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General setting



∂t u + ∂x f (u) = h(x ,u, z) ,

u(0, x) = ū(x) ,

b.c. at x = ψ0(t) ,

x = ψ1(t) ,

with bdr data α0, α1

t ≥ 0 , ψ0(t) < x < ψ1(t)

u = u(t , x) ∈ Rn conserved quantities
f : Ω ⊆ Rn → Rn smooth flux
h : R× Ω× Rm → Rn smooth source
z = z(t , x) ∈ Z ⊂ Rm distributed control
αj = αj(t) ∈ R

pj boundary control
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General Assumptions

Strictly Hyperbolic System

∂tu + ∂x f (u) = h(x ,u, z)

Df (u)ri(u) = λi(u)ri(u) i = 1, . . . ,n
λ1(u) < λ2(u) < · · · < λn(u)

Weaker Formulation of B.C.
Dirichlet b.c. not fulfilled pointwise

tIf λp(u) < ψ̇0(t) < λp+1(u)

n − p cond’s at x = ψ0
λp+1

λn

λp+2

x

x = ψ0
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Isentropic gas dynamic (p-system)

Gas in a clinder with moving piston (in Lagrangian coord.){
∂tv − ∂xu = 0

∂tu + ∂xp(v) = 0
x ∈]0,h[

v specific volume, u speed, p pressure

x

gas

x = hx = 0
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Stabilization problem for gas dynamic

a control acting only on speed u at x = h:

u(t ,h) = α(t).

a reflection condition at x = 0:

u(t ,0) = 0.

Pb: given

v(0, x) = v̄(x), u(0, x) = ū(x) x ∈ ]0,h[ ,

Stabilize the system at an equilibrium

(v ,u) = (v∗,0).
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Multicomponent chromatoghraphy

Separate two chemical species in a fluid by selective
absorption on a solid medium

OUTLET

S1 S2

x

x = Lx = 0

INLET∂xc1 + ∂t
( γc1

1+c1+c2

)
= 0

∂xc2 + ∂t
( c2

1+c1+c2

)
= 0

x ∈]0,L[

ci concentration solute Si (γ ∈ ]0,1])
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Multicomponent chromatoghraphy

Temple system with GNL characteristic fields
Ree, Aris & Amundson (1986, 1989)
control concentration solute Si entering the tube at x = 0:

ci(t ,0) = αi(t).

0

x

t

L

T

ci = αi

ATTAINABLE SET A(T )

ci = ci
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Optimization problem for chromatography

Maximize separation of solutes at time T

max
x , α

{∫ x

0
(c1(T , ξ)− c2(T , ξ)) dξ+

+

∫ L

x
(c2(T , ξ)− c1(T , ξ)) dξ

}


∂xc1 + ∂t
( γc1

1+c1+c2

)
= 0 ,

∂xc2 + ∂t
( c2

1+c1+c2

)
= 0 ,

ci(0, x) = c̄i ,

ci(t ,0) = αi(t) .

x ∈]0,L[ ,
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Two Classes of Problems

1. Controllability & Stabilizability
2. Optimal control problems

(Mostly boundary controls will be considered)
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Boundary Controllability & Stabilizability

Boundary conditions (non characteristic boundary)

bj(u(t , ψj(t))) = g j(αj(t)) (j = 0,1)

Given:
initial datum u
desired terminal profile Φ (e.g. a constant state Φ(x) ≡ u∗)

Do exist:
boundary controls αj at x = ψj so that solution uα(t , x) of
corresponding IBVP satisfies:
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Boundary Controllability & Stabilizability

uα(T , ·) = Φ

(finite time exact controllability)

b1(uα) = g1(α1)

x

t
T

uα = u

x = ψ0 x = ψ1

b0(uα) = g0(α0)

or
lim

t→∞
uα(t , ·) = Φ ?

