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Schedule:

1. 4/13/07, 9:30 am Introduction. One mode viscoelasticity.

2. 4/13/07,10:15am  Coupled transport: Two-fluid model*.

3. 4/14/07, 2:00 pm  Modeling under constraints: Liquid crystals.
4. 4/14/07, 3:00 am  Non-homogeneous systems: Surface effects.

*Following the development in “Beris and Edwards, 1994, Section 9.2”



Coupled Transport in a Viscoelastic
Fluid

« Two approaches: Single and two-fluid system

« Formalism can tell you what it CAN be, but not
what it ACTUALLY is! (Comparison with
underlying microscopic theory is necessary)

* The cruder the structure, the easier to work out
the predictions but also the more cloudy those
predictions are

« Single fluid model: coarser; 2-fluid model: finer
 Next: Develop general equations



Single Fluid Model: Variables @

« For an incompressible, inhomogeneous (variable
polymer concentration, n=chain number density is
variable) system we have

— P4, the polymer density (n=N,p,/MW,)
— v, the velocity
— s, the entropy density (alternatively, T, temperature)

— ¢, the conformation tensor where

* C = <RR> (second moment of the end-to-end distribution
function) = nc

« At equilibrium, c=kgT/K where K is the equilibrium
equivalent entropic elastic energy constant of the
polymer chain



Single Fluid Hamiltonian O

* The Hamiltonian (extended Helmholtz free energy
of the system) is assumed to have the form:

A:jv(%pszrae +a_)dV

where a, is the elastic free energy density corresponding to a dilute solution:

a, = % (KtrC—nk,T log (det((K%kBT)D)

and a,, represents the mixing energy density (approximated by a Flory-Huggins) term:

a. =kgT(nloge +n log(l-¢))

where ng is the solvent number density and ¢ is the polymer volume fraction:

$= (nN%\N +n,)



Single Fluid Poisson Bracket:
Reversible Equations

« For an isothermal system, we get the standard reversible

dynamics for an elastic medium together with a convection
equation for the polymer density:

D
= 5 =0
Dtpl

D T
—vVv==-Vp+V-T
th p
D

—C-Vv' -.C-C-Vv=0
Dt

" =20. 2
oC



Single Fluid: Dissipation Structure @

« Defined for two arbitrary functionals F, G by the bilinear
functional [F,G] (to within an entropy correction term):
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Single Fluid: Final Equations @
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Single Fluid Formalism O .

* The general formalism leads to new terms to the
polymer mass balance and conformation evolution
equations:

— In the polymer mass balance: A new driving force appears
proportional to the gradient to the polymer stress

— In the polymer conformation evolution equation: Two new
terms appear, involving second derivatives of the chemical
potential and the stress

— In addition, there are other dependencies (n hidden with C)
* Moreover, many uncertainties still remain (too many

adjustable parameters) and the nonnegative entropy
production is hard to ascertain in the general case



Particular Case: D=-1/2E=1/4B=D& )
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Two- Fluid Model: Variables @

« For an incompressible, inhomogeneous (variable
polymer concentration, n=chain number density is
variable) system we have (keeping p=p,+p,=constant)

— P4, the polymer density (n=N,p,/MW,); p,, the solvent density
— 94=p4V4, the polymer momentum density; g,=p,V,
— s, the entropy density (alternatively, T, temperature)

— ¢, the conformation tensor where

* C = <RR> (second moment of the end-to-end distribution
function) = nc

« At equilibrium, c=kgT/K where K is the equilibrium
equivalent entropic elastic energy constant of the
polymer chain



Two-Fluid Hamiltonian @

* The Hamiltonian (extended Helmholtz free energy
of the system) is assumed to have the form:

Azjv(%plvf +Yp N +a,+a, )dV

where a, is the elastic free energy density corresponding to a dilute solution:

a, = % (KtrC—nk,T log (det((K%kBT)D)

and a,, represents the mixing energy density (approximated by a Flory-Huggins) term:

a. =kgT(nloge +n log(l-¢))

where ng is the solvent number density and ¢ is the polymer volume fraction:

v= (nN%\N +n,)



Two- Fluid Poisson Bracket:
Reversible Equations
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« For an isothermal system, we get the standard reversible

dynamics for 2 interpenetrating continua of which one is
an elastic medium
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Transformation of Variables @

* To introduce the dissipation terms it is first
necessary to make a transformation of variables
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Two- Fluid: Reversible Equations in!@;
Transformed Variables -
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Two-Fluid: Dissipation Structure @

« Defined for two arbitrary functionals F, G by the bilinear
functional [F,G] (to within an entropy correction term):
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Two- Fluid: Final Momentum and ()
: : L4
Conformation Equations
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Two- Fluid: Small Differential @
Inertia

AV, =-Z_(1-9)(V, J1-VT,)

yoay

and therefore, substituting this relationship into the polymer density equation, we have:
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Two- Fluid Formalism: Conclusions @

« The general formalism leads to specific new terms to
the polymer mass balance and conformation evolution
equations:

— In the polymer mass balance: A new driving force appears
proportional to the gradient to the polymer stress

— In the polymer conformation evolution equation: The reference
velocity with respect to which it is calculated is the polymer
phase velocity

— In addition, there are other dependencies (n hidden with C)
» The 2-fluid equation leaves no uncertainties!

It has been confirmed from microscopic theory (Curtiss
and Bird, 1996).



Applications

e Coupled mass/momentum transport in a dilute polymer system:

Two-fluid model.
« Apostolakis MV, Mavrantzas VG, Beris AN Stiress gradient-induced
migration effects in the Taylor-Couette flow of a dilute polymer solution
J. NON-NEWTONIAN FLUID MECH. 102: 409-445 (2002)

 Non-homogeneous systems: Surface Effects on the Rheology and

Chain Conformation in Dilute Polymer Solutions.

« Mavrantzas VG, Beris AN A hierarchical model for surface effects on chain
conformation and rheoloqy of polymer solutions. I. General formulation
JOURNAL OF CHEMICAL PHYSICS 110: 616-627 (1999)

 |l. Application to a neutral surface
JOURNAL OF CHEMICAL PHYSICS 110: 628-638 (1999)
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