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The Maxwell-Dirac system is the fundamental PDE of classical quantum electrodynamics, describing the motion
of an electron in a self-induced electromagnetic field. We show that the system has some special structural
properties (so-called “null” structure) which improve the regularity of solutions. For the resulting multilinear
forms we prove frequency-localized estimates, in Bourgain spaces adapted to the Dirac equation, at the scale
invariant regularity up to a logarithmic loss. Using these estimates we are then able to prove almost optimal
local well-posedness of the system by iteration. In other words, we can get arbitrarily close the scale invariant
regularity, which corresponds to the L2 norm for the Dirac spinor.

The null structure that we have found is not of the usual bilinear type which can be seen in each component
equation of the system. Rather, it depends on the structure of the system as a whole. In this respect it is
analogous to the structure that Machedon and Sterbenz found for the Maxwell-Klein-Gordon system.

The Maxwell-Dirac system is obtained by coupling Maxwell’s equations,

∇ ·E = ρ, ∇ ·B = 0, ∇×E + ∂tB = 0, ∇×B − ∂tE = J,

with the Dirac equation
(αµDµ +mβ)ψ = 0.

Here the unknowns are the electric and magnetic fields E,B and the Dirac 4-spinor ψ, which are functions of
t ∈ R and x ∈ R3; m ≥ 0 is the rest mass of the electron, and αµ, µ = 0, 1, 2, 3 and β are 4 × 4 Dirac matrices.
We represent E,B by a four-potential Aµ = Aµ(t, x) ∈ R, µ = 0, 1, 2, 3, such that

B = ∇×A, E = ∇A0 − ∂tA (A = (A1, A2, A3)).

In the absence of an electromagnetic field, the operator Dµ in the Dirac equation would just be −i∂µ, but in the
presence of an electromagnetic field E,B represented by the potential Aµ, this must be modified by the minimal
coupling transformation, so that Dµ becomes the gauge covariant derivative

Dµ = D(A)
µ = −i∂µ −Aµ.

To complete the coupling we plug into the Maxwell equation the Dirac four-current density

Jµ = 〈αµψ, ψ〉 (µ = 0, 1, 2, 3), (1)



which splits into the charge density ρ = J0 = |ψ|2 and the three-current density J = (J1, J2, J3). Here 〈·, ·〉 is
the standard inner product on C4.

By gauge invariance, we are free to choose an additional gauge condition on Aµ. We choose the Lorenz gauge
condition ∂tA0 = ∇·A, which has the obvious advantage that the Maxwell equations written in terms of the Aµ

are just wave equations. In fact, with this gauge condition the full Maxwell-Dirac system becomes

(−iαµ∂µ +mβ)ψ = Aµαµψ, (∂2
t − ∆)Aµ = 〈αµψ, ψ〉, ∂tA0 = ∇ ·A.

The last equation however, is automatically satisfied by a solution of the first two equations provided certain
constraints on the initial data are satisfied.

We consider the initial value problem with data

ψ(0, x) = ψ0(x), E(0, x) = E0(x), B(0, x) = B0(x),

which must satisfy the constraints ∇ · E0 = |ψ0|2 and ∇ · B0 = 0. The initial data for the four-potential Aµ,
which we denote by Aµ(0, x) = aµ(x), ∂tAµ(0, x) = ȧµ(x), must be constructed from the observable data E0,B0.
We write a = (a1, a2, a3) and ȧ = (ȧ1, ȧ2, ȧ3). From the Lorenz condition and the defining relationship between
E,B and the Aµ, we get the constraints

ȧ0 = ∇ · a. B0 = ∇× a, E0 = ∇a0 − ȧ,

which determine a, ȧ, for arbitrary a0, ȧ0. The simplest choice is of course a0 = ȧ0 = 0.

Next we split Aµ into its homogeneous and inhomogeneous parts: Aµ = Ahom.
µ + Ainh.

µ . Thus, we reduce the
Maxwell-Dirac system to a single nonlinear Dirac equation:

(−iαµ∂µ +mβ)ψ = Ahom.
µ αµψ − N (ψ, ψ, ψ), N (ψ1, ψ2, ψ3) ≡

(
�−1〈αµψ1, ψ2〉

)
αµψ3.

Here we use the notation �−1F for the solution of the inhomogeneous wave equation �u = F with vanishing
data at time t = 0.

The scale invariant data space would be (ψ0,E0,B0) ∈ L2 × Ḣ−1/2 × Ḣ−1/2, and one does not expect well-
posedness with any less regularity than this. Our first main result is that local-well posedness holds for the above
nonlinear Dirac equation, with only slightly more regularity: ψ0 ∈ Hs, E0,B0 ∈ Hs−1/2 for any s > 0. Given
such data, we first construct the data for Aµ as above, which then define Ahom.

µ . Then we prove by iteration in
Bourgain spaces that the above nonlinear Dirac equation is locally well-posed. To prove closed estimates for the
iterates, we rely heavily on the special structure of the system, which is seen from a certain quadrilinear integral
form for spinors.

Once we have solved the above nonlinear Dirac equation, we can also reconstruct E,B, and our second main
result is that these fields are as regular as their initial data, throughout the time interval of existence. The
field Ainh.

µ on the other hand, appears to lose a lot of regularity compared to the data for Aµ; but since we are
ultimately only interested in the observables, this is not a problem.


