Eulerian Gaussian beam method in quantum mechanics

Xu Yang
Program in Applied and Computational Mathematics
Princeton University, USA

Collaboration with Prof. Shi Jin and Mr. Hao Wu

March 5, 2009
Outline

1. Schrödinger equation and its semiclassical limit
2. Gaussian beam method - Lagrangian formulation
3. Gaussian beam method - Eulerian formulation
4. Numerical results
5. Applications in quantum mechanics
The time-dependent one-body Schrödinger equation:

\[
i\varepsilon \frac{\partial \psi^\varepsilon}{\partial t} + \frac{\varepsilon^2}{2} \Delta \psi^\varepsilon - V(x) \psi^\varepsilon = 0, \quad x \in \mathbb{R}^n,
\]

\[
\psi^\varepsilon(t, x) = A(t, x) e^{i S(t, x)/\varepsilon}
\]

It models: single electron in atoms, KS density functional theory, Molecule Orbital theory ...

Numerical difficulties: \(\psi^\varepsilon(t, x)\) is oscillatory of wave length \(O(\varepsilon)\).

<table>
<thead>
<tr>
<th>Methods</th>
<th>Mesh size</th>
<th>Time step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite difference (^1)</td>
<td>(o(\varepsilon))</td>
<td>(o(\varepsilon))</td>
</tr>
<tr>
<td>Time splitting spectral (^2)</td>
<td>(O(\varepsilon))</td>
<td>(\varepsilon)-indep.</td>
</tr>
</tbody>
</table>

\(^1\) Markowich, Pietra, Pohl and Stimming

\(^2\) Bao, Jin and Markowich
Geometric optics - WKB analysis

WKB ansatz
\[\psi^\varepsilon(t, x) = A(t, x)e^{iS(t, x)/\varepsilon}, \]

Eikonal
\[S_t + \frac{1}{2} |\nabla S|^2 + V(x) = 0, \]

Transport
\[\rho_t + \nabla \cdot (\rho \nabla S) = 0, \quad \rho(t, x) = |A(t, x)|^2. \]

Eikonal (Hamilton-Jacobi type) \(\Rightarrow\) singularity (caustics)

Figures from the review paper of Engquist and Runborg:
Semiclassical limit + phase correction

Theorem 1. If $V(x)$ is constant, by the stationary phase method we have, away from caustics,

$$
\psi^\varepsilon(x, t) \sim \sum_{k=1}^{K} \frac{A_0(y_k)}{\sqrt{1 + tD^2S_0(y_k)}} \exp \left(\frac{i}{\varepsilon} S(\xi_k, y_k) + \frac{i\pi}{4} \mu_k \right)
$$

where the phase

$$
S(\xi, y) = \xi \cdot x - \xi \cdot y - (1/2) |\xi|^2 t + S_0(y),
$$

has finitely many ($K < \infty$) stationary phases ξ_k and y_k:

$$
\xi_k = \nabla S_0(y_k), \quad y_k = x - t\nabla S_0(y_k),
$$

D^2S_0 is the Hessian matrix, and $\mu_k = \text{sgn}(D^2S(\xi_k, y_k))$ is the Keller-Maslov index of the kth branch.
Gaussian beam method - motivation

Problems of the semiclassical limit: invalid at caustics

1. the density $\rho(t, x) \rightarrow \infty$ in the transport equation,
2. $1 + tD^2 S_0(y_k)$ is singular in the stationary phase method.

Computation around caustics is important in many applications, for example:

- Seismic imaging
- Single-slit diffraction

Gaussian beam method, developed by Popov, allows accurate computation around caustics.
Beam-shaped ansatz

The key idea of the Gaussian beam method is to complexify the phase function $S(t, x)$:

$$\varphi^\varepsilon_{la}(t, x, y_0) = A(t, y) e^{i T(t, x, y)/\varepsilon},$$

$$T(t, x, y) = S(t, y) + p(t, y) \cdot (x - y) + \frac{1}{2} (x - y)^\top M(t, y) (x - y),$$

beam center: $$\frac{dy}{dt} = p(t, y), \quad y(0) = y_0.$$

Here $S \in \mathbb{R}$, $p \in \mathbb{R}^n$, $A \in \mathbb{C}$, $M \in \mathbb{C}^{n \times n}$. The imaginary part of M will be chosen so that φ^ε_{la} has a Gaussian beam profile.
Lagrangian formulation

