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Introduction. One mode viscoelasticity.
Coupled transport: Two-fluid model.
Modeling under constraints: Liquid crystals®
Non-homogeneous systems: Surface effects.

*Following the development in “Beris and Edwards, 1994, Chapter 11"



The Dynamical Theory of Liquid
Crystals

« Several levels of description:

— Depending on the structural variable(s) used:
 Director description, n (unit vector)
» Director-scalar order parameter description, n, s
« Tensor order parameter description, m (unit trace)
— Depending on whether or not inertial components are kept in
the structural evolution equations:

* Inertial formulations (where both ¢ and ¢ are considered as
variables, c representing any structural parameter)

* Inertialess formulations
 Interconnectivity between various formulations:

— Complexity increases as the number of structural variables
increase (but also the capability of representing more states!)

— Inertial formulations useful to deduce the form of dissipation in
inertialess models



Hamiltonian/dissipation structure in
the presence of constraints

O

« ltis very important to take into account the constraints of the
structural variables

* Director n: unit vector, n-n = 1

— Variations constrained to be perpendicular to the director: An -n=0

» This affects the definition of the Volterra derivatives of a functional F with
respect to n, (8F/dn)., since those also need to be in the same subspace as
An: Thisis deflnea from the unconstrained functional (6F/6n by taklng
its projection to the normal to n space : (dF/dn), = (dF/dn), — ((81:/6n) ‘n)n

« It also affects (potentially) the structure of the brackets. Formally those
can be constructed from the equivalent brackets obtained in the absence of
constraints through the following substitution:

oF 1 oF (5F j oF
—> — ‘nn|=—
op (p.p) on \ on on
This is obtained by exploring the relationship between dn/dt and dp/dt when n is
formally obtained from the unconstrained (still considered unit) variable p as:
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Hamiltonian/dissipation structure in
the presence of constraints (2)

O

* Order parameter tensor m:
 Symmetric and of unit trace matrix, m,z =mg, ; tr(m) = 1

— Variations constrained to be symmetric and traceless: tr(Am) =0

» This affects the definition of the Volterra derivatives of a functional F with
respect to m, (6F/dm), since those also need to be in the same subspace
as Am: This is defined from the unconstrained functional (dF/dm), by
taking its projection to a symmetric and traceless space:

(BF/Bm), = V4( (5F/dm), + (5F/5m),T) - 1/3(tr ( (SF/5m), ))d

* |t also affects (potentially) the structure of the brackets. Formally, those
can be constructed from the equivalent brackets obtained in the absence of
constraints through the following substitution:

oF 1 (oF oF oF 5F
—> — 'm|d |=—-— 'm |0
oc tr(c)\ oc oc sc | de
This is obtained by exploring the relationship between dm/dt and dc/dt when m is
formally obtained from the unconstrained variable ¢ (still considered of unit trace) as:

¢ . dm 1 (dc (dc _ j j
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Inertial Director Theory: Variables @

* For an incompressible, system we have
— v, the velocity
— s, the entropy density (alternatively, T, temperature)
— n, the director (constrained to be a unit vector field)
— w, the momentum of the director (w = o dn/dt)



Inertial Director Theory: Hamiltonian €

* The Hamiltonian (extended Helmholtz free energy
of the system) is assumed to have the form:

A= _[V(%,ov2 + %, W +W +y)dV

where W is the elastic (Oseen/Frank) distortion free energy density :
W = % (k,,(divn)® +k,,(n-curln)® + k..((n- V)n)*)
and y the effects of an external field. For example, for magnetically susceptible material

it is given as: ,
W = _%((ZH _ZL)(H'H) +ZLH'H)

where x, and X| are the magnetic susceptibilities perpendicular and parallel to n



Inertial Director Theory :
Reversible equations

* For an isothermal system, we get the standard reversible
dynamics for a Hamiltonian system endowed with a vector
structural parameter and its (material) time derivative:

D ( oW J
IO_Va = Fa - p,a - —nﬂ,a
/4

where bt anﬂ’y
Fa — (D,BvaH,B and CDa — (ZH _ZJ_)n.Hna +ZLH05
D, —i(w —W.Nn.n )
Dt * o\ ¢ e
D oH
— W = —

Dt Sn



Inertial Director Theory : ()
Dissipation Bracket -
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Inertial Director Theory :
Final equations

D oW
p—V_ =F - P, n;., +t0W
ong i

Dt
where t, is exactly the Leslie/Ericksen stress




Inertialess Director Theory: ()
Variables >

* For an incompressible, system we have
— v, the velocity
— s, the entropy density (alternatively, T, temperature)
— n, the director (constrained to be a unit vector field)



Inertialess Director Theory:
Hamiltonian

* The Hamiltonian (extended Helmholtz free energy
of the system) is assumed to have the form:

A:jv(%pv2+w +y)dV

where W is the elastic (Oseen/Frank) distortion free energy density :
W = % (k,,(divn)® +k,,(n-curln)® + k,.((n- V)n)?*)
and y the effects of an external field. For example, for magnetically susceptible material

it is given as:
W= _%((ZH _ZL)H'H‘I' ZLH'H)

where x, and X| are the magnetic susceptibilities perpendicular and parallel to n



Inertialess Director Theory :
Reversible equations

* For an isothermal system, we get the standard reversible
dynamics for a Hamiltonian system endowed with a vector
structural parameter:

Ev =F,-p,- ﬂn +1
'ODt on, fre o
/4

where !
Fa:(D,BVaH,B and a:(ZH_ZJ_)n.Hna_I_ZLHa
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Inertialess Director Theory : @
Dissipation Bracket

oF oG
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Inertialess Director Theory : ()
: : -4
Final equations .