(asymptotic stabilizability)
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Optimization problem

max
{
J (u, z, α) : z ∈ Z, α ∈ A

}
J (u, z, α) =

∫ T

0

∫ +∞

0
L(x ,u, z) dxdt +

∫ +∞

0
Φ

(
x ,u(T , x)

)
dx+

+

∫ T

0
Ψ

(
u(t ,0), α(t)

)
dt

single boundary ψ0 ≡ 0
L,Φ,Ψ smooth
A ⊂ L∞(0,T ) admissible boundary controls at x = 0
Z ⊂ L1

loc(]0,+∞[×R) admissible distributed controls
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Finite time exact controllability to constant states u∗

1. Quasilinear systems

∂t u + A(u) ∂x u = h(u) x ∈ ]a,b[ ,

with suff. small C1 initial data u

(Cirinà, 1969; T.Li, B. Rao & co, 2002-2008;
M.Gugat & G. Leugering, 2003)
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Finite time exact controllability to constant states u∗

2. Nonlinear scalar convex con laws and GNL Temple
systems

∂t u + ∂x (f (u)) = 0 x ∈ ]a,b[ ,

with initial data u ∈ L∞ (L1) (discontinuous entropy weak
solutions)

(F.A., A.Marson, 1998; T. Horsin, 1998;
F.A. & G.M. Coclite, 2005)

Fabio Ancona Control Problems for Hyperbolic Equations



Introduction
Controllability & Stabilizability

Optimal control problems
Pontryagin Maximum Principle for Temple systems

Exact controllability
Asymptotic stabilizability

Finite time exact controllability to constant states u∗

3. Isentropic gas dynamic (in Eulerian coord.)∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x

(
ρu2 + Kργ

)
= 0

with T.V.{bdr controls}� ‖u∗ − u‖∞
(strong perturbation of the solution)

(O. Glass, 2006)
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NO exact controllability to constant states u∗

4. Isentropic gas dynamic for a polytropic gas (in Eulerian
coord.) 

∂tρ+ ∂x(ρu) = 0

∂tu + ∂x

(
u2

2
+

K
γ − 1

ργ−1
)

= 0

∃ initial datum so that corresponding sol. has dense set of
discontinuities, whatever bdr controls are prescribed

(A.Bressan & G.M.Coclite, 2002)
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1. Stabilizability with total control on both boundaries

Asymptotic stabilizability around a constant state
with exponential rate

(A.Bressan & G.M.Coclite, 2002)
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2. Stabilizability with total control on single boundary

 b0(u(t , ψ0(t))) = 0 ,

b1(u(t , ψ1(t))) = g(α(t))

• Assume Dg(α) has full rank
⇒ full control on waves entering the domain from x = ψ1

t λ2

λ1

λp

b1(u) = g(α)

x

x = ψ0 x = ψ1
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2. Stabilizability with total control on single boundary

• Assume p ≥ n − p and Db0(u) with maximum rank

rk
[
Db0 · r1(u), . . . ,Db0 · rp(u)

]
= n − p

t

λp

λp+1

λ1

x = ψ0 x = ψ1

λn
use control α acting

x

at x = ψ1 to generate
first p components of u∗

to generate remaining
n − p components of u∗

use reflections at x = ψ0

b1 = g(α)

Fabio Ancona Control Problems for Hyperbolic Equations



Introduction
Controllability & Stabilizability

Optimal control problems
Pontryagin Maximum Principle for Temple systems

Exact controllability
Asymptotic stabilizability

2. Stabilizability with total control on single boundary

• Assume p ≥ n − p and Db0(u) with maximum rank

rk
[
Db0 · r1(u), . . . ,Db0 · rp(u)

]
= n − p

t

λp

λp+1

λ1

x = ψ0 x = ψ1

λn
use control α acting

x

at x = ψ1 to generate
first p components of u∗

to generate remaining
n − p components of u∗

use reflections at x = ψ0

b1 = g(α)

Fabio Ancona Control Problems for Hyperbolic Equations



Introduction
Controllability & Stabilizability

Optimal control problems
Pontryagin Maximum Principle for Temple systems

Exact controllability
Asymptotic stabilizability

2. Stabilizability with total control on single boundary

• Assume p ≥ n − p and Db0(u) with maximum rank

rk
[
Db0 · r1(u), . . . ,Db0 · rp(u)