Apply the beam-shaped ansatz to the Schrödinger equation:

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{dy}{dt})</td>
<td>center: (p),</td>
</tr>
<tr>
<td>(\frac{dp}{dt})</td>
<td>velocity: (-\nabla_y V),</td>
</tr>
<tr>
<td>(\frac{dM}{dt})</td>
<td>Hessian: (-M^2 - \nabla^2_y V),</td>
</tr>
<tr>
<td>(\frac{dS}{dt})</td>
<td>phase: (\frac{1}{2}</td>
</tr>
<tr>
<td>(\frac{dA}{dt})</td>
<td>amplitude: (-\frac{1}{2} (\text{Tr}(M)) A).</td>
</tr>
</tbody>
</table>

The first two ODEs are called ray tracing equations, and the Hessian \(M \) satisfies the Riccati equation.
Validity at caustics and beam summation

\(M, A \) could be solved via the dynamic ray tracing equations:

\[
\begin{align*}
\frac{dP}{dt} &= R, \\
\frac{dR}{dt} &= -(\nabla_\mathbf{y}^2 V)P,
\end{align*}
\]

\[
M = RP^{-1}, \quad A = \left((\det P)^{-1} A_0^2 \right)^{1/2},
\]

\[
R(0) = M(0) = \nabla_\mathbf{y}^2 S_0(\mathbf{y}) + iI, \quad P(0) = I.
\]

Ralston (82, wave-type eqn), Hagedorn (80, Schrödinger) proved the validity of the Gaussian beam solution at caustics:

- \(P \) complexified \(\Rightarrow \) \(P \) never singular \(\Rightarrow \) \(A \) always finite.

The Gaussian beam summation solution (Hill, Tanushev):

\[
\Phi_{la}^\varepsilon(t, \mathbf{x}) = \int_{\mathbb{R}^n} \left(\frac{1}{2\pi \varepsilon} \right)^{n/2} r_\theta(\mathbf{x} - \mathbf{y}(t, \mathbf{y}_0)) \varphi_{la}^\varepsilon(t, \mathbf{x}, \mathbf{y}_0) d\mathbf{y}_0.
\]
Level set method

The level set method has been developed to compute the **semiclassical limit** of the Schrödinger equation. (Jin-Liu-Osher-Tsai)

The idea is to build the velocity \(u = \nabla_y S \) into the intersection of zero level sets of phase-space functions \(\phi_j(t, y, \xi) \), i.e.

\[
\phi_j(t, y, \xi) = 0, \quad \text{at} \quad \xi = u(t, y), \quad j = 1, \ldots, n.
\]

\(\phi = (\phi_1, \ldots, \phi_n) \) satisfies the Liouville equation:

\[
\partial_t \phi + \xi \cdot \nabla_y \phi - \nabla_y V \cdot \nabla_\xi \phi = 0.
\]
Eulerian formulation I - semiclassical limit

As shown by Jin, Liu, Osher and Tsai,

velocity: \(\mathcal{L}\phi = 0, \)

phase: \(\mathcal{L}S = \frac{1}{2} |\xi|^2 - V, \)

amplitude: \(\mathcal{L}A = \frac{1}{2} \text{Tr} \left((\nabla_\xi \phi)^{-1} \nabla_y \phi \right) A. \)
Eulerian formulation II - semiclassical limit

If one introduces the new quantity

\[f(t, y, \xi) = A^2(t, y, \xi) \det(\nabla_{\xi}\phi), \]

then \(f(t, y, \xi) \) satisfies the Liouville equation

\[\mathcal{L}f = 0. \]

The level set method for the semiclassical limit still suffers caustics where \(\det(\nabla_{\xi}\phi) = 0 \).

