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Outline
• Problems and motivation

semiclassical limit through barriers (classical particles)
geometrical optics (any high frequency waves) through interfaces

• Mathematical formulation and numerical methods
Liouville equations and Hamiltonian systems with singular 
Hamiltonians

• Applications and extensions:
semiclassical model for quantum barriers;
computation of diffractions



High frequency waves

Fig. 1. The electromagnetic spectrum, which encompasses the visible region of light, extends 
from gamma rays with wave lengths of one hundredth of a nanometer to radio waves with wave 
lengths of one meter or greater.

• High frequency waves: wave length/domain of computation <<1

• Seismic waves: elastic waves from Sichuan to Beijing (2.5× 103 km)



Difficulty of high frequecy wave 
computation

• Consider the example of visible lights in this 
lecture room:

wave length:  ∼ 10-6 m
computation domain ∼ m
1d computation:  106 ∼ 107

2d computation:  1012 ∼ 1014  

3d computation: 1018 ∼ 1021

do not forget time!  Time steps:  106 ∼ 107



Example: Linear Schrodinger Equation



The WKB Method

We assume that solution has the form  (Madelung Transform)

and apply this ansatz into the Schrodinger equation with initial data. 
To leading order, one  can get



Linear superposition vs viscosity solution



Shock vs. multivalued solution



Eulerian computations of 
multivalued solutons

• Brenier-Corrias
• Engquist-Runborg
• Gosse
• Jin-Li
• Fomel-Sethian
• Jin-Osher-Liu-Cheng-Tsai

Kinetic equations, moment methods, level set



Semiclassical limit in the phase space

Wigner Transform

A convenient tool to study the semiclassical limit:

Lions-Paul, Gerard-Markowich-Mauser-Poupaud, Papanicolaou-Ryzhik-
Keller



Moments of the Wigner function

The connection between Wε and ψ is
established through the moments



The semiclassical limit (for smooth V)

The wigner tranform works for any linear symmetric 
hyperbolic systems:  elastic waves, electromagneticwaves, 
etc. (Ryzhik-Papanicolaou-Keller)



High frequency wave equations

utt – c(x)2 Δ u = 0
u(0, x) = A0(x)  exp (S0(x)/ε)

By using the Wigner transform, the enegry
density satisfies

ft + c(x) {ξ / |ξ|} · ∇x f  - |ξ| ∇ c · ∇ξ f = 0



Discontinuous Hamiltonians in Liouville equation

ft + ∇ξ H· ∇x f - ∇x H · ∇ξ f = 0

• H=1/2|ξ|2 +V(x):: V(x) is discontinuous-
potential barrier, 

• H=c(x)|ξ|: c(x) is discontinuous- different index of 
refraction

• quantum tunneling effect, semiconductor devise 
modeling, plasmas, geometric optics, interfaces 
between different materials, etc.



Analytic issues

ft + ∇ξ H· ∇x f - ∇x H · ∇ξ f = 0

• The PDE does not make sense for discontinuous H.  
What is a weak solution?  (DiPerna-Lions renormalized 
solution for discontinuous coefficients does not apply)

dx/dt = ∇ξ H             
dξ/dt = -∇x H

• How to define a solution of systems of ODEs when the 
RHS is discontinuous or/and measure-valued?



Numerical issues

• for H=1/2|ξ|2+V(x)

• since V’(x)= ∞ at a discontinuity of V, this implies $Δ t=0$ 

• one can smooth out V then Dv_i=O(1/Δx), thus

Δ t=O(Δ x Δ ξ)

poor resoultion (for complete transmission) 
wrong solution (for partial transmission)



II. Mathematical and Numerical            
Approaches (with Wen)

Q: what happens before we take    
the high frequency limit? 



Snell-Decartes Law of refraction

• When a plane wave hits the interface,
the angles of incident and transmitted waves satisfy (n=c0/c)
(Miller, Bal-Keller-Papanicolaou-Ryzhik)



An interface condition 

• We use an interface condition for f that connects
(the good) Liouville equations on both sides of the interface.

