= — (Up—Uy), (27)  flow imposes a strain on polymer molecules described by a

, tensore, so that, in order for a particular chain to have an
and corresponds to the difference between the free energy far 4 15 and vectoR after deformation R=r—r,, wherer,

';he trz:]nsLerlkof ahpolym;er segmint :?)nd a solvent mo:jeculsndr are the location vectors for the chain starting and end-
rom the bulk to the surface. In the above equatiansand  j, hoints, respectivelyit must have had an end-to-end dis-
Up l""re lthe adsorp_uoT enﬁ(:rg|es of a s?ijenthand ? sedmeRlnce vectora R before deformation. Second, it is as-
molecule, respectively, ikgT units, andes the polymer oy that the propagator after the flow field has been
segment surface fraction representing the chain segments CY iposed will, in general, be a new functi@ of the coor-
sorbed on the surface. According to E27), if a.segmgpt '_S dinateR (the chain end-to-end vecioithe starting location
preferentially adsorbed to a solvent mqlecwng p05|t|ye, ro and the strain tensak. With this generalization, we can
moreover, the case of a purely repulsive surftaeval) is proceed in the analysis in exactly the same way as done by

obtained in the limitys— —<. To calculateps we need to Flory to evaluate the appropriate form for the Boltzmann
address the issue of how the solid surface affects the stati$s tor that should enter into the expression fog;. The

tics of polymer conformations nearby, an issue that is Veryoqult is
specific to the details of surface—polymer interactions. In

Part Il of the present work, the simple case of a neutral wall Nget 1 G(R+rg,N—1;y0)
will be investigated for whichp is zero. The more complete pokaT ) ”Le(yo)j Z(N—1yo)
case of an adsorbing surface will be separately addressed in a
forthcoming paper.

GI(R+r0,N_1;y0,a)
Z’(N_lyyOIa)

XIn

Z(N—1yo)
G(R+rg,N—1yo)

C. Flow-field contributions to the free energy d°R (29)

The third component of the free energy in E47), hge,
is zero under equilibriunistatig conditions. Under nonequi- where ro=(Xg,Y9,Z;) denotes the start of the chain, and
librium (flow) conditions,hes describes additional changes Z'(N—1y,;a) is the partition function corresponding to the
to the statistics of conformations due to chain deformatiorpropagatorG’. G'(r,n;yy,@) denotes the weighted prob-
from the flow field. These changes are taken into account bgbility that the chain will reach the positionwithin dr in n
evaluating the entropy decrease accompanying the chain dsteps with its start at a distangg above the surface under
formation and its orientational change. Following FIétyn the applied straire. Of course, in the case of an amorphous
order to evaluate this entropy reduction, we need to calculatbulk chain where the propagator is described by a Gaussian
the configurational entropy change involved in the formationfunction, and when the tenser can be diagonalized along
of the deformed state. A key assumption in the originalthex, y andzdirections witha,, ay, anda, in the diagonal,
analysis by Flory is that this change can be characterized blq. (29) is easily found to reduce consistently to Eg8).

a modification in the end-to-end distance by multiplicative  To calculateG’, we make the assumption that, in the
scalar factorspy, ay, anda, along thex, y, andz direc-  deformed stateG’ remains Gaussian in the neutral direction
tions, respectively. In addition, following Flory, it is as- z while in the plane of flow X—vy), it obeys a deformed

sumed that the function that describes the distribution of th@onisotropic diffusion equation, which we prefer to write in
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the space of the eigenvector directighand » of the tensor h; 1 Nie(Y) N
a. That is, we make the assumption ti@t can be decom- ——— =Us™ ¢sxs8(Y) + 5 Me(Y)IN| —5— oo

. o . PoKp ( Y)
posed into the product of two distribution functions, one
two-dimensionalin general, non-Gaussipand another one- +(1—@(y)IN(1—e(y))+ xe(Y)(1—¢(y))

dimensional GaussiaG,, andG,, respectively ) E i )fm G(R+19,N—1:y)
2 MY, TZN-1y)