Motivated by the Gaussian beam method, we need to complexify the Liouville equation for \(\phi \).
Construct the Hessian function

\[
\frac{\partial}{\partial y} \phi(t, y, u(t, y)) = 0 \quad \Rightarrow \quad \nabla^2_y S = \nabla_y u = -\nabla_y \phi (\nabla_\xi \phi)^{-1}
\]

Recall the Lagrangian formulation:

\[M = R P^{-1}\]

Conjecture:

\[R = -\nabla_y \phi, \quad P = \nabla_\xi \phi.\]

Complex \(R\) and \(P\) \(\implies\) complex \(\phi\)
Conjecture verification

The first two lines are equivalent to each other once they have the same initial conditions:

\[
\phi_0(y, \xi) = -iy + (\xi - \nabla_y S_0)
\]

\[
R(0) = \nabla_y^2 S_0(y) + iI, \quad P(0) = I.
\]
Eulerian formulation - Gaussian beam

<table>
<thead>
<tr>
<th>Step 1:</th>
<th>(\mathcal{L} \phi = 0), (\phi_0(y, \xi) = -iy + (\xi - \nabla_y S_0)).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2:</td>
<td>compute (\nabla_y \phi) and (\nabla_\xi \phi), (M = -\nabla_y \phi (\nabla_\xi \phi)^{-1}).</td>
</tr>
<tr>
<td>Step 3:</td>
<td>solve (S) either by (\mathcal{L} S = \frac{1}{2}</td>
</tr>
<tr>
<td>Step 4:</td>
<td>(\mathcal{L} f = 0), (f_0(t, y, \xi) = A_0(y)^2),</td>
</tr>
<tr>
<td>Step 5:</td>
<td>(A = (\det(\nabla_\xi \phi)^{-1} f)^{1/2}).</td>
</tr>
</tbody>
</table>

Parallel to Ralston’s proofs,
\[\phi \text{ complexified} \Rightarrow \nabla_\xi \phi \text{ non-degenerate} \Rightarrow A \text{ never blows up} \]
Eulerian Gaussian beam summation

Define

\[\varphi_{eu}^{\varepsilon}(t, x, y, \xi) = A(t, y, \xi)e^{iT(t, x, y, \xi)/\varepsilon}, \]

where

\[T = S + \xi \cdot (x - y) + \frac{1}{2}(x - y)^\top M(x - y), \]

Eulerian Gaussian beam summation formula:

\[\Phi_{eu}^{\varepsilon}(t, x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \left(\frac{1}{2\pi \varepsilon} \right)^{n/2} r_{\theta}(x - y)\varphi_{eu}^{\varepsilon} \prod_{j=1}^{n} \delta(\text{Re}[\phi_j]) d\xi d y, \]

\(r_{\theta} \) is a truncation function with \(r_{\theta} \equiv 1 \) in a ball of radius \(\theta > 0 \) about the origin.
Computing the summation integral

Method 1: Discretized delta function integral (Wen, in 1D).

Method 2: Integrate ξ out first:

\[
\Phi_{e\xi u}^\varepsilon(t, x) = \int_{\mathbb{R}^n} \left(\frac{1}{2\pi\varepsilon} \right)^{n/2} r_\theta(x - y) \sum_k \frac{\varphi_{e\xi u}^\varepsilon(t, x, y, u_k)}{|\text{det}(\text{Re}[\nabla_\xi \phi]|_{\xi = u_k})|} dy,
\]

where u_k, $k = 1, \cdots, K$ are the velocity branches.

Problem: $\text{det}(\text{Re}[\nabla_\xi \phi]) = 0$ at caustics.

Solution: Split the integral into two parts:

\[
L_1 = \left\{ y \mid \left| \text{det}(\text{Re}[\nabla_p \phi](t, y, p_j)) \right| \geq \tau \right\}
\]

\[
L_2 = \left\{ y \mid \left| \text{det}(\text{Re}[\nabla_p \phi](t, y, p_j)) \right| < \tau \right\}
\]

The integration on L_1 is regular; the integration on L_2 could be solved by the semi-Lagrangian method (Leung-Qian-Osher).
Efficiency and accuracy

Efficiency:

<table>
<thead>
<tr>
<th>Methods</th>
<th>Mesh size</th>
<th>Time step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite difference</td>
<td>$o(\varepsilon)$</td>
<td>$o(\varepsilon)$</td>
</tr>
<tr>
<td>Time splitting spectral</td>
<td>$O(\varepsilon)$</td>
<td>ε-indep.</td>
</tr>
<tr>
<td>Gaussian beam</td>
<td>$O(\sqrt{\varepsilon})$</td>
<td>$O(\varepsilon^2)^{\frac{2}{p}}$</td>
</tr>
</tbody>
</table>

p: numerical orders of accuracy in time.

