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Motivation

« To use a framework that it allows the
Imposition “ab initio” of the most restrictive
physically possible guidelines governing the
dynamics of complex systems

« Certain limitations are inevitable: most
importantly, that the system we study is “close
enough” to equilibrium; yet we want the
formalism to not be introducing arbitrary
constraints. Here we also limit ourselves to
macroscopic descriptions.



General Features @

* The general formalism has to reduce to well-
established ones at characteristic limiting
cases:

— In the limit of infinite time: Equilibrium (Gibbs)
thermodynamics

— In the limit of reversible dynamics: Hamiltonian
dynamics

— In the limit of infinitesimally small deviations from
equilibrium: Linear lrreversible Thermodynamics
(Onsager relations)



GENERIC* )

See also: H.C. Oettinger, Beyond Equilibrium Thermodynamics, Wiley, 2006

» The most general formalism for the dynamics of a structured system,
macroscopic as well as microscopic, described by x, is the one developed
(after many years multiple-investigator efforts) by Oettinger and Grmela*
and called as “GENERIC”

(for General Equation for Non'EquiIibrium Reversible'lrreversible Coupling) :

d_X: L5_E+ M §
dt OX OX

where L and M are linear differential operators of specific structure (Poissoniar
and Dissipation) subject to the additional degeneracy requirements:

OX OX

and E, S are the total energy (Hamiltonian) and total entropy, functionals of x.

* H. C. Oettinger and M. Grmela, Dynamics and thermodynamics of complex fluids. II.
lllustrations of a general formalism, Phys. Rev. E 56, 6633-6655 (1997).



Poisson Structure ()

* Defined for two arbitrary functionals F, G as the
bilinear functional {F,G}:

oF 5G
F.G)= J‘5)( OX de

* such that:
— Itis antisymmetric: {F,G} = - {G,F}
— It satisfies the Jacobi identity:
{FAG.H}} +{G{HF}} + {H{F.G}} =0



Dissipation Structure )

« Defined for two arbitrary functionals F, G as the
bilinear functional [F,G]:

[F,G]= J-g—FI\/I TS,

OX

* such that the matrix operator Mj, in the limit of

small departures from equilibrium:
— IS symmetric or antisymmetric with respect to an
interchange of I, | depending on whether the
corresponding X;, X; components have the same or
different parities upon time reversal (Generalized
Onsager-Casimir relations of Linear Irreversible
Thermodynamics)



Features of GENERIC 6O

|t can be shown to be consistent with all well
accepted dynamic transport equations ranging
from the very microscopic (Maxwell-
Boltzmann) to the microscopic (kinetic theory in
polymers) and macroscopic (transport
phenomena) levels

* |t can provide corrections/suggestions to many
complex modeling problems, such as:

— Reptation theory models
— Closure approximations

see Ottinger's homepage: http://www.polyphys.mat.ethz.ch/ and
Ottinger H-C, Beyond Equilibrium Thermodynamics, Wiley 2005



http://www.polyphys.mat.ethz.ch/

Single Generaror Approximation @

« For macroscopic systems, it is possible to deduce a
simpler structure based on the local equilibrium
approximation according to which there is a local
system entropy density that can alternatively to the
energy be used to characterize the system=>»

— the entropy and energy potentials are directly related
— we can express the dynamics solely in terms of energy
(Hamiltonian) potentials

« This is shown to be equivalent to GENERIC:

— Edwards BJ, J. Non-Equil. Thermodyn., 23:300-332 (1998)



Hamiltonian Functional Formalism® @

*Beris and Edwards, Thermodynamics of Flowing Systems, Oxford UP, 1994

« For any arbitrary functional F, its time evolution
can be described as the sum of two contributions:

— a reversible one, represented by a Poisson bracket:
* {F,H}

— an irreversible one, represented by a dissipative
bracket:
* [F.H]
* The final dynamic equations are recovered
through a direct comparison with the expression
derived by differentiation by parts:

d%t:{F,H}+[F,H]:j5%x-dxdtdv



Advantages of Hamiltonian |
Formalism (1) O

It only requires knowledge of the following:

A set of macroscopic variables, taken uniformly as volume
densities. The include, in addition to the equilibrium
thermodynamic ones (the component mass density, p,, for
every component i, the entropy density si), the momentum
density, pv, and any additional structural parameter, again
expressed as a density

The total energy of the system or any suitable Lagrange
transform of it, typically the total Helmholtz free energy,
expressed as a functional of all other densities with the
temperature substituting for the entropy density

The Poisson bracket, {F,H}
The dissipation bracket, [F,H]



Advantages of Hamiltonian |
Formalism (2) L)

A set of macroscopic variables can easily be assumed depending on the
physics that we want to incorporate to the problem