G’(",n;roaa):Gén((fv7/)1”?(501770):“)62(2,”;20:“)1

(30) “l G'(R+rg,N-1}y,@)
n
Z, N_ 1! ;

where ( e

Z(N_ 1,Y) 3
G/ 1 (Z—Zo)z) (31 XG(R+r0,N—1§Y) dR, #9

=——exXxp ——o5 |-

z ‘/ZWngn 2C,;n for the internal part of the free energy density, wheyg(y)

and ¢(y) are not independent quantities but are related to

The variance along thedirection,c?, , is exactly the same ©€ach other through the integral constraint, Ezf).
as in the equilibrium case and coincides with #z&ompo- _ The last step in our analysis is to connect the tergor
nent of the second moment of the distribution function for anWith the conformation tensar in terms of which the evolu-
n-segment long sub-chain in the bulk. In tuf@;,, satisfies tion equations have been written. . Sinee describes the
the following (in general, anisotropjcdiffusion equation in ~ €hange in the polymer end-to-end distance components over

the space of the eigenvector directighand  of the tensor their equilibrium(zero flow value in a similar fashion as an
a: “apparent strain,” we have

cC=a-Cya', (36)
’ 201 20!
on 1 (952 2 (9772 ’

(32)  Which guarantees that the tensoitself is symmetric, and
where the subscript 0 denotes static equilibrium values, i.e.,
values calculated by taking into account surface but no flow

whereD, andD,, are the two chain “diffusivities” driven by  effects. In the case of interest heog,has a diagonal form

the strain tensowr in the eigenvector direction§ and 7,

respectively Cixo O 0
Co= 0 Cyy,0 0 ) (37
N—1
D1= 2 Dy, 0 0 G0
wherec,y o= C,,0=kgT/K (i.e., they remain at their equilib-
(33 rium valueg, whereasc,, o depends on the distangefrom
b _N-1 b the surfaceli.e., cyy,0=Cyy(y).] This results into the fol-
27 2 T lowing set of relationgassumingay,= ay,= a;x= a,y= a,,
=0 andayy= ay,):
with the matrixb defined through Cy= a>2(xcxx,0 + ainyy,o(y).
b= a’z (34) ny: axy( axxcxx,0+ ayyny,O(y))a (38)

_ 2 2
The scaling of the diffusivities in terms of the apparent strain Cyy= ByCro0™ 8y CyyolY)-
tensor eigenvalues provides for the distortion of the chain In the absence of flow effects, E(5) for the internal
conformations that are anticipated to occur due to the flow.free energy density can be directly compared against the one
Equation(32) needs to be solved together with the samereported by Scheutjens and Fl@eflo within a constant
initial and boundary conditions as for the equilibrium case,which is proportional to the total number of polymer chains
i.e., initial condition the same as in Eg21) above and and a function of the number of lattice sites per lagamnd,
boundary conditions dictated by the physical problem. Whertherefore, does not contribute to the minimization proce-
Eq. (32 is solved in the bulk with boundary conditions ap- dure), the two expressions are identical provided that the
plied at =0, the solution recovered is that of the product of following two correspondences are mada: The sum over
two stretched Gaussians; when such a solution is introduceall possible conformations in the Scheutjens—Fleer lattice
into Eq. (29), we are led to Eq(28). Therefore, our scheme model corresponds to an integral over all chain starts in our
extends Flory’s previous analysis on flow induced chain decontinuum model, andb) the ratiow. between the number
formations in the bulk to the more general case of chains thatf arrangements of a chain in conformatiorand that of a
are close to a solid boundary. chain in the bulk solution corresponds to the partition func-
In summary, by substituting Eqél8), (26), and(29) for  tion Z(N—1y), which gives the ratio of the available con-
the various components of the internal part of the free energformations for a chain starting gtover those for a chain in
h; into Eq. (17) gives the bulk.
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Using Eq.(35) for the internal part of the free energy
density together with the kinetic energy dendiy, one can
in principle solve for the polymer density and polymer con-
formation either by minimizing the total Hamiltonian in case
of static equilibrium conditions or by solving the governing
equations with suitable boundary conditions in case of flow-
ing conditions. Part Il addresses this issue for the case of a
dilute polymer solution near a noninteracting surface. An
additional issue, however, which should also be resolved be-
fore considering this problem is how to calculate the Volterra

T2

V. G. Mavrantzas and A. N. Beris

SH; o
KeTpo dnge VO
N1e(Yo)
> [1+In| S|+ (x=DN +E'r‘(Z(N——l,yo))

1 j G(R+rg,N—1;y)
2 Z(N—1yo)