Accuracy: $O(\sqrt{\varepsilon})$ in caustic case, $O(\varepsilon)$ in no caustic case.

It could be easily generalized to higher order Gaussian beam methods by including more terms in the asymptotic ansatz.

Tanushev-Runborg-Motamed
1D example

Free motion particles with zero potential \(V(x) = 0 \). The initial conditions for the Schrödinger equation are given by

\[
A_0(x) = e^{-25x^2}, \quad S_0(x) = -\frac{1}{5} \log(2 \cosh(5x)).
\]

which implies that the initial density and velocity are

\[
\rho_0(x) = |A_0(x)|^2 = \exp(-50x^2),
\]

\[
u_0(x) = \partial_x S_0(x) = -\tanh(5x).
\]

This allows for the appearance of cusp caustics.
Velocity contour
Gaussian beam method

Xu Yang

Schrödinger equation

Gaussian beam method - Lagrangian formulation

Gaussian beam method - Eulerian formulation

Numerical results

Applications in quantum mechanics

circle: Schrödinger square: Geometric optics cross: Phase correction star: Gaussian beam
Convergence rate and mesh size

Convergence orders: 0.9082 in ℓ^1 norm, 0.8799 in ℓ^2 norm and 0.7654 in ℓ^∞ norm.

Mesh size: $\Delta y \sim O(\sqrt{\varepsilon})$
2D example

Take the potential \(V(x_1, x_2) = 10 \) and the initial conditions of the Schrödinger equation as

\[
\begin{align*}
A_0(x_1, x_2) &= e^{-25(x_1^2 + x_2^2)}, \\
S_0(x_1, x_2) &= -\frac{1}{5}(\log(2 \cosh(5x_1)) + \log(2 \cosh(5x_2))).
\end{align*}
\]

then the initial density and two components of the velocity are

\[
\begin{align*}
\rho_0(x_1, x_2) &= \exp(-50(x_1^2 + x_2^2)), \\
u_0(x_1, x_2) &= -\tanh(5x_1) \\
v_0(x_1, x_2) &= -\tanh(5x_2).
\end{align*}
\]
Amplitude at $\varepsilon = 0.001$ and $T_{\text{final}} = 0.5$
Gaussian beam method

Xu Yang

Schrödinger equation

Gaussian beam method - Lagrangian formulation

Gaussian beam method - Eulerian formulation

Numerical results

Applications in quantum mechanics

Schrödinger equation with periodic structure

\[i\varepsilon \frac{\partial \psi^\varepsilon}{\partial t} = -\frac{\varepsilon^2}{2} \frac{\partial^2}{\partial x^2} \psi^\varepsilon + V_\Gamma \left(\frac{x}{\varepsilon} \right) \psi^\varepsilon + U(x) \psi^\varepsilon, \quad x \in \mathbb{R}, \]

It models: electrons in the perfect crystals

Bloch band decomposition:

\[H(k, z) := \frac{1}{2} (-i \partial_z + k)^2 + V_\Gamma (z), \quad z = \frac{x}{\varepsilon} \]

\[H(k, z) \chi_m(k, z) = E_m(k) \chi_m(k, z), \]

\[\chi_m(k, z + 2\pi) = \chi_m(k, z), \quad z \in \mathbb{R}, \quad k \in (-1/2, 1/2). \]

Modified WKB ansatz:

\[\psi^\varepsilon(t, x) = \sum_{m=1}^{\infty} a_m(t, x) \chi_m(\partial_x S_m, \frac{x}{\varepsilon}) e^{i S_m(t, x)/\varepsilon}. \]
Equations in the m-th band