The total Helmholtz free energy can also easily be constructed as the sum
of kinetic energy plus an extended thermodynamic free energy that
typically includes an easily derived expression (in terms of the structural
parameters) in addition to a standard equilibrium expression

The Poisson bracket, {F,H} is rarely needed by itself: only when an
equation is put together for the first time characteristic of the variables
involved in this system; otherwise, its effect is probably already known from
previous work: it corresponds to a standard reversible dynamics. For
viscoelastic flows, this corresponds to the terms defining an upper
convected derivative

The dissipation bracket, [F,H] is the only one to contain major new
information and is typlcally where our maximum ignorance lies. Barren any
other information (say, by comparison against a microscopic theory) the
main information that we can use is a linear irreversible thermodynamics
expression: according to that, the dissipation bracket becomes a bilinear
functional in terms of all the nonequilibrium Hamiltonian gradients with an
additional nonlinear (in H) correction with respect to 6F/ds (entropy
correction) that can be easily calculated so that the conservation of the
total energy is satisfied: [H,H] =



Example Case: Single Mode |
Viscoelasticity O

« Reference (available in electronic form from
beris@che.udel.edu):

— A.N. Beris, Simple Nonequilibrium
Thermodynamics Applications to Polymer
Rheology (As it appeared on: RHEOLOGY
REVIEWS 2003, The British Society of Rheology
(publisher), 37-75)



Variables

* For an incompressible, homogeneous (uniform
polymer concentration, n=chain number
density is constant) system we have

— v, the velocity
— s, the entropy density (alternatively, T, temperature)

— ¢, the conformation tensor where

« C = <RR> (second moment of the end-to-end distribution
function) = nc

At equilibrium, c=k;T/K where K is the
equilibrium equivalent entropic elastic energy
constant of the polymer chain



Hamiltonian

* The Hamiltonian (extended Helmholtz free energy
of the system) is assumed to have the form:

A:IV(%/)VZ +a)dV

where various expressions can be assumed to represent
the elastic free energy density, a, depending on the
nature of the polymer phase (i.e, dilute solution, polymer
melt etc). A list of the most widely used ones is supplied
in Table 1 together, for convenience, with the
corresponding expressions for the corresponding
thermodynamic potential.



Table 1 List of commonly used expressions for the Helmholtz free energy energy density a and the

A . . .
corresponding thermodynamic potential, ¢¢ %’ with respect to the conformation tensor. ¢. The

expressions are provided in dimensionless form. The free energy is made dimensionless with respect to
nkgl, where n is a chain number density. &5 is the Boltzmann factor and 7' the temperature, and ¢ is made
dimensionless with respect to the square of the equilibrium end-to-end chain distance. kz7°'K where K is the
(apparent) elastic constant for the chain’s elastic energy. In the random flight model, kz7'K 1/ 3NF, where
N, lis the number, length of repeating (Kuhn) segments [Kuhn and Griin, 1942].

Model ale) @V Rumarks
oe /References
Maxwell %l - %C_l Also called

Oldrovd-B

}{{tr(c)——hl(dct(c))}

Hookean or
Linear Dumbbell
model [Bird et
al.. 1987]

FENE-P

——}gizln(l-—trif)

\

—)éln(dct(c))

L represents the
dimensionless
maximum chain
extensibility; °
also appears as b
[Bird et al., 1987]

Bird and
DeAguiar

(modified)

}{{tr(c)—-hl(dct(c))}
n {|—m% In (/l/ tr(c))J

det(c¢)

o is an aniso-
tropic mobility
parameter: [Bird
and DeAguiar,
1983]




Leonov

Wia,.a ).

oW 1 [/ e
oa, 7( Kl ]+
ol

—(I1-¢c—#1c")
ca_, 1 7’ %

[, 15 the n-th
invariant of ¢; in
the original
model [5=1
[Leonov, 1976]

Marrucci
and
Acierno

(modified)

}/3(;54-[)[1—-:']_)

y 1s the number of
entanglements
per chain
[Marrucci et al..
1973, Acierno et

al., 1976a.b]

MG / V) r;jc—}f_-' [Marrucci et al..
(modified) c — —c 2001: Levgue et
—In| det AV tt {c)’;) al., 2001]
tr(¢” -
(tr(c”))
=6In [ftr(cz )) ~In(det(c))
Pompon - 1. 1 ) A is an extended
'lh 3In (Tr( )) ]n(du(c))ﬁ - Y | stretch factor
“‘ff) [Ottinger, 2001

(A - H(A
+/[ (2 —q)’
|-1-2In(2")

- () l
|

McLeish and
Larson, 1998]




