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Motivation

• To use a framework that it allows the 
imposition “ab initio” of the most restrictive 
physically possible guidelines governing the 
dynamics of complex systems

• Certain limitations are inevitable:  most 
importantly, that the system we study is “close 
enough” to equilibrium; yet we want the 
formalism to not be introducing arbitrary 
constraints.  Here we also limit ourselves to 
macroscopic descriptions. 



General Features

• The general formalism has to reduce to well-
established ones at characteristic limiting 
cases:
– In the limit of infinite time: Equilibrium (Gibbs) 

thermodynamics
– In the limit of reversible dynamics:  Hamiltonian 

dynamics
– In the limit of infinitesimally small deviations from 

equilibrium: Linear Irreversible Thermodynamics 
(Onsager relations)



GENERIC*
• The most general formalism for the dynamics of a structured system, 

macroscopic as well as microscopic, described by x, is the one developed 
(after many years multiple-investigator efforts) by Oettinger and Grmela* 
and called as “GENERIC”

(for General Equation for Non-Equilibrium Reversible-Irreversible Coupling) :
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where L and M are linear differential operators of specific structure (Poissonian
and Dissipation) subject to the additional degeneracy requirements:
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and E, S are the total energy (Hamiltonian) and total entropy, functionals of x.

See also:  H.C. Oettinger, Beyond Equilibrium Thermodynamics, Wiley, 2006

* H. C. Oettinger and M. Grmela, Dynamics and thermodynamics of complex fluids. II.
Illustrations of a general formalism, Phys. Rev. E 56, 6633-6655 (1997). 



Poisson Structure
• Defined for two arbitrary functionals F, G as the 

bilinear functional {F,G}:

• such that:
– It is antisymmetric: {F,G} = - {G,F}
– It satisfies the Jacobi identity: 

{F,{G,H}} + {G,{H,F}} + {H,{F,G}} = 0

{ , } F GF G L dδ δ
δ δ

≡ Ω∫ x x



Dissipation Structure
• Defined for two arbitrary functionals F, G as the 

bilinear functional [F,G]:

• such that the matrix operator Mij, in the limit of 
small departures from equilibrium:
– is symmetric or antisymmetric with respect to an 

interchange of i, j depending on whether the 
corresponding xi, xj components have the same or 
different parities upon time reversal (Generalized 
Onsager-Casimir relations of Linear Irreversible 
Thermodynamics)

[ , ] F GF G M dδ δ
δ δ
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Features of GENERIC
• It can be shown to be consistent with all well 

accepted dynamic transport equations ranging 
from the very microscopic (Maxwell-
Boltzmann) to the microscopic (kinetic theory in 
polymers) and macroscopic (transport 
phenomena) levels

• It can provide corrections/suggestions to many 
complex modeling problems, such as:
– Reptation theory models
– Closure approximations

see Öttinger’s homepage: http://www.polyphys.mat.ethz.ch/ and
Öttinger H-C, Beyond Equilibrium Thermodynamics, Wiley 2005

http://www.polyphys.mat.ethz.ch/


Single Generaror Approximation

• For macroscopic systems, it is possible to deduce a 
simpler structure based on the local equilibrium 
approximation according to which there is a local 
system entropy density that can alternatively to the 
energy be used to characterize the system
– the entropy and energy potentials are directly related
– we can express the dynamics solely in terms of energy 

(Hamiltonian) potentials

• This is shown to be equivalent to GENERIC:
– Edwards BJ, J. Non-Equil. Thermodyn., 23:300-332 (1998)  



Hamiltonian Functional Formalism*
*Beris and Edwards, Thermodynamics of Flowing Systems, Oxford UP, 1994

• For any arbitrary functional F, its time evolution 
can be described as the sum of two contributions:
– a reversible one, represented by a Poisson bracket:

• {F,H}

– an irreversible one, represented by a dissipative 
bracket:

• [F,H]

• The final dynamic equations are recovered 
through a direct comparison with the expression 
derived by differentiation by parts:

{ , } [ , ]dF F dF H F H dVdt dt
δ

δ= + = ⋅∫ x
x



Advantages of Hamiltonian 
Formalism (1)

• It only requires knowledge of the following:
– A set of macroscopic variables, taken uniformly as volume 

densities.  The include, in addition to the equilibrium 
thermodynamic ones (the component mass density, ρi, for 
every component i, the entropy density si), the momentum 
density, ρv, and any additional structural parameter, again 
expressed as a density

– The total energy of the system or any suitable Lagrange 
transform of it, typically the total Helmholtz free energy, 
expressed as a functional of all other densities with the 
temperature substituting for the entropy density

– The Poisson bracket, {F,H}
– The dissipation bracket, [F,H]



Advantages of Hamiltonian 
Formalism (2)