• αΤ, αR defined from the original “microscopic” problems
• This gives a mathematically well-posed problem that is physically relavant
• We can show the interface condition is equivalent to Snell’s law in geometrical optics
• A new method of characteristics (bifurcate at interfaces)

f(xf(x++, , ξξ++)=)=ααTTf(xf(x--,,ξξ--)+)+ααRR f(xf(x++, , --ξξ++)  for )  for ξξ++>0>0
H(xH(x++, , ξξ++)=)=H(xH(x--,,ξξ--))

ααRR:  reflection rate    :  reflection rate    ααTT:  transmission rate:  transmission rate
ααRR++ααTT=1=1



Solution to Hamiltonian System with discontinuous 
Hamiltonians

• This way of defining solutions also gives a definition to the solution of the underlying 
Hamiltonian system across the interface:                        

αR
αT

• Particles cross over or be reflected by the corresponding transmission or reflection 
coefficients (probability)

• Based on this definition we have also developed particle methods (both deterministic 
and Monte Carlo) methods



Key idea in numerical discretizations

• consider a standard finite difference 
approximation 

V: piecewise linear approximation—allow good 
CFL
fI,j+1/2, f-i+1/2,j ---- upwind discretization
f+i+1/2, j ---- incorporating the interface condition

(Perthame-Semioni)



Scheme I (finite difference formulation)

• If at xi+1/2 V is continuous, then f+i+1/2,j= f-i+1/2,j;
• Otherwise, 

For ξj>0,  
f+i+1/2,j =  f(x+

i+1/2, ξ+)
= αT f-(x-

i+1/2, ξ−) +αR f(x+
i+1/2, -ξ+)

 = αT fi (ξ-) + αr fi+1(-ξ+)

Stabilitly, convergence under the CFL condition



Curved interface



Quantum barrier



A semiclassical approach for thin barriers (with 
Kyle Novak--AFIT, SIAM Multiscale Model Simul & JCP 06)

• Barrier width in the order of De Broglie length, separated 
by order one distance

• Solve a time-independent Schrodinger equation for the 
local barrier/well to determine the scattering data 

• Solve the classical liouville equation elsewhere, using 
the scattering data at the interface



Resonant tunnelling



Circular barrier (Schrodinger with ε=1/400)




Circular barrier (semiclassical model)




Circular barrier (classical model)




Entropy

• The semiclassical model is time-
irreversible.  

½ ½

½ ½

1                                        ½ ½

Loss of the phase information
cannot deal with interference  



decoherence

V(x)  = δ(x) + x2/2

Quantum

semiclassical




A Coherent Semiclassical Model
Initialization: 
• Divide barrier into several thin barriers 
• Solve stationary Schrödinger equation
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A coherent model
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• Solve Liouville equation

• Interface condition
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Interference



The coherent model

• V(x)  = δ(x) + x2/2

Quantum

semiclassical




Another example

• V(x)= α [ δ(-l/2)+δ(l/2) ]
α=-1.5 ε, l=10 ε, 
ε=0.01

thin single 
barrier 
model




The decoherent model (two thinn
barriers)




The coherent model (two thin 
barriers)




VI. Computation of diffraction (with Dongsheng Yin)



Transmissions, reflections and diffractions 
(Type A interface)



Type B interface



Hamiltonian preserving+Geometric Theory of 
Diffraction

• We uncorporate Keller’s GTD theory into the interface condition:





A type B interface



Another type B interface



A type A interface



Half plane



Computational cost (ε=10-6)
• Full simulation of original problem for 

Δ x ∼ Δ t ∼ O(ε)=O(10-6)

Dimension     total cost

2d, O(1018)
3d O(1024)
• Liouville based solver for diffraction    

Δ x ∼ Δ t ∼ O(ε1/3) = O(10-2)  
Dimension     total cost

2d, O(1010)
3d O(1014)

Can be less with local mesh refinement



Other applications and ongoing projects

The wigner tranform works for any linear 
symmetric hyperbolic systems:  elastic 
waves, electromagneticwaves, etc.

• Elastic waves (with Xiaomei Liao, J. Hyp. 
Diff Eq. 06)

• High frequency waves in random media 
with interfaces (with X. Liao, X. Yang)



Summary

• Developed finite difference, finite element, and particle (both Monte 
Carlo and deterministic) methods

• Able to compute (partial) transmission, reflection, and diffraction for 
many high frequency waves (geometrical optics, semiclassical limit 
of Schrodinger, elastic wave, thin quantum barrier, high frequency 
waves in random media, diffractions, etc.) without fully resolving the 
high frequency: 
only use Liouville equation + interface condition

• wide quantum barriers (under development) 
• Mathematical theory: singular Hamiltonian systems—use (classical) 

particles to do (quantum) waves
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Outline

		Problems and motivation



     semiclassical limit through barriers (classical particles)

    geometrical optics (any high frequency waves) through interfaces



		Mathematical formulation and numerical methods



    Liouville equations and Hamiltonian systems with singular Hamiltonians

   

		Applications and extensions:



    semiclassical model for quantum barriers;

    computation of diffractions













High frequency waves

 























       Fig. 1. The electromagnetic spectrum, which encompasses the visible region of light, extends from gamma rays with wave lengths of one hundredth of a nanometer to radio waves with wave lengths of one meter or greater. 