Ev =F —p - W n, +t
'ODt ©oor e an, ., fro ey
’ 4

where t,, is exactly the Leslie/Ericksen stress for suitably selected parameters
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Inertial Tensor Theory: Variables )

* For an incompressible, system we have
— v, the velocity
— s, the entropy density (alternatively, T, temperature)

— m, the tensor order parameter (constrained to be of
unit trace), m = <nn>

— w, the momentum of the tensor order parameter
(w = o dm/dt)



Inertial Tensor Theory: Hamiltonian @

* The Hamiltonian (extended Helmholtz free energy
of the system) is assumed to have the form:

A:_[V(%pv2 + % W+ W +c,y+ab)dV

where W, the elastic (Oseen/Frank) distortion free energy density, is written in
terms of gradients of m, for example:

W = %(b,(Vm)? + b,(V-m)?)

W represents an external field. For example, for magnetically susceptible material it is
given as:

Y= _%((ZH -y, )JHH:m+ ZLH'H)
where x, and X| are the magnetic susceptibilities perpendicular and parallel to n

Finally, a, represents the bulk free energy that can be represented through a
phenomenological Landau/de Gennes expansion of S = m — 1/3 (trm)d



Inertial Tensor Theory : Reversible )
equations

* For an isothermal system, we get the standard reversible
dynamics for a Hamiltonian system endowed with a tensor
structural parameter and its (material) time derivative:

D { OW )
p—V,=F,—p,— My, .
Y

D
where t amﬂg’y ’
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Inertial Tensor Theory : Dissipation@;

oF oG
F.G]l=—-|R vV — ||V dQ
[ ] j aﬂyg{ a5vﬂ]( 7/5\/8]
oF oF oF oG oG oG
+ o -mV —-m_V -m V. —-m_V dQ
Upper convected - f 2 sw, sy ey sw,, ey, ey
oF oF oF oG oG oG
Lower convected > - |« +m V,—+m,V +m V,—+m,V — |dQ
Ja sw,, 7 ov T rev w7 Pov, oy,

where

R = Yo" (MM +m_ 0 )+ %0 (3,8, +3,7,)

ay' ' Pe ay ™~ Pe Py~ ae

M, S5 + M, 5, +M, 5, +M, 35, )

m,M.o, +m,m

Mg, 05 +M

m.s,, +m,m.s,. )

ag’ ge pcceay

My My, My, + M M My, +Mp-M M, +My-M_ M,

maéf méymﬁﬂmns T maé” mé”emﬂnmw )



Inertial Tensor Theory : Final ()
- -4
equations

D oW
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Inertialess Tensor Theory: ()
Variables >

* For an incompressible, system we have
— v, the velocity
— s, the entropy density (alternatively, T, temperature)

— m, the tensor order parameter (constrained to be of
unit trace), m = <nn>



Inertialess Tensor Theory:
Hamiltonian

* The Hamiltonian (extended Helmholtz free energy
of the system) is assumed to have the form:

A:j\/(%pv2 +W +t//+ab)dV

where W, the elastic (Oseen/Frank) distortion free energy density, is written in
terms of gradients of m, for example:

W = %(b,(Vm)? + b,(V-m)?)

W represents an external field. For example, for magnetically susceptible material it is
given as:

Y= _%((ZH -y, )JHH:m+ ZLH'H)
where x, and X| are the magnetic susceptibilities perpendicular and parallel to n

Finally, a, represents the bulk free energy that can be represented through a
phenomenological Landau/de Gennes expansion of S = m — 1/3 (trm)d



Inertialess Tensor Theory :
Reversible equations

* For an isothermal system, we get the standard reversible
dynamics for a Hamiltonian system endowed with a
tensor, constrained, structural parameter:

vaa =F - p’a—( oW mﬂm] +Tﬂaﬁ
Y

Dt om,,
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Inertialess Tensor Theory : !@;
Dissipation Bracket -
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Inertialess Tensor Theory : Final ()
: L4
equations
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Conclusions

* The most important benefit: To be able to draw
comparisons between different levels of
descriptions and in this way “fill up the blanks” .

* Most important example: The demonstration of
the possibility of a generalized convected
derivative for m

— Direct comparison between the inertialess and the
inertial formalisms gives:
(205;“)

m m

— Even in the dissipationless limit, this parameter (being
undetermined) can still be non-zero!

— This is a crucial parameter as it regulates tumbling

,Bsm =
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