]
= n − p

t

λp

λp+1

λ1

x = ψ0 x = ψ1

λn
use control α acting

x

at x = ψ1 to generate
first p components of u∗

to generate remaining
n − p components of u∗

use reflections at x = ψ0

b1 = g(α)

Fabio Ancona Control Problems for Hyperbolic Equations



Introduction
Controllability & Stabilizability

Optimal control problems
Pontryagin Maximum Principle for Temple systems

Exact controllability
Asymptotic stabilizability

2. Stabilizability with total control on single boundary

• Nonlinear system ⇒ waves produced by bndr control
interact with each other generating new waves (2nd
generation waves)
∃τ , bdr control α s.t.

T.V.uα(τ, ·) = O(1) · |ū − u∗|2

‖uα(τ, ·)− u∗‖∞ = O(1) · |ū − u∗|2

⇓

Asymptotic stabilization to equilibrium u∗ (b0(u∗) = 0)

(F.A. & A.Marson, 2007)
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Optimization problem

max
z∈Z, α∈A

∫ T

0

∫ +∞

0
L(x ,u, z) dxdt +

∫ +∞

0
Φ

(
x ,u(T , x)

)
dx+

+

∫ T

0
Ψ

(
u(t ,0), α(t)

)
dt

u = uz,α(t , x) solution to (ψ0 ≡ 0):
∂tu + ∂x f (u) = h(x ,u, z) ,

u(0, x) = ū(x) ,

b(u(t ,0)) = α(t)
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Goals

1. Establish existence of optimal solutions

2. Seek necessary conditions for optimality of controls ẑ, α̂

3. Provide algorithm to construct (almost) optimal solutions
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Main difficulties

Lack of regularity of sol’ns to cons. laws

x x
x0

compression wave

shock wave

x0

u0(t , ·) u0
x →∞

u t

f ′(u0)

u0(0, ·)

Non differentiability of input-to-trajectory map
(z, α) 7→ uz,α in any natural Banach space
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Non differentiability

∂tu + ∂x

(
u2

2

)
= 0 , u(0, x) = ūθ(x)

.
= (1 + θ)x · χ[0,1](x)

(1)

Sol. to (1):

uθ(t , x) =
(1 + θ)x

1 + (1 + θ)t
· χ

[0,
√

1+(1+θ)t](x)

Notice:

ūθ is differentiable in L1 at θ = 0

lim
θ→0

‖ūθ − ū0 − θ ū0‖L1

θ
= 0
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.
= (1 + θ)x · χ[0,1](x)

(1)

Sol. to (1):

uθ(t , x) =
(1 + θ)x

1 + (1 + θ)t
· χ

[0,
√

1+(1+θ)t](x)

Notice:
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Non differentiability

The location of the jump in uθ(t , ·) depends on θ
u

x

u0(t , ·)

uθ(t , ·)

√
1 + t

√
1 + (1 + θ)t

≈ θ · (shift rate)

⇒ uθ(t , ·) is NOT diff. in L1 at θ = 0 for t > 0
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Non differentiability

lim
θ→0

uθ(t , ·)− u0(t , ·)
θ

yields a measure µt with a nonzero singular part located at the
point of jump x(t) =

√
1 + t of u0(t , ·)

(µt)
s = ∆u0(t , x(t))︸ ︷︷ ︸

size of the jump

· d
dθ

√
1 + (1 + θ)t

∣∣∣∣
θ=0︸ ︷︷ ︸

shift rate

· δx(t)

=
t

2(1 + t)
· δx(t)

(
∆u0(t , x(t)) = u0(t , x(t)−)− u0(t , x(t)+) =

1√
1 + t

)
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Generalized tangent vectors

A generalized tangent vector generated by a family of

solutions
{

uθ
}

, with
uθ(t)− u0(t)