A set of macroscopic variables can easily be assumed depending on the 
physics that we want to incorporate to the problem
The total Helmholtz free energy can also easily be constructed as the sum 
of kinetic energy plus an extended thermodynamic free energy that 
typically includes an easily derived expression (in terms of the structural 
parameters) in addition to a standard equilibrium expression
The Poisson bracket, {F,H} is rarely needed by itself: only when an 
equation is put together for the first time characteristic of the variables 
involved in this system; otherwise, its effect is probably already known from 
previous work:  it corresponds to a standard reversible dynamics.  For 
viscoelastic flows, this corresponds to the terms defining an upper 
convected derivative
The dissipation bracket, [F,H] is the only one to contain major new 
information and is typically where our maximum ignorance lies.  Barren any 
other information (say, by comparison against a microscopic theory) the 
main information that we can use is a linear irreversible thermodynamics 
expression:  according to that, the dissipation bracket becomes a bilinear 
functional in terms of all the nonequilibrium Hamiltonian gradients with an 
additional nonlinear (in H) correction with respect to δF/δs (entropy 
correction) that can be easily calculated so that the conservation of the 
total energy is satisfied:  [H,H] = 0.



Example Case: Single Mode 
Viscoelasticity

• Reference (available in electronic form from 
beris@che.udel.edu):
– A.N. Beris, Simple Nonequilibrium

Thermodynamics Applications to Polymer 
Rheology (As it appeared on: RHEOLOGY 
REVIEWS 2003, The British Society of Rheology
(publisher), 37-75)



Variables
• For an incompressible, homogeneous (uniform 

polymer concentration, n=chain number 
density is constant) system we have
– v, the velocity
– s, the entropy density (alternatively, T, temperature)
– c, the conformation tensor where

• C = <RR> (second moment of the end-to-end distribution 
function) = nc

• At equilibrium, c=kBT/K where K is the 
equilibrium equivalent entropic elastic energy 
constant of the polymer chain



Hamiltonian
• The Hamiltonian (extended Helmholtz free energy 

of the system) is assumed to have the form:

( )21
2V

dVA v aρ= +∫
where various expressions can be assumed to represent 
the elastic free energy density, a, depending on the 
nature of the polymer phase (i.e, dilute solution, polymer 
melt etc).  A list of the most widely used ones is supplied 
in Table 1 together, for convenience, with the 
corresponding expressions for the corresponding 
thermodynamic potential. 







Poisson Bracket: Reversible 
Equations

• For an isothermal system, we get the standard reversible 
dynamics for an elastic medium (together with the 
divergence-free velocity constraint):

D
Dt

Tpρ = −∇ +∇⋅v T

D 0
Dt

T−∇ ⋅ − ⋅∇ =c v c c v

2T a∂
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c



General Dissipation Bracket
• The general dissipation bracket (within an entropy 

correction) can be easily formulated as a bilinear 
expression in terms of the nonequilibrium
components of the Hamiltonian potential,  δH/δc
and ∇(δH/δv) as
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∫ ∫
where, to preserve Onsager’s relations, the matrices Λ and Q are symmetric with 
respect to an exchange of γ,ε by α,β and, moreover, given the symmetry of c, the 
matrix Λ does not change upon an exchange of γ by ε and/or α by β; additional 
constraints on Q can also be derived based on the principle of material indifference



Typical Choices for L, Q

• If L is symmetric upon change of γ by ε and/or α by β it 
turns out that it does not contribute to the entropy 
production; thus there is no need for further constraints.  A 
typical choice is therefore (following the simplest choice 
for Λ, see Table 2) 

/ 2( )L c permutationsof andαβγε αγ βεξ δ α β γ ε= − + ↔ ↔
where ξ is a scalar parameter between 0 and 1

Similarly, for Q, we use the expression which is valid for a 
homogeneous and isotropic (Newtonian) system of 
viscosity ηs:

( )sQαβγε αγ βε αε βγη δ δ δ δ= +



Final Equations

• For an isothermal system, we get the standard dynamics 
for a viscoelastic medium (together with the divergence-
free velocity constraint):

D
Dt

T
spρ η= −∇ + ∆ +∇⋅v v T

( )D :
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Typical Choices for Λ

• Various models can be generated using different 
expressions for the relaxation tensor Λ.

• A compilation of some of the most often employed 
forms can be found in Table 2 







Conclusions
• The Hamiltonian formalism can provide a uniform 

representation for viscoelastic models
• New possibilities thus arise for new model 

development through “mix and match” of terms
• In addition, the evaluation of thermodynamic 

consistency is facilitated:  new constraints can be 
easily derived on acceptable parameter values and 
suitable approximations for the dissipative terms of the 
equations

• The extension of the above-mentioned work to 
multimode models is straightforward!  See the 
mentioned references (book and review) for several 
characteristic examples
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