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Introduction

Topic: Overview of conservation law (traffic - like) models for large

supply chains.

Joint work with....
® S, Gottlich, M. LaMarca, D. Marthaler, A. Unver
® D. Armbruster (ASU), P. Degond (Toulouse), M. Herty (Aachen)

¢ K. Kempf, J. Fowler (INTEL Corp.)
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Definition of a supply chain

One supplier takes an item, processes it, and hands it over to the next

supplier.

Suppliers ( Items):
» Machines on a factory floor (product item),
» Agent (client),
» Factory, many items,

» Processors in a computing network (information),
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Example: Protocol for a Wafer in a Semiconductor Fab

diffusion | diffusion metal
1 2 litho 1 etch clean etch 1 ion impl dep litho2 | etch2
step a b c d e f g h i
1 0.25 clean wafer
2 8.00 grow a layer
3 1.00 pattern it
4 1.00 etch away some
5 6.00 grow a layer
6 1.25 pattern it
7 250 implant ions
8 0.50 remove mask
9 7.00 grow a layer
10 1.00 pattern it
11 1.00 etch some away
12 0.25 clean wafer
13 5.00 grow a layer
14 1.25 pattern it
15 3.50 implant ions
16 0.50 remove mask
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OUTLINE(3

» Traffic flow like models
» Clearing functions: Quasi - steady state models - queueing theory.

» First principle models for non - equilibrium regimes (kinetic

equations and hyperbolic conservation laws.)

» Stochasticity (transport in random medium).

» Policies (traffic rules).
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Traffic flow - like models

» Introduce the stage of the whole process as an artificial 'spatial’

variable. Items enter as raw product at + = 0 and leave as

finished product at v = X.
» Define microscopic rules for the evolution of each item.

» © many body theory, large time averages

¢ fluid dynamic models (conservation laws).

» Analogous to traffic flow models (items < vehicles).
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Similarities between Traffic and Production Modeling (5

» Complexity and Topology: Complex re - entrant production

systems. Networks of roads.
» Many body problem: interaction not given by simple mean fields.

» Control: Policies for production systems. Traffic control

mechanisms.
» Random behavior.

» Model Hierarchies: Discrete Event Simulation (DES), Multi - Agent
Models (incorporate stochastic behavior) = kinetic equations for
densities (mean field theories, large time asymptotics) = fluid

dynamics = rate equations (fluid models).

n and control.
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Quasi - Steady State Models and Clearing functions g7

» A clearing function relates the expectation of the throughput time
In steady state of each item for a given supplier to the expectation

of the load, the '"Work in Progress’.
» Derived from steady state queuing theory.

» Yields a formula for the velocity of an item through the stages

(Graves '96. Dai - Weiss '99) and a conservation law of the form

Orp + Oz[v(z, p)p| =0

p: item density per stage,

v € |0, X]|: stage of the process.
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Example: M /M /1 queues and simple traffic flow models

Arrivals and processing times governed by Markov processes:

_ =) _ 1
v(@,p) = 15, @) = (processing times)

c(a:): service rate or capacity of the processor at stage .

Simplest traffic flow model (Lighthill - Whitham - Richards)
v(z, p) = vo(z)(1 — =)

Pjam

» In supply chain models the density p can become arbitrarily large,

whereas in traffic the density is limited by the space on the road

pjam-
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phase velocity: Uppgse = ({%[,OU(ZC, /0)]

2,0]

Pmax

Uphase — (165-3,30)2) > 0, Uphase—traf fic = UO(iC)[l B

» In supply chain models the propagation of information (shock
speeds) is strictly forward v,pqse > 0, whereas in traffic flow

models shock speeds can have both signs.

» Problem: Queuing theory models are based on quasi - steady
state regime. Modern production systems are almost never in

steady state. (short product cycles, justin time production).

» Goal: Derive non - equilibrium models from first principles (first for

automata) and then including stochastic effects.
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First principle models for automataj»

» Assume processors work deterministically like automata. A

processor located in the infinitesimal stage interval of length Az

needs atime 7(x) = UOA(:;) to process an item.

» It cannot accept more than ¢(x) At items per infinitesimal time
interval At.

Theorem (Armbruster, CR '03): In the limit Az — O, % — 0. this

yields a conservation law for the density p of items per stage of the form

Oip+ 0. F(x,p) =0, F(x,p)=min{c(z),vo(x)p}
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Bottlenecks

Op + 0. F(x,p) =0, Fl(z,p)=min{c(z),vo(z)p}

» No maximum principle (similar to pedestrian traffic with obstacles).

» The capacity ¢(x) is discontinuous if nodes in the chain form a

bottleneck.

» Flux F' discontinuous =- density p distributional. (alternative
model by Klar, Herty '04).