G'(R+rg,N=1;yq,)
XIn

- ) N Z'(N—=1yg;
derivative 6H;/ény, i.e., of 6H;/én,, appearing in Eq. ( Yoi @)
(16), in the presence of the integral constraint, E¥f)). This Z(N—1yo) 3
Volterra derivative plays the role of a generalized chemical G(R+ry,N—1;yo) d°R. (40

potential and appears explicitly in the governing equations. . ) N
This is addressed in the next section. Thus, the problem boils down to calculating the partition

functionsZ(N—1yy) andZ’'(N—-1y,; @), i.e., the propaga-

tors G(R+ry,N—1;y,) andG'(R+ry,N—1;yg,a) in the

absence and presence of flow, respectively. For both, the

corresponding diffusion equation needs to be solved. In all

casesy is the direction normal to the wall which is assumed

to coincide with the coordinate plane=0, x is the flow
The calculation ofSH; /5n, , requires some special han- d@rect@on (whenever a flow is appligdandz is the neutral

dling, because the internal part of the free energy derfsity, direction.

is a function of bothe(y) andny¢(y) which are not inde-

pendent but are connected through the integral constrainy/. FINAL CONSIDERATIONS

Eqg. (24). Two alternative approaches can be followed: The

. . . With expression(40) for 6H;/én, ., a possible method-
first one involves the use of a local Lagrange multiplier, and : '

o ) ) . AT .. ology for calculating surface effects on the rheology of a
it is the easiest to apply; however, its applicability is strictly

o ) . ; . polymer solution can be developed as follows:
limited to static conditions under which the governing equa (1) Given the type of flow imposed on the solutidior

tions can be cast into a minimization problem. Thus, a sec-

IV. THE VOLTERRA DERIVATIVE 6H;/én, .

ond approach is also presented, which not only does redu
to the same formula as the Lagrange minimization procedur
under equilibrium conditions but has also the advantage
being applicable under nonequilibrium conditions. Both of
these approaches are presented in Appendix A, and they lea

to the following formula foréH; /én, ¢ :

1 6H;
kBTPO 5”1 (yO)
N 1
=5 1+In > +(x—1)N t5 In Ny e(Yo)

N—-1
—go 0[|n(1—QD(Y))+2X¢(y)]P(y.n;yO)dy}

1 f G(R+rg,N—1;y,)

1
—5INZ(N=1y0)~ 5 Z(N—1y,)

G'(R+rg,N-1;yg,@)
Z'(N=1lyp; @)

XIn

% Z(N_lyyO)
G(R+rg,N—1;yq)

}dsR, (39

whereP(y,n;y,) is defined by Eq(A1.3) of the Appendix.

For a dilute polymer solution£(y)<1Vy), Eq. (39 re-
duces to

o

example, extensional or simple shedhe kinematics of the

%Fow and the form of the strain tensarare first assumed. For

&e assumed type of flow, the propagat6r (R+rg,N
—1;y9,@ should first be calculated. At this stage, we
s(tj‘uould keep in mind that calculatingG’'(R+rg,N
—1;yp,@) is not a straightforward task; in general, it is a
very formidable problem, since it depends on both the type
of flow considered and the solid surface—polymer interac-
tions, the latter dictating the proper boundary conditions. In
some cases, however, analytical solutions can be found, as
will be seen in Sec. Il of the present work for the case of a
simple shear flow past a non-interacting surface.

(2) By integratingG’'(R+ry,N—1;y,,@) over R, the
partition functionZ'(N—1y,;a) is then calculated as a
function of the distancg, from the surface and th@s yet
unknown elements of the strain tensex

(3) Having calculated G'(R+ry,N—1;y5,@) and
Z'(N—1yo;a), the Volterra derivativesH;/dn,, is ob-
tained in terms ofy and «, by using Eq.(39) or Eq. (40).

(4) This allows us to substitutéH; /én, ¢ into the mac-
roscopic governing equations and solve for the independent
macroscopic variables. The governing equations consist of
the concentration equation, Ed4), the three components of
the momentum equation, E{L1), and the equations for the
three independent components of the constitutive equation,
Eq. (12). These equations can be written either in terms of
the conformation tensaz or in terms of the apparent strain
tensore, through Eq.36) or its equivalent, Eq(38). Equa-
tions (11), (12), (14), (22), (24), (35), and (36) define a
closed system of partial differential equations tgru,(y),

Downloaded 26 Jan 2005 to 128.101.10.146. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 110, No. 1, 1 January 1999 V. G. Mavrantzas and A. N. Beris 625

nie(y), ande(y), and constitute the final system of equa- APPENDIX: EVALUATION OF 6H,/én,

tions to be So_lved. The input daFa are the number c_’f S€gy. Through the use of the definition of the Volterra
ments per chaiN and the Flory chi-parameter needed in the yarivative

expression fobH; /dn, ., as well as all quantities character- o

izing the flow field like, for example, the imposed shear =~ We wantto calculate the Volterra derivativésl; /6Ny ¢,
stressr,,, and the bulk fluidsolvent and polymeérviscosi- ~ Of the functional

ties. Results from applying the methodology to the problem "
of a simple shear flow above a noninteracting solid surface Hi:f
are presented in Part Il of this work.

