Stalking: Aggressive Shadowing of a Noisy Trajectory

Chris Danforth, AMSC
Advisors: James Yorke, Eugenia Kalnay, Bob Cahalan
September 23, 2004
δ_x-Shadowing Definition

Given a system $y_{n+1} = f(y_n)$, a tolerance δ_x, and a sequence $\{p_n\}_{n=a}^b$, a true orbit $\{x_n\}_{n=a}^b$, $x_{n+1} = f(x_n)$, δ_x-shadows $\{p_n\}_{n=a}^b$ on $a \leq n \leq b$ if $|x_n - p_n| < \delta_x$
Noise may push the target solution outside of the ensemble ellipse. This is fine, so long as *some* ensemble member is still consistent with the target (red and blue overlap).
However, if a contracting direction begins to expand, or there is a near tangency of the stable and unstable manifolds, we may have a shadowing failure or *glitch*.
However, if a contracting direction begins to expand, or there is a near tangency of the stable and unstable manifolds, we may have a shadowing failure or \textit{glitch}.
A few words about Breeding

\[\text{svd}(B) = U\Sigma V' \]
Ensemble variance inflation

\[\sigma_1 u_1 \]

\[\sigma_2 u_2 \]

\[(\sigma_2 + \epsilon) u_2 \]

\[\delta u_1 \]

\[\epsilon = \text{inflation} \]

\[\delta_x \leq \delta \leq \sigma_1 \]
δ_x-Stalking Definition

Given a system $y_{n+1} = f(y_n)$, a tolerance δ_x, and a sequence $\{p_n\}_{n=a}^b$, an ε-pseudo orbit $\{x_n\}_{n=a}^b$, $|x_{n+1} - f(x_n)| < \varepsilon$, δ_x-stalks $\{p_n\}_{n=a}^b$ on $a \leq n \leq b$ if $|x_n - p_n| < \delta_x$.
\[y_{n+1} = f(y_n), \] a tolerance \(\delta_x \), and a sequence \(\{ p_n \}_{n=a}^b \), an \(\epsilon \)-pseudo orbit \(\{ x_n \}_{n=a}^b \), \[|x_{n+1} - f(x_n)| < \epsilon, \] \(\delta_x \)-stalks \(\{ p_n \}_{n=a}^b \) on \(a \leq n \leq b \) if \(|x_n - p_n| < \delta_x \)
Iteration of the Henon map leaves the truth outside ellipse
Step 1: inflate contracting directions by ε
Step 2: rescale expanding directions
Goal

● Fixing the following parameters:
 ● variance inflation (ϵ)
 ● rescale of expanding axes ($\delta_x \leq \delta \leq \sigma_i$)
 ● stalking distance (δ_x)
 ● noise (δ_f), where $|p_{n+1} - f(p_n)| < \delta_f$
● How long will x_n stalk p_n?
Stalking time in Lorenz 40-D system for parameters ε (inflation), δ_f (noise), δ (rescale). Failure occurs when target leaves ellipse.
Conclusion

- Agreement across $O(\delta_f)$ (noise) and $O(\varepsilon)$ (ensemble variance inflation) indicates a substantial relationship between stalking time and parameters.
- Stalking solutions to the Lorenz 40-D model require inflation $>>$ noise, what if we increase the stalking distance?