		High frequency waves: wave length/domain of computation <<1 



		Seismic waves: elastic waves from Sichuan to Beijing (2.5£ 103 km)









Difficulty of high frequecy wave computation

		Consider the example of visible lights in this lecture room:





   wave length:  » 10-6 m

   computation domain »  m

     1d computation:  106  » 107

     2d computation:  1012 » 1014  

     3d computation: 1018  » 1021

     do not forget time!  Time steps:  106  » 107







Example: Linear Schrodinger Equation





















The WKB Method

 We assume that solution has the form  (Madelung Transform)









 and apply this ansatz into the Schrodinger equation with initial data. 

 To leading order, one  can get









Linear superposition vs viscosity solution















Shock vs. multivalued solution















Eulerian computations of multivalued solutons 

		Brenier-Corrias

		Engquist-Runborg

		Gosse

		Jin-Li

		Fomel-Sethian

		Jin-Osher-Liu-Cheng-Tsai





   Kinetic equations, moment methods, level set







Semiclassical limit in the phase space

Wigner Transform





                 

   A convenient tool to study the semiclassical limit:



   Lions-Paul, Gerard-Markowich-Mauser-Poupaud, Papanicolaou-Ryzhik-Keller

  

















Moments of the Wigner function

The connection between W and  is

established through the moments







The semiclassical limit (for smooth V)









The wigner tranform works for any linear symmetric hyperbolic systems:  elastic waves, electromagneticwaves, etc.  (Ryzhik-Papanicolaou-Keller)













High frequency wave equations

    utt – c(x)2  u = 0

    u(0, x) = A0(x)  exp (S0(x)/)



 By using the Wigner transform, the enegry

 density satisfies

    

   ft + c(x) { / ||} ¢ rx f  - || r c ¢ r f = 0







Discontinuous Hamiltonians in Liouville equation

             ft + r H¢ rx f - rx H ¢ r f = 0



		H=1/2||2 +V(x):: V(x) is discontinuous- potential barrier, 

		H=c(x)||: c(x) is discontinuous- different index of refraction





		quantum tunneling effect, semiconductor devise modeling, plasmas, geometric optics, interfaces between different materials, etc.















Analytic issues

               ft + r H¢ rx f - rx H ¢ r f = 0



		The PDE does not make sense for discontinuous H.  What is a weak solution?  (DiPerna-Lions renormalized solution for discontinuous coefficients does not apply)





                 dx/dt = r H             

                 d/dt = -rx H



		How to define a solution of systems of ODEs when the RHS is discontinuous or/and measure-valued?















Numerical issues

		 for H=1/2||2+V(x)











    





		since V’(x)= 1 at a discontinuity of V, this implies $ t=0$ 



		one can smooth out V then Dv_i=O(1/x), thus





                                 t=O( x  )

                                  

 

                                                                                           

           poor resoultion (for complete transmission) 

       wrong solution (for partial transmission)

















II. Mathematical and Numerical               

   Approaches (with Wen)



Q: what happens before we take    

     the high frequency limit? 













Snell-Decartes Law of refraction

		When a plane wave hits the interface,



    the angles of incident and transmitted waves satisfy (n=c0/c)

    (Miller, Bal-Keller-Papanicolaou-Ryzhik)

















An interface condition 

		We use an interface condition for f that connects



    (the good) Liouville equations on both sides of the interface.



















