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The Euler Poisson system is derived in semiconductor or plasma physics to study the time evolution of charged
fluids. These models can be obtained from Boltzmann equation for charged particles, i.e. the electrons and
ions (or holes in semiconductor). The system consists of the conservation laws for the electron(ion) density and
current density for electron(ion), coupled to the Poisson equation for the electrostatic potential. More precisely,
these (scaled) hydrodynamic equations for the electron density ne with charge qe = −1, the density ni of the
positively charged ions with charge qi = +1, the respective velocities ve, vi, and the electrostatic potential φ,

∂tnα + ∇ · (nαvα) = 0, α = e, i,

mα∂t(nαvα) + mα∇ · (nαvα ⊗ vα) + ∇pα(nα) = −qαnα∇φ− mα
nαvα

τα
, (1)

−λ2∆φ = ni − ne − C(x) for x ∈ Rd, t > 0,

where d ≥ 1. The initial conditions are given by

nα(·, 0) = nI,α, vα(·, 0) = vI,α in Rd, α = e, i.

In the above equations, pα are the pressure functions, usually given by pα(x) = cαxγα , x ≥ 0, where cα > 0
and γα ≥ 1. In this work, we only assume that pα is strictly monotone and smooth. The function C(x) models
fixed charged background ions (doping profile). The (scaled) physical parameters are the particle mass mα, the
relaxation time τα, and the Debye length λ. We assume that the value of the integral

∫
Rd φdx is fixed; for

instance,
∫
Rd φdx = 0.

There are a lot of mathematical works, both on wellposedness and different kinds of limit problems, for Euler-
Poisson system in the literature, for example, by G. Ali, L. Hsiao, A. Jüngel, H-L. Li, S. Wang, H-J. Zhao,
K-J. Zhang etc., we omit the references here. Among the limit problems, relaxation time limit (τi,e → 0) by
P. Marcati, R. Natalini, A. Jüngel, Y-J. Peng, G. Aĺı, D. Bini, and S. Rionero., and the quasineutral limit
(λ → 0) by S. Cordier and E. Grenier, I. Gasser and P. Marcati., S. Wang, are well studied. The zero mass limit
(me/mi → 0) was left unsolved in the literature.

In this work, we restrict ourselves to a situation in which the ion density is given and the initial data is ill
prepared. The parameter me is essentially the ratio of the electron mass to the ion mass. We assume that the
ion mass is much larger than the electron mass such that the limit me → 0 makes sense. The limit has the
goal to achieve simpler models containing the essential physical phenomena. We notice that in plasma physics,
zero-electron-mass assumptions are widely used.

Before we present the main results, it is convenient to write the main part of the system into symmetric hyperbolic
form. Setting n = ne, v = ve, p(n) = pe(ne), and ε2 = me and introducing the enthalpy h = h(ne), defined by
h′(n) = p′(n)/n and h(1) = 0, clearly for smooth solutions, the system is equivalent to the following system with



symmetric hyperbolic structure

(∂t + v · ∇)h + p′(n)∇ · v = 0,

ε2(∂t + v · ∇)v + ∇h = ∇φ − ε2v, (2)

∆φ = n(h) − N, x ∈ Rd, t > 0,

with initial conditions
h(·, 0) = hε

I = h(nI), v(·, 0) = vε
I in Rd. (3)

where, we have set τe = λ = 1 in order to simplify the notation. As we suppose that the pressure function is
invertible, so does h(n) and we denote its inverse by n(h).

The limit of vanishing electron mass of this system, i.e. ε → 0 with ill prepared initial data is discussed.
Although it has some relations to the incompressible limit of Euler equation, i.e. the limit velocity satisfies the
incompressible Euler equations with damping, things are more complicated due to the linear singular perturbation
including the coupling with the Poisson equation. We first prove the uniform existence by a reformulation of
the equations in terms of the enthalpy, higher-order energy estimates and a careful use of the Poisson equation.
(Actually, by the same idea, one can get the estimates for time derivatives for well prepared initial data which
is enough for the limit discussion). Now our focus is on the case of ill prepared initial data, a careful analysis on
the structure of the linear perturbation has been done so that we are able to show the convergence away from
time t = 0. Here are the main theorems we have obtained,

Theorem 1 (Local uniform existence) Let s > d/2 + 1 and N > 0. The initial data (nε
I , v

ε
I) satisfy

∥∥∥∥
nε

I − N

ε

∥∥∥∥
s

+ ‖vε
I‖s ≤ M0,

with M0 > 0 is a constant independent of ε. Then there exist constants T0 > 0 and M ′
0 > 0, independent of

ε, and ε0(M0) > 0 such that for all 0 < ε < ε0(M0), the problem (2)-(3) has a classical solution (nε, vε, φε) in
[0, T0] satisfying

‖|n
ε − N

ε
|‖s,T0 + ‖|vε|‖s,T0 + ‖|∇φε

ε
|‖s,T0 ≤ M ′

0.

Theorem 2 (Zero mass limit) Let the assumptions of Theorem 1 hold and let (nε, vε, φε) be a classical solution
to (2)-(3) in [0, T0] with T0 > 0 independent of ε. Then, as ε → 0,

nε → n0, ∇φε → 0 strongly in L∞(0, T0; Hs(Rd)),

vε ⇀ v0 weakly* in L∞(0, T0; Hs(Rd)),

vε → v0 strongly in C0
loc((0, T0] × Rd),

where v0 ∈ L∞([0, T0]; Hs(Rd)) is the unique solution of the following incompressible Euler equations with
damping,

∇ · v0 = 0, (∂t + v0 · ∇)v0 + v0 = ∇π, x ∈ Rd, t > 0, (4)

v0(·, 0) = PvI in Rd,

for some π ∈ L∞([0, T0]; Hs(Rd)). P is the orthogonal projection of Hs onto the subspace {v ∈ Hs : ∇ · v = 0}.