» Random server shutdowns = bottlenecks shift stochastically.
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A bottleneck in a continuous supply chain

1 realization

rho

t 0 o

Temporary overload of the bottleneck located at z = 1.
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Stochasticity: Random breakdowns and random media 15

diffusion | diffusion metal
1 2 litho1 | etch clean etch 1 ion impl dep litho2 | etch2
step a b c d e f g h i
1 0.25 clean wafer
2 8.00 grow a layer
3 1.00 pattern it
4 1.00 etch away some
5 6.00 grow a layer
6 1.25 pattern it
7 2.50 implant ions
8 0.50 remove mask
9 7.00 grow a layer
10 1.00 pattern it
11 1.00 etch some away
12 0.25 clean wafer
13 5.00 grow a layer
14 1.25 pattern it
15 3.50 implant ions
16 0.50 remove mask
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Avalilability

etch ion metal
diffusion 1 diffusion 2 litho 1 clean | etch1 impl dep litho 2 etch2
0.00 0.00 0.00 0.00 0.00 0.00 450 5.00 8.50 total hours required per lot
0.00 0.00 0.00 0.00 0.00 0.00 900.00 | 1000.00 | 1700.00 total hours needed per week
0.80 0.75 0.90 0.70 0.75 0.85 0.85 0.90 0.65 (average availability)
total hours available per machine
134.40 126.00 151.20 117.60 | 126.00 | 14280 | 142.80 151.20 | 109.20 per week
tools needed as time req / time
0.00 0.00 0.00 0.00 0.00 0.00 6.30 6.61 15.57 avail
1.25 1.25 2.00 1.50 1.25 1.25 1.10 1.50 degree of constrainedness desired
0.00 0.00 0.00 0.00 0.00 0.00 7.88 7.28 23.35 number of tools needed
0 0 0 0 0 0 8 8 24 number of tools installed
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Random capacities

Random breakdowns modeled by a Markov process setting the capacity

to zero in random intervals.

atp + 833 [min{c(az, t)a UOIO}] =0

sample capacity mu

One realization of the capacity ¢(x, t)
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The Markov process:

c(x, t) switches randomly between ¢ = ¢*? and ¢ = 0

c(x,t) prob =1 — Atw(z, ¢)

clx,t+ At) =
( | c'P(x) —c(x,t)  prob= Atw(z,c)

» Frequency w(a:, c) given by mean up and down times of the

Processors.

» Particle moves in random medium given by the capacities.
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One realization with flux F' = min{c, vp} using a stochastic ¢

Goal: Derive equation for the evolution of the expectation (p)
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The many body problem ;g

» Formulate deterministic model in Lagrangian coordinates. &, (%):

position of part n at time ¢.

» A ’follow the leader’ model:

%fn — min{c(fm t) [gn - gn—l]; Uo(fn)}

» Particles move in a random medium, given by stochastic

capacities ¢(&,,, 1)
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Kinetic equation for the many body probability density

F(t,x1,...,xN,Y1, ., YK ): probability that
&i(t) =21, ., 88 () =2y and ci(t) = Y1, -, ek (t) = Yk
Satisfies a Boltzmann equation in high dimensional space.

O,F(L,X,Y)+ V- [V(X,Y)F| = Q[F]

QIF] = [ K(X,Y,YF(t,X,Y')dY' — k(X,Y)F

X = (x1,..,xN): positions

Y = (y1,..,yx), Y € {0, c"P}*: kinetic variable ( discrete velocity
model).

()(F"): interaction with random background.
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» Discrete event simulation corresponds to solving the kinetic many

body equation by Monte Carlo.

» Use methodology for many particle systems. Mean field theory,

long time averages, Chapman - Enskog.
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Theorem (Degond, CR '06):

On large time scales (compared to the mean up and down times of the

processors ) the expectation <,0> of the part - density satisfies

0(p) + 0.F =0, F = (a)c"[1 — exp(—2%L) — e0?(a)d,(p)]

(Tup)
TUP> + <Tdown > ’

e: ratio of (T4, /doun) 1o large time scale.

a: availability (a) = -
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The steady state case

density rho mean field rho

V7
/fﬁ;’
G
y
7\
/ /
77

60 stages, bottleneck processors for 0.4 < x < 0.6
Constant influx;

F(x = 0) = 0.5% bottleneck capacity

Left: DES (100 realizations), Right: mean field equations
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Verification of the transient case

Influx F'(x = 0) temporarily at 2.0 x the bottleneck capacity

Left: 500 realizations, Right: mean field equations
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Re - entrant Networks and Scheduling Policies 93

diffusion | diffusion metal .
1 2 litho 1 etch clean etch 1 ion impl dep litho2 | etch2 | .
step a b c d e f g h i

1 0.25 clean wafer
2 8.00 grow a layer
3 1.00 pattern it
4 1.00 etch away some
5 6.00 grow a layer
6 1.25 pattern it
7 2.50 implant ions
8 0.50 remove mask
9 7.00 grow a layer
10 1.00 pattern it
11 1.00 etch some away
12 0.25 clean wafer
13 5.00 grow a layer
14 1.25 pattern it
15 3.50 implant ions
16 0.50 remove mask

Re - entrant manufacturing lines: One and the same tool is used at

different stages of the manufacturing process.
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» Conservation laws on graphs. Implies that the velocity is computed

non - locally. (Different stages of the process correspond to the same

physical node.)