Poisson Bracket: Reversible
Equations

* For an isothermal system, we get the standard reversible
dynamics for an elastic medium (together with the
divergence-free velocity constraint):

D .
—v=-Vp+V:-T
th P
D
—¢-Vv' -¢—¢c-Vv=0
Dt
TT:2c-6—a

oc



General Dissipation Bracket O

* The general dissipation bracket (within an entropy
correction) can be easily formulated as a bilinear
expression in terms of the nonequilibrium
components of the Hamiltonian potential, dH/dc
and V(0H/dv) as

[F,.G]=-[A oF oG dV—jQ v, OF 1y 125 |gv
} e 5S¢, SC, ape “\ Sv, | 7\ v

g

L, OF 198 v (L v [9C|9F 4y
e |\ o, | oc, wap | Sv, | oc,

where, to preserve Onsager’s relations, the matrices A and Q are symmetric with
respect to an exchange of y,e by a,3 and, moreover, given the symmetry of ¢, the
matrix A does not change upon an exchange of y by € and/or a by (3; additional
constraints on Q can also be derived based on the principle of material indifference




Typical Choices forL,Q @

« If L is symmetric upon change of y by € and/or a by B it
turns out that it does not contribute to the entropy
production; thus there is no need for further constraints. A

typical choice is therefore (following the simplest choice
for A, see Table 2)

Los. =—612(C,,0, + permutationsof a <> fand y <> ¢)

where ¢ is a scalar parameter between 0 and 1

Similarly, for Q, we use the expression which is valid for a

homogeneous and isotropic (Newtonian) system of
viscosity n.:

Qs =1(0,,04 +0,.04)

ag~ By



Final Equations

* For an isothermal system, we get the standard dynamics
for a viscoelastic medium (together with the divergence-
free velocity constraint):

,OBVZ—VD-I—T]SAV-I—V°TT
Dt
D T < .. . oa
—c-V c—Cc-Vyv=—= C+C- — A —
€= VV e—e-Vy 2(y c+e-7) ~

T' = 2(1—§)c-@
oc



Typical Choices for A ()

« Various models can be generated using different
expressions for the relaxation tensor A.

« A compilation of some of the most often employed
forms can be found in Table 2



Table 2 List of commonly used expressions for the fourth order relaxation tensor A, made

T

dimensionless by # where f_v represents an equilibrium relaxation time and the other

Ank?
parameters have been defined in Table 1. Note that only one of four equivalent contnbutions to the

affye component is given, the others (represented as [perm.] in the table) arising from the following
permutations of the original subscripts: affye <> faye <> aficy <> fasy (this table is adapted

from |Bens and Edwards, 1990]).

Model A Remarks/references
affye

ii-l] |L:1TI;'[“.L*I I / ' CopO e + [ Perm.] }

(LM,

OldrovdA, B,

FENE-P)

[“lastic \ !

dumbbell with | - | - O0=<h=¥_— [Bid

hydrodynamic }”_:: Cay | Ope | I [perm.] % T |

mnteractions : - | etal. 1987]

Modified ] \ a = (0 [Bird and

encapsulated 7z oC, Oy +(1-0) €€, + [ pErm.] | DeAguiar, 1983]

dumbbell L tr{c)




Cnesekus

}/{L {1_[ —@&)0 g, + UCy, ] + | perm. I}

0<a =1 ;[Giesekus,
1982a]

Leonow

[ CosCrpp — s €y, + [ pErm. ]]

[Leonov, 1976]

Phan-
Thien/Tanner
i lingar)

}{“ +e(tr(e)- 3”“]!?:‘5&. +[ perm.])

[Phan-Thien and
'anner, 1477]

Extended

White/ Metzner

|
A1)

7

(€00 + [ perm ]

/. 1s a dimensionless.
posttive function of the
invariants of ¢; for
example, 2™=K{/,}
[Souvaliofis and Berns,
1992]

Leyoue, Bens
and kKeunigs

L L]‘[«EK ‘_‘('
S| Cop| aCg +(1—a)——=cy |+ perm.]
| _, -

D<a <1;[Leygue et
al_ 2001]

In the remarks column a number of sufficient conditions known to assure the non-negative character of
the relaxation dissipation are listed (see [Beris and Edwards, 1994] for more details regarding their

dervation).




Conclusions @

The Hamiltonian formalism can provide a uniform
representation for viscoelastic models

New possibilities thus arise for new model
development through “mix and match” of terms

In addition, the evaluation of thermodynamic
consistency is facilitated: new constraints can be
easily derived on acceptable parameter values and
suitable approximations for the dissipative terms of the
equations

The extension of the above-mentioned work to
multimode models is straightforward! See the
mentioned references (book and review) for several
characteristic examples
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