kgT
i N16(Y)9(Y)) =~ Ne(y)

G(R,N—13y)
VI. CONCLUSIONS f Z(le)
In this paper, a continuum model has been presented for , . B
the study of surface effects on polymer solutions under qui- | G (/R’N Ly.@) Z(N—1y) }de’R}A dy,
escent and flow conditions, with length resolution down to Z'(N=1y;@) G(R,N—1y)
chain segment size. The model makes use of a generalized (A1.1)

free energy formulation and a set of governing equations
connecting microscopic parameters to macroscopically ob¥here the argumentg(y) and ny¢(y) are related by the
served quantities, derived from the Hamiltonian descriptiorfollowing equation:
of transport phenomena. Within this framework, most of the =
phyS|cs. is built into the description of the free energy of the ~ (\)_ =% f N1e(Yo)P(Y.N;yo)dyo, (A1.2)
system; this is the most important quantity entering into the 27=0 Jo
governing equations. To define it, a microscopic model for _ i
the polymer conformations in the interfacial region needs taVith P(¥,n;Yo) defined as
pe developed. .In our work, this is achieved by empl_oylng F2G(y' N—1-n:y)dy’
into the analysis not only the polymer segment density but  p(y n;y,)=G(y,n;y,)

) 4 y.NYo Y:NYo OOG "N—1: dv’
also the polymer chain end density. Thus, polymer confor- JoG(y', Yo)dy
mations are defined by specifying the starting point of every (AL3)

chain and the transition probabilities for its conformations torha contribution to the Volterra derivative of the second

develop in space. _ term in Eq.(Al.1) is easily seen to be kgTpy/2f G(R,N
Within this hierarchical approach, the problem of St“dy'—l'y)/Z(N— 1,y)IN[G'(R,N=1:y,a)/ Z'(N—1,y; @) Z(N

ing surface effects on the structure and rheology of polymer_l'y)/G(R N—'l'y)]d"’R.’What’ remains is to calculate the

solutions has been broken down to two different sub-tasks: .. ' '

e , ) Sontribution of the Flory—Huggins mixing termk .,
The first involves calculating the propagatoshich de- \hich is a function of bothe andn; .. This consists of two

scribes chain conform.atiohmear the so_lid surface ir_1 the terms: The first issh,, /dn,. and comes from the direct
presence of the flow f!eld; the §econd involves solylng thedependence oh ;. ON Ny "The second comes from the
f!nal system Qf governing equations to _get the desired proygirect dependence cbfmiX' on n4 . through its relation with
files for the given flow field. Through this strqctured meth- 1o segment fractiow by Eq. (Ai.2).

odology, the new approach permits extending the length 14 eyaluate the second contribution, we make use of the

scale of analysis near the boundary from the chain size dowge(inition of the Volterra derivative of an arbitrary functional
to the segment length. Thus, it allows, in principle, for a.

much more systematic modeling of surface- and flow-
induced chain deformations than previously possible withF(n;e+ 6n;e)—F(Nnye)
continuum approaches, of detail commensurate to the detalil

of lattice models, or fully microscopic chain conformation EJ .on Adv as &n 0
studies? limited though to static equilibrium only. In the onye(y) 1elY) Y 16lY)=0,
present Part, only the general formulation of the new ap- (AL.4)

proach was given. Results from applying it to the problem of

a dilute polymer solution flowing near a wall are presented irwhere the argument,, is meant to be a functionp, .
Part Il of the work. Additional results from extending the =n;¢(y), and the limit is to the constant zero functi@re.,
approach to a polymer solution flowing past an adsorbinghe function of a zero value everywherélow, we assume

surface will be presented in a future work. that the argumentn, (y) changes infinitesimally from
N1e(y) to Nye(y)+ Onye(y). This will result in a change of
ACKNOWLEDGMENTS ¢(y) from ¢(y) to ¢*(y), given by
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final manuscript. which, with the help of Eq(A1.2), can also be written as
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N—1
1 ©
so*(y)—zp(y)=§n20 fo N1 e(Yo)P(y,n;yo)dYo.
(A1.6)
SinceH i is a function of bothn, ((y) and ¢(y), the

change inH.,, upon changingn;¢(y) from nye(y) to
Ny1e(y) +n1.(y) can be expressed as follows:

H mix( nl,e+ 5nl,e) —H mix( nl,e)

_ * &hmix &hmix *
—JO e Miet =5~ L™= e(y)]|)A dy,
(A1.7)
ie.,
Hmix(nl,e+ 5”1,9) —H mix(nl,e)
* &hmix 1 &hmix
_fo aNnye I’]l,e'ipz dg (y)
" N—1
X fo 5”1,e()’0)nzo P(y.,n;yo)dyo | |A dy, (ALS8)
or, equivalently
Hmix(nl,e+ 5”1,9) —-H mix(nl,e)
* &hmix 1 fmfw 07hmix
= on dy+ - —_—
fo Ny e 1 dy 2 JoJo de )
N-1
X 2, P(y.n:yo)dnyg(y)dy A dy. (AL.9)

V. G. Mavrantzas and A. N. Beris

oM kBTpof G(R,N-1;y)
onie 2 Z(N—1y)
G'(R,N—1:y, Z(N—1,
Xin| 2 y.&) ZINZLY) | op
Z'(N—1y;a) G(R,N—1y)
ahmix 1 Oc07hmix
3”1,e+§fo de (¥o)
N—-1
xngo P(yo,n;y)dyo, (A1.12)

which is the relation that we wanted to obtain.

2. Through the use of a local Lagrange multiplier

This approach is valid only for static equilibrium condi-
tions. In this case, the defining equation is of the form
o(Hi—Hip)

SNe 0, (A2.1)

whereH; andH; , (the internal part of the free energy in the
bulk) are functions ofe and n;, which are constrained
through Eq.(A1.2). In order to take the constraint into ac-
count, we make use of a local Lagrange multipliefy),
and we form a new functional

F(nl,e,cpm:f:hi(ww),nl,e(y))dw f:x(w(@(y)
1 - N—-1

_Ef N1e(Yo) 2 P(y,n:yo)dyo)A dy,
0 n=0

(A2.2)

whereh; denotes the internal free ener@n fact, it is the
internal free energy minus the corresponding expression in

In the last equatiory andy, are dummy indices; there- he pylk. As was shown above, the last term on the right-
fore, they can be interchanged, which, after collecting comy5n4 side gives rise to a double integration, whose two

mon factors together, helps casting E41.9) into the fol-
lowing form:

H mix( nl,e+ 5nl,e) —-H mix( nl,e)

—fwh”“xcs A d fw(s 1fx
- 0 ‘9n1,e nl,e(y) y+ 0 nl,e(y) E o

N—-1

X(yo)nZo P(yo,n;y)dyo)A dy. (A1.10

hmi><

X
de

Comparison of the last equation against El.4), the defi-
nition equation of the Volterra derivative, suggests that

N—-1
5Hmix (?hmix 1 fx ahmix
= +
oNye  dNge 2

o (Y0 2 P(yo,n;y)dyo.
0 ¢ n=0
(A1.11)

dummy indicesy andy,, can be interchanged so that the
functional F takes the form

o

F(nl,ey(Pa)\):f

. (hi(‘P(y)rnl,e(Y))+)\(y)¢’(y)

N—-1

—%nl,e(y)fo Myo)nzo P(yo,n;y)dyp | A dy.

(A2.3)
The equilibrium conditions then become
JIF 0
@ — Yy
JF
oNye

=0, (A2.4)

JF

oo

This is the desired result. By collecting then all contributions

to the Volterra derivativeSH; / on, . we get that

from which we get
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ah;
— (y)+X(y)=0,

de
ﬂhi 1 e N1
—(y)——J MYo) 2 P(yo,n;y)dy,=0, (A2.5)
anl,e 2 0 n=0
N—-1

1 (=
ﬂw—zfruawlz P(Y.n;¥0)dYo=0.
0 n=0

Elimination of the parametex(y) in the last three equations
and substitution oh; then leads to the following conditions:

ksTpo f G(R,N—1;y)

2 Z(N-1y)
G'(RN-1yy,a Z(N-1y) |,
XIn Z'(N—1y;a) G(R,N—l;y)}d R
ﬁhmlx 1 © ahmlx N—-1 . )
i anl,e (y)+§ J'O a(P (yO)nZO P(yoyn,Y)dyO—O,
© 1 N—-1
<p(y)—f0 > nl,e(yo)ngo P(y.n;yo)dyo=0, (A2.6)
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