» Requires the use of a policy governing in what sequence to serve

different Iinesi 'the riiht of way’: FIFO, PULL, PUSH).




Priority scheduling o5

» Equip each part with an attribute vector y & RE.

» Define the priority of the part by p(y) : R® — R

» The velocity of the part is determined by all the parts using the

same tool at the same time with a higher priority.

» Leads to a (nonlocal) kinetic model for stages and attributes (high

dimensional).

» Recover systems of conservation laws by using multi - phase

approximations for level sets in attribute space.
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Kinetic model (Degond, Herty, CR '07)

(Vlasov - type)
Ouf (2, y,t) + Oe[v(d(z, p(y))) f1+ Vy[Ef] =0

f: kinetic density of parts at stage x with attribute v.

p(y): priority of parts with attribute 7.
¢(x, q): cumulative density of parts with priority higher than g.

= [H(p(y) — ) f(z,y,t) dy

or (for re-entrant systems):
= [H(p(y) — ) K (z,2') f(2', y,t) da'dy
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» Attributes y;
» p(y) determines the policy;

» the velocity v(¢) (the flux model).

Example: y € R?

Y1: cycle time (time the part has spent in the system).

Y2: time to due date.
Y3: type of the part (integer valued).

Oif +0:vf]+V, [Ef]=0= F =

(1)

—1
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Policlies:

> FIFO: p(y) =y
» Due date scheduling: p(y) = —s.

» Combined policy (c.f. for perishable goods)

p(y) =y H(y1 — d(ys)) — v H (d(ys) — y1)
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The phase velocity:

The microscopic velocity v(¢) has to be chosen as the phase velocity

OF(¢) of a macroscopic conservation law
9 P '

Theorem 99: The total density of parts (with all attributes)

p(x,t) = [ f(x,y,t) dy satisfies the conservation law
0+ 0F(p) =0, Flp) = |”-_v(0) do

Decide on an over all flux model £'(p). Setv(¢) = 0xF ().

Example: | F'(p) = min{c, vop} = v(¢) = voH (c — vg¢)
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Multi - phase approximations

» Leads to high dimensional kinetic equation. Reduce to

conservation laws via a multi - phase ansatz.

» Approximate f(x,y,t) by a combination of — measures in ¥.

flx,y,t) =2, pu(z,1)0(y — Y,(z,1))

» Derive conservation laws for the number densities p,, (, t) with

attributes y = Y, (1, 1).

Standard approach (Jin, Li 03): Moment closures
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Level Sets 37

Almost all information about the microscopic transport picture is

contained in the evolution of the level sets of parts with equal priority

A@gﬁwa/&mw—qvwwiwm——QMa%w

Level set equation:

JMH@AJ%Z/5@—pﬁWm+vw@wM@p+Eway
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The Riemann Problem

The multi - phase approximation implies for the level sets A(z, ¢,t) and
the cumulative densities ¢(z, q, t)

Az, q,t) =, pn(x,t)0(F, — q)

O, q,t) =3, po(x, ) H(F, — q),
with B, (2, 1) = p(Y,(z,1)) € R

The cumulative density ¢(x, ¢, t) is piecewise constant in ¢ = solve a
Riemann problem for ¢» and compute the motion of p(Y;,) from the

Rankine - Hugoniot condition for the shock speeds.

d _ . F(¢(Pnte))—F(¢(Pn—¢))
Epn + Unaaspn - An(Y)7 Up = hm€—>0 (P +e)—d(Pr—e)
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The densities p,, are evolved according to

Fory € R, Y,, = P, this is an exact (weak) solution of the kinetic

transport equation.

For more than one dimensional attributes the actual attributes Y, are

evolved according to

oY, +v,0,Y, — E =0

within the level set - subject to the constraints p(Yn) — P, (enforced by

a projection method).
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Policy effect on cycle time
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2 products with 2 different delivery due dates.
~+:slow lots, — hot lots.
Left: FIFO, Right: PERISH
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Time to due date at exit
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Toy factory - Comparison (WIP) to discrete event simulations

DES Plot - WIP vs Time vs Machine Stage

o~
T

PDE Plot - WIP vs Time vs Machine Stage
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Time 00

Machine Stage Time 0

Machine Stage

26 processing steps, 200 machines, FIFO
Left: DES: (60,000 lots, 100 realizations), Right: Conservation Law
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Toy factory - Comparison (FLUX) to discrete event simulations

DES Plot - Machi Time vs Fl
S Plol- Ve meStag/e%vs me1s Fux PDE Plot - Machine Stage vs Time vs Flux

Machine Stage Machine Stage

26 processing steps, 200 machines, FIFO
Left: DES: (60,000 lots, 100 realizations), Right: Conservation Law
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Conclusions 34

» Value of PDE models: Provide online decision making tools in

complex processes in non - equilibrium regimes.

» Less versatile than DES.

» Conservation laws on graphs (nonlocal constitutive relations).

» Future work:
® Non - Markovian behavior

¢ Optimization.
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