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Several kinds of models are proposed for analysis and device simulation on describing the electron flow through
semiconductor devices. Especially the hydrodynamic, the energy transport and the drift-diffusion models are
frequently utilized for the simulation with the suitable choice according to the purpose of use of real devices.
Hence mathematical analysis on the solvability of these models globally in time and their model hierarchy are
important problems not only in mathematics but also in engineering. The model hierarchy is formally understood
by the limit procedure to make a momentum relaxation time τm and/or an energy relaxation time τe tend to zero.
The main purpose of this talk is to discuss the solvability of the models and then justification of the relaxation
limit procedures rigorously.

The hydrodynamic model is a system of equations
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φxx = ρ − D (H4)

for a spatial variable x ∈ Ω := (0, 1) and a time variable t > 0. Here electron density ρ, electric current j,
absolute temperature θ and electrostatic potential φ are unknown functions. Positive constants θ̄, κ, τm and τe

mean ambient device temperature, thermal conductivity, momentum relaxation time and energy relaxation time,
respectively. Doping profile D(x), which determines the electric property of semiconductors, is a positive and
bounded continuous function of the spatial variable x. The initial and the boundary conditions to the system
(H) are prescribed as

(ρ, j, θ)(0, x) = (ρ0, j0, θ0)(x), (I)

ρ(t, 0) = ρl, ρ(t, 1) = ρr , θx(t, 0) = θx(t, 1) = 0, φ(t, 0) = 0, φ(t, 1) = φr, (B)

where ρl, ρr and φr are given positive constants. Substituting s := t/τm, J := j/τm and κ0 := κ/τm, in (H)
yields the system

ρs + Jx = 0, (H’1)
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φxx = ρ − D. (H’4)

Making the square τ2
m tend to zero with the product τmτe kept constant in (H’) yields the energy transport model



ρs + Jx = 0, (E1)
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with the electric current J = ρφx − (θρ)x. Furthermore letting both of the relaxation times τm and τe tend to
zero in (H’) or in (E), we have the drift-diffusion model

ρs + Jx = 0, (D1)
φxx = ρ − D (D2)

with the electric current J = ρφx − (θ̄ρ)x.

We show that all models (H’), (E) and (D) admit unique stationary solutions satisfying boundary conditions
and the time global solutions for the initial boundary value problems provided that the boundary strength
|ρl − ρr | + |φr| is sufficiently small. In addition, it is discussed that the asymptotic behaviors of solutions for
the models are given by the corresponding stationary solutions. The formal computations of the relaxation time
limits are also rigorously justified. Precisely we show that the time global solution for initial boundary value
problem (H’), (I) and (B) converges to the solution for (E) if τ2

m → 0 and τmτe = constant. Moreover the
solutions for (H’) and (E) converge to that for (D) if τm → 0 and τe → 0. In these limit procedures we have to
handle the initial layer problem, which occurs as the initial data (I) is not necessarily in the equilibrium states
for (E) and (D). Notice that we can only prescribe two initial conditions for (E) and one initial condition for (D)
while three initial conditions in (I) are necessary for (H’). However, the layers are shown to decay as the time
t tends to infinity and/or the relaxation times τm and τe tend to zero. In the all results above, any smallness
assumptions on the initial data are necessary provided that the relaxation times are sufficiently small.
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