		 T, R defined from the original “microscopic” problems

		This gives a mathematically well-posed problem that is physically relavant

		We can show the interface condition is equivalent to Snell’s law in geometrical optics

		A new method of characteristics (bifurcate at interfaces)



 f(x+, +)=Tf(x-,-)+R f(x+, -+)  for +>0

     H(x+, +)=H(x-,-)

    R:  reflection rate    T:  transmission rate

                    R+T=1













Solution to Hamiltonian System with discontinuous Hamiltonians

		This way of defining solutions also gives a definition to the solution of the underlying Hamiltonian system across the interface:                               



                               





                                  R  

                                                                    T

 









		Particles cross over or be reflected by the corresponding transmission or reflection coefficients (probability)

		Based on this definition we have also developed particle methods (both deterministic and Monte Carlo) methods















Key idea in numerical discretizations

		consider a standard finite difference approximation 





 

  

 

   V: piecewise linear approximation—allow good CFL

   fI,j+1/2, f-i+1/2,j   ----   upwind discretization

   f+i+1/2, j ---- incorporating the interface condition

                           (Perthame-Semioni)













Scheme I (finite difference formulation)



		If at xi+1/2 V is continuous, then f+i+1/2,j= f-i+1/2,j;

		Otherwise, 



     For j>0,  

          f+i+1/2,j =  f(x+i+1/2, +) 

                    = T f-(x-i+1/2, -) +R f(x+i+1/2, -+) 

               = T fi (-) + r fi+1(-+)





                    

  Stabilitly, convergence under the CFL condition

   













Curved interface

















Quantum barrier

















A semiclassical approach for thin barriers (with Kyle Novak--AFIT, SIAM Multiscale Model Simul & JCP 06)

		Barrier width in the order of De Broglie length, separated by order one distance

		 Solve a time-independent Schrodinger equation for the local barrier/well to determine the scattering data 

		Solve the classical liouville equation elsewhere, using the scattering data at the interface















Resonant tunnelling

















Circular barrier (Schrodinger with =1/400)













Circular barrier (semiclassical model)













Circular barrier (classical model)













Entropy

		The semiclassical model is time-irreversible.  



          ½                        ½ 

                                   ½                                  ½ 

                                                          

          1                                        ½                    ½ 

      Loss of the phase information

      cannot deal with interference  







decoherence

  V(x)  = (x) + x2/2





   Quantum





 

   semiclassical







A Coherent Semiclassical Model





Initialization: 

		Divide barrier into several thin barriers 

		Solve stationary Schrödinger equation



		  Matching conditions



























A coherent model





		 Solve Liouville equation



		 Interface condition



		 Initial conditions



		 Solution













Interference











The coherent model

		V(x)  = (x) + x2/2







   Quantum





 

   semiclassical







Another example

		V(x)=  [ (-l/2)+(l/2) ]



  =-1.5 , l=10 , =0.01





   thin single 

   barrier 

   model







The decoherent model (two thinn barriers)







The coherent model (two thin barriers)







VI. Computation of diffraction (with Dongsheng Yin)

















Transmissions, reflections and diffractions (Type A interface)

















Type B interface











Hamiltonian preserving+Geometric Theory of Diffraction

		We uncorporate Keller’s GTD theory into the interface condition:



      

























A type B interface

















Another type B interface











A type A interface











Half plane











Computational cost (=10-6)

		Full simulation of original problem for 



                  x »  t » O()=O(10-6)



  

Dimension     total cost

2d,           O(1018)

3d            O(1024)

		Liouville based solver for diffraction    



              x »  t » O(1/3) = O(10-2)  



Dimension     total cost

2d,           O(1010)

3d            O(1014)

    Can be less with local mesh refinement



     







Other applications and ongoing projects

    The wigner tranform works for any linear symmetric hyperbolic systems:  elastic waves, electromagneticwaves, etc. 

		Elastic waves (with Xiaomei Liao, J. Hyp. Diff Eq. 06)

		High frequency waves in random media with interfaces (with X. Liao, X. Yang)















Summary



		 Developed finite difference, finite element, and particle (both Monte Carlo and deterministic) methods



		Able to compute (partial) transmission, reflection, and diffraction for many high frequency waves (geometrical optics, semiclassical limit of Schrodinger, elastic wave, thin quantum barrier, high frequency waves in random media, diffractions, etc.) without fully resolving the high frequency: 



      only use Liouville equation + interface condition



		wide quantum barriers (under development) 

		Mathematical theory: singular Hamiltonian systems—use (classical) particles to do (quantum) waves
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As € — 0, the limit Wigner equation is the Liou-
ville equation in phase space

W4k VW —VV. VW =0
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W(0.x.k) = |Ag(x)|25(k — VSo(x))
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Figure 2: wave reflection, transmission and diffraction at a Type B interface
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Define the semiclassical probability amplitude as

D, p,t) = Iz, p, 1) @)

where §(x.p) is the phase offset from the initial conditions B (x.p, 0) = v/F(z, p,0).
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