Eikonal-transport equations:

$$
\partial_t S_m + E_m(\partial_x S_m) + U(x) = 0,
$$
$$
\partial_t a_m + E'_m(\partial_x S_m)\partial_x a_m + \frac{1}{2} a_m\partial_x(E'_m(\partial_x S_m)) + \beta_m a_m = 0.
$$

Liouville-type equations:

$$
\mathcal{L}_m = \partial_t + E'_m(\xi) \cdot \partial_y - U'(y)\partial_\xi,
$$
$$
\mathcal{L}_m \phi_m = 0,
$$
$$
\mathcal{L}_m S_m = E'_m(\xi)\xi - E_m(\xi) - U(y),
$$
$$
\mathcal{L}_m a_m = \frac{1}{2} \frac{\partial_y \phi_m}{\partial_\xi \phi_m} a_m - \gamma_m a_m.
$$

β_m, γ_m are constants related to χ_m.
Band structure for $V_\Gamma(z) = \cos(z)$
Numerical simulation for $\varepsilon = 1/512$

Initial conditions:

$$A_0(x, z) = e^{-50(x+0.5)^2} \cos z, \quad S_0(x) = 0.3x + 0.1 \sin x.$$

External potential: $U(x) = 0$
Schrödinger-Poisson equations

\[
\begin{align*}
 i\varepsilon \psi_t^\varepsilon &= -\frac{\varepsilon^2}{2} \psi_{xx}^\varepsilon + V^\varepsilon(x)\psi^\varepsilon, \\
 \partial_{xx} V^\varepsilon &= K \left(\frac{\sqrt{2\pi}}{10} - |\psi^\varepsilon(x, t)|^2 \right), \quad E^\varepsilon = \frac{\partial V^\varepsilon}{\partial x}.
\end{align*}
\]

A simple model of the radiation-matter interaction system, for example, in nano-optics, mean field theory...

\[K = +1 \quad \text{Focusing potential}\]
\[K = -1 \quad \text{Defocusing potential}\]

Initialization:

\[A_0(x) = e^{-25x^2}, \quad S_0(x) = \frac{1}{\pi} \cos(\pi x).\]
Convergence results

<table>
<thead>
<tr>
<th>((\varepsilon, N_y))</th>
<th>(\left(\frac{1}{256}, 128\right))</th>
<th>(\left(\frac{1}{1024}, 256\right))</th>
<th>(\left(\frac{1}{4096}, 512\right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l^1) error</td>
<td>(1.12 \times 10^{-2})</td>
<td>(3.93 \times 10^{-3})</td>
<td>(9.22 \times 10^{-4})</td>
</tr>
<tr>
<td>(l^2) error</td>
<td>(4.09 \times 10^{-2})</td>
<td>(1.47 \times 10^{-2})</td>
<td>(3.80 \times 10^{-3})</td>
</tr>
<tr>
<td>(l^\infty) error</td>
<td>(3.09 \times 10^{-1})</td>
<td>(1.09 \times 10^{-1})</td>
<td>(3.09 \times 10^{-2})</td>
</tr>
</tbody>
</table>

focusing potential

<table>
<thead>
<tr>
<th>((\varepsilon, N_y))</th>
<th>(\left(\frac{1}{256}, 128\right))</th>
<th>(\left(\frac{1}{1024}, 256\right))</th>
<th>(\left(\frac{1}{4096}, 512\right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l^1) error</td>
<td>(8.16 \times 10^{-3})</td>
<td>(2.60 \times 10^{-3})</td>
<td>(8.35 \times 10^{-4})</td>
</tr>
<tr>
<td>(l^2) error</td>
<td>(3.20 \times 10^{-2})</td>
<td>(9.24 \times 10^{-3})</td>
<td>(2.94 \times 10^{-3})</td>
</tr>
<tr>
<td>(l^\infty) error</td>
<td>(1.74 \times 10^{-1})</td>
<td>(5.30 \times 10^{-2})</td>
<td>(1.95 \times 10^{-2})</td>
</tr>
</tbody>
</table>

defocusing potential
Numerical simulation \(\varepsilon = 1/4096 \)
Thank You!

Questions?