θ
⇀ µt , is an element

(v , ξ) ∈ L1(R)× R] jumps in u

v (vertical displacement) takes into account of the
absolutely continuous part of µt

ξ (horizontal displacement) takes into account of the
singular part of µt

(no Cantor part in µt )

(A.Bressan & A.Marson, 1995)
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Vertical displacement

u0(t , ·)
≈ θv

u

x

≈ θv

uθ(t , ·)

v(t , x) = lim
θ→0

uθ(t , x)− u0(t , x)

θ
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Horizontal displacement

uθ(t , ·)

u

x

u0(t , ·)

≈ θξα

≈ θξβ

xθα xθβx0
βx0

α

ξα(t) = lim
θ→0

xθ
α(t)− x0

α(t)
θ

rates of horizontal displacement of locations xθ
1 (t) < · · · > xθ

N(t)
of jumps in uθ(t , ·)
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Admissible variations

x0

t

(τθ, ηθ)
(τ0, η0)

ξ̂γ

xβ
xθβ

ξα ξβ

xθα
[xα

uθ(t) ≈ u0(t) + θv(t) +
∑
ξα<0

∆u0(t , xα(t)) · χ[x0(t)+θξα(t),x0(t)]

+
∑
ξα>0

∆u0(t , xα(t)) · χ[x0(t),x0(t)+θξα(t)]
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If
uθ (̄t , ·) generates a generalized tangent vector

discontinuities of u0 interact at most two at the time

uθ is piecewise Lipschitz with uniform in θ Lipschitz
constant outside the discontinuities

Then
uθ(t , ·) generates a generalized tangent vector(
v(t , ·), ξ(t)

)
for t > t̄

(A.Bressan & A.Marson, 1995)
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Moreover

v(t , x) is a broad solution of

∂tv + Df (u)∂xv +
[
D2f (u) · v

]
∂xu = Duh(x ,u, z) · v

ξα(t) satisfies an ODE along the α-th discontinuity
x = xα(t)

explicit restarting conditions at the interaction of two
discontinuities

(A.Bressan & A.Marson, 1995)
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Necessary conditions for optimality

Necessary conditions for optimality obtained by means of
generalized cotangent vectors (v∗, ξ∗) satisfying∫

v∗(t , x) · v(t , x) dx +
∑

j

ξ∗j (t)ξj(t) = const

backward transported along trajectories of

∂tu + ∂x f (u) = h(x ,u, z)

(A. Bressan, A. Marson, 1995; A. Bressan, W. Shen, 2007)
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Goal

Extend variational calculus on generalized tangent and
cotangent vectors to first order variations uθ that do not
satisfy

structural stability assumption on wave structure of
reference solution u0

uniform Lipschitzianity assumption on continuous
part of reference solution u0
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Shock interactions

the discontinuities of u0 interact at most two at time

t

x

ξα

ξ̂γ

(τ0, η0)
(τ θ, ηθ)

u0
uθ

ξβ

Stability of outgoing wave structure ⇒ existence of outgoing
tangent vectors
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Shock interactions

If more than two discontinuities interact at the time...

uθ

t

x

u0

...instability of outgoing wave structure
Existence of outgoing tangent vectors?
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Shock generation

uθ is piecewise Lipschitz with uniform in θ Lipschitz
constant outside the discontinuities

⇒ no gradient catastrophe in u0

x x
x0

compression wave

shock wave

x0

u0(t , ·) u0
x →∞

u t

f ′(u0)

u0(0, ·)

⇒ no new discontinuities in u0
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A first step ... towards the goal

Provide necessary conditions for optimality of piecewise
Lipschitz solutions with finite number of discontinuities,
that may contain compression waves

Extend variational calculus on generalized tangent and
cotangent vectors for a particular class of hyperbolic
systems (Temple systems)
Derive a Pontryagin type maximum principle for optimal
solutions of such systems

(F.A., A. Marson, in preparation, 2008)
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What a Temple system is

Exists a system of coordinates w = (w1, . . . ,wn) consisting of
Riemann invariants so that

∂twi + λi(w)∂xwi = h̃(x ,w , z) , i = 1, . . .n

and the level sets{
u : wi(u) = const

}
, i = 1, . . .n

are hyperplanes ⇒ Hugoniot curves ≡ integral curves of
characteristic fields and are straight lines.

Models: chromatography, traffic flow
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Stability of wave structure at interactions...

t

x

uθ

u0

...even in the presence of three or more interacting
discontinuities (No wave of new families emerges
at the interaction)

⇒ ∃ outgoing tangent vectors
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A PDE for first order variations

Key point: consider a perturbation uθ that generates a
generalized tangent vector (v , ξ) on the domain [0,T ]× R.
Then the limit Radon measure

uθ(t)− u0(t)
θ

⇀ µt = µac + µs

(µs =
∑

α ∆αu0 ξα δxα)

is a (measure valued) solution of

µt +
(
Df (u0)µac

x
)

+
∑
α

(
∆αu0 ξα λkα(u0,−

α ,u0,+
α ) δxα

)
x

= 0

(λkα(u0,−
α ,u0,+

α ) is shock speed of jump ∆αu0)
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if a new shock of u0 is generated at t̄ , apply divergence
theorem for measure valued solutions to obtain µ(̄t , ·),
relying on µ(t , ·) for t < t̄

in time intervals where no new shock is generated
evolution of µ is determined by the linearized equation for
generalized tangent vectors and the corresponding ODE
along discontinuities of u0
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The Maximum Principle

Assume

(ẑ, ŵ) = (optimal control–optimal trajectory) be a solution
to the optimal control problem
ŵ with a finite number of discontinuities
cotangent vector (v∗(t , x), ξ∗(t)) be a backward solution of

∂tv∗ + ∂xv∗ · Λ(ŵ) + v∗D̃Λ(ŵ) · ∂x(ŵ) =

= −v∗Dw h̃(x , ŵ , ẑ)− DwL(x , ŵ , ẑ) , Λ(ŵ) = diag
(
λi(ŵ)

)
v∗(T , x) = DwΦ

(
x , ŵ(T , x)

)
ξ∗α(T ) = ∆Φ

(
xα, ŵ(T , xα)

)
+ backward ODEs along the jumps for ξ∗α
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xα, ŵ(T , xα)

)
+ backward ODEs along the jumps for ξ∗α

Fabio Ancona Control Problems for Hyperbolic Equations



Introduction
Controllability & Stabilizability

Optimal control problems
Pontryagin Maximum Principle for Temple systems

Temple systems
Evolution of first order variations
Pontryagin Maximum Principle

The Maximum Principle

Assume
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(ẑ, ŵ) = (optimal control–optimal trajectory) be a solution
to the optimal control problem
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(ẑ, ŵ) = (optimal control–optimal trajectory) be a solution
to the optimal control problem
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xα, ŵ(T , xα)

)
+ backward ODEs along the jumps for ξ∗α

Fabio Ancona Control Problems for Hyperbolic Equations



Introduction
Controllability & Stabilizability

Optimal control problems
Pontryagin Maximum Principle for Temple systems

Temple systems
Evolution of first order variations
Pontryagin Maximum Principle

The Maximum Principle

Then

at every point of continuity of ŵ(t , x) and v∗(t , x) there holds

v∗(t , x) · h(x , ŵ , ẑ) + L(x , ŵ , ẑ) =

= max
z∈Z

{
v∗(t , x) · h(x , ŵ , z) + L(x , ŵ , z)

}
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Future directions

Consider feedback controls z = z(u) which yield regular
solutions of balance law

∂tu + ∂x f (u) = h(u, z)

Study the optimization problem within a class of (more
regular) approximate solutions, e.g.

∂tuε + ∂x f (uε) = h(x ,uε, z) + ε ∂2
x uε

uε(0, x) = u(x) ,

uε(t ,0) = g(α(t))
ε→ 0+
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Thank you for